CN112375316B - 高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物及其制备方法 - Google Patents

高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物及其制备方法 Download PDF

Info

Publication number
CN112375316B
CN112375316B CN202011372143.7A CN202011372143A CN112375316B CN 112375316 B CN112375316 B CN 112375316B CN 202011372143 A CN202011372143 A CN 202011372143A CN 112375316 B CN112375316 B CN 112375316B
Authority
CN
China
Prior art keywords
mixture
fep
powder
ethylene propylene
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011372143.7A
Other languages
English (en)
Other versions
CN112375316A (zh
Inventor
韩瑞芹
王汉利
杜延华
刘治梅
朱倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Huaxia Shenzhou New Material Co Ltd
Original Assignee
Shandong Huaxia Shenzhou New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Huaxia Shenzhou New Material Co Ltd filed Critical Shandong Huaxia Shenzhou New Material Co Ltd
Priority to CN202011372143.7A priority Critical patent/CN112375316B/zh
Publication of CN112375316A publication Critical patent/CN112375316A/zh
Application granted granted Critical
Publication of CN112375316B publication Critical patent/CN112375316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及聚全氟乙丙烯树脂技术领域,具体涉及一种高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物及其制备方法。所述的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物:包含以下重量百分比的组分:FEP树脂粉末98~99.98%,润滑剂0.01~1%,填料0.01~1%;FEP树脂粉末由两种不同熔融指数的FEP树脂乳液混合后,凝聚干燥而得。本发明的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,克服了现有FEP树脂不适合高速挤出薄壁线缆难题,解决了高速挤出薄壁线缆出现的粘胶、疙瘩、凹凸、击穿多的问题;本发明还提供其制备方法。

Description

高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物及其制备方法
技术领域
本发明涉及聚全氟乙丙烯树脂技术领域,具体涉及一种高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物及其制备方法。
背景技术
随着现代信息技术的飞速发展,人们对通信电缆的性能要求越来越高,聚全氟乙丙烯树脂(FEP)具有突出的绝缘性能、介电性能和阻燃性能,使得其在电线电缆绝缘护套材料领域独具优势。近年来,为了提高生产效率和降低成本,要求提高线缆挤出速度,而高速挤出线缆,要求FEP树脂加工性能优异,具有更高的临界剪切速率,保证在高速加工时锥体表面光滑,熔体不破裂,尤其是高速薄壁着色线缆。
通常改善树脂加工性能、提高临界剪切速率,采用加入加工助剂的方式,但FEP加工温度在300-400℃,温度较高,对加工助剂耐高温性要求较高(耐温380℃以上),很难找到合适的耐高温加工助剂,并且通过聚合制备宽分子量分布FEP需要增加分子链调节剂添加量,且较难控制合适的量,更多分子链调节剂添加量也会导致洗涤不彻底,残留多,影响产品质量。
为了提高FEP的临界剪切速率,改善加工性能,国内外厂家多采用引入第三单体的方法。专利CN1617895A公开了一种使用全氟乙烯基醚为第三改性单体,减少高速包覆线缆时锥体破裂的发生,但是并未提及临界剪切速率,且制备步骤复杂。专利WO01/80253公开一种用氧化物包覆的二氧化钛着色的含氟聚合物高速熔融挤出涂覆在导线上的方法,所用含氟树脂包括四氟乙烯、六氟丙烯和全氟烷基乙烯基醚共聚物,能够达到高速挤出的目的。但是目前市场上的通过引入第三单体改性FEP树脂的临界剪切速率多在300-400s-1(采用高压毛细管流变仪,372℃下测试熔体开始破裂的温度),在制备高速薄壁线缆时,尤其是400m/min以上线速时,仍然存在熔体破裂现象,导致粘胶、疙瘩、击穿、凹凸等问题。
发明内容
本发明的目的是提供一种高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,克服了现有FEP树脂不适合高速挤出薄壁线缆难题,解决了高速挤出薄壁线缆出现的粘胶、疙瘩、凹凸、击穿多的问题;本发明还提供其制备方法。
本发明所述的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,其包含以下重量百分比的组分:
FEP树脂粉末 98~99.98%
润滑剂 0.01~1%
填料 0.01~1%;
FEP树脂粉末由两种不同熔融指数的FEP树脂乳液混合后,凝聚干燥而得。
在372℃、5kg条件下,两种FEP树脂乳液烘干后的粉体的熔融指数范围分别为20~35g/10min和35~50g/10min,且不同时为35g/10min,前后两种的质量比为2:3~4:1。
两种不同熔融指数的FEP树脂乳液混合制得的FEP数值粉末相对于单一熔融指数FEP具有更宽的分子量分布和更高临界剪切速率,更适合高速薄壁挤出。
FEP树脂粉末在372℃、5kg条件下的熔体流动速率为25-40g/10min。
FEP树脂粉末为四氟乙烯、六氟丙烯二元共聚物或四氟乙烯、六氟丙烯、乙烯三元共聚物或四氟乙烯、六氟丙烯、全氟烷基乙烯基醚三元共聚物中的一种;全氟烷基乙烯基醚为全氟甲基乙烯基醚(PMVE)、全氟乙基乙烯基醚(PEVE)、全氟丙基乙烯基醚(PPVE)中的一种。
润滑剂为耐高温硅酮粉,热失重(TGA)测试5%分解温度在380℃以上。其具有内、外润滑作用,能够改善线材表面光滑性、提高光泽度。
填料为云母粉、滑石粉、蒙脱粉、高岭土中的一种或两种以上混合物,粒径为纳米级,优选100~500nm。所选填料本身具有优异的润滑性,少量添加可以减小FEP熔融加工时的拉伸流动产生的拉伸应力,减缓熔体破裂;同时这些填料具有吸酸作用,吸收熔融加工FEP过程中产生的HF,抑制进一步降解,防止加工时因HF气体产生气泡。
采用高压毛细管流变仪,在372℃温度下,测得聚全氟乙丙烯树脂混合物的临界剪切速率大于600s-1
本发明制备的聚全氟乙丙烯树脂混合物适用于高速挤出薄壁线缆,挤出线缆速度≥600m/min,线缆壁厚0.02~0.10mm。但不限于薄壁线缆,厚壁线缆也适用。
本发明所述的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物的制备方法,包括以下步骤:
(1)将两种不同熔融指数的FEP树脂乳液混合后,凝聚干燥,得到FEP树脂粉末;
(2)将润滑剂、填料喷洒到FEP树脂粉末上,得到混合料;
(3)将混合料在双螺杆挤出机上进行熔融加工造粒,得到高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物。
步骤(3)中的双螺杆造粒机为脱挥造粒机,加料段温度为280-320℃,熔融段、混炼段、脱挥段温度为340-390℃,计量段温度为360-400℃。
与现有技术相比,本发明有以下有益效果:
(1)本发明将两种不同熔融指数的载体树脂FEP,按照混合质量比,通过乳液聚合方法,得到混合均匀、分子量分布宽的FEP,相对于单一熔融指数FEP具有更高临界剪切速率,更适合高速挤出;直接通过聚合制备宽分子量分布FEP则需要增加分子链调节剂添加量,且较难控制合适的量,更多分子链调节剂添加量也会导致洗涤不彻底,残留多,影响产品质量;
(2)本发明采用乳液混合法将两种不同熔融指数的FEP进行混合,比直接用两种不同熔熔融指数FEP粉末混合更均匀,产品粘度更均一,加工更加稳定;
(3)本发明采用的填料本身具有优异的润滑性,少量添加可以减小FEP熔融加工时的拉伸流动产生的拉伸应力,减缓熔体破裂,同时这些填料具有吸酸作用,吸收熔融加工FEP过程中产生的HF,抑制进一步降解,防止加工时因HF气体产生气泡;
(4)本发明采用的润滑剂硅酮粉,耐高温,具有内、外润滑作用,改善了线材表面光滑性、提高了光泽度;
(5)本发明制备的FEP混合物,具有较高的临界剪切速率,达600s-1以上,解决了高速挤出薄壁线缆粘胶、疙瘩、击穿、凹凸多问题,适用于高速挤出薄壁线缆,线速≥400m/min,线缆壁厚0.02~0.10mm,2000m线缆无粘胶、疙瘩、击穿个数≤2、凹凸个数≤2。
具体实施方式
下面结合实施例对本发明做进一步说明,但并不限制本发明的实施。
为方便对比,下述实施例和对比例中的FEP共聚物各单体含量一致,均为四氟乙烯、六氟丙烯、全氟丙基乙烯基醚的共聚物;实施例和对比例中白色母粒为大日精化生产的FEP白色母粒。
实施例1
(1)将粉体熔融指数为25g/10min和35g/10min的FEP树脂乳液按照质量比3:2混合均匀,凝聚干燥得到FEP树脂粉末,其在372℃、5kg条件下的熔体流动速率为30g/10min;
(2)将0.2%润滑剂硅酮粉、0.2%填料高岭土喷洒到99.6%FEP树脂粉末上,并搅拌均匀,得到混合料;
(3)将混合料在脱挥造粒机上进行熔融加工造粒,加料段、熔融段、混炼段、脱挥段、计量段温度分别为:320℃、370℃、380℃、380℃、385℃,得到高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,在372℃温度下测试其临界剪切速率;
(4)向制得的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物中添加总质量的3%的白色母粒进行挤线评价,线缆壁厚0.05mm,线速600m/min。
实施例2
(1)将粉体熔融指数为20g/10min和35g/10min的FEP树脂乳液按照质量比2:3混合均匀,凝聚干燥得到FEP树脂粉末,其在372℃、5kg条件下的熔体流动速率为25g/10min;
(2)将1%润滑剂硅酮粉、1%填料高岭土喷洒到98%FEP树脂粉末上,并搅拌均匀,得到混合料;
(3)将混合料在脱挥造粒机上进行熔融加工造粒,加料段、熔融段、混炼段、脱挥段、计量段温度分别为:320℃、380℃、390℃、390℃、395℃,得到高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,在372℃温度下测试其临界剪切速率;
(4)向制得的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物中添加总质量的3%的白色母粒进行挤线评价,线缆壁厚0.05mm,线速600m/min。
实施例3
(1)将粉体熔融指数为30g/10min和40g/10min的FEP树脂乳液按照质量比4:1混合均匀,凝聚干燥得到FEP树脂粉末,其在372℃、5kg条件下的熔体流动速率为33g/10min;
(2)将0.5%润滑剂硅酮粉、0.5%填料高岭土喷洒到99%FEP树脂粉末上,并搅拌均匀,得到混合料;
(3)将混合料在脱挥造粒机上进行熔融加工造粒,加料段、熔融段、混炼段、脱挥段、计量段温度分别为:310℃、365℃、375℃、375℃、380℃,得到高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,在372℃温度下测试其临界剪切速率;
(4)向制得的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物中添加总质量的3%的白色母粒进行挤线评价,线缆壁厚0.05mm,线速600m/min。
实施例4
(1)将粉体熔融指数为35g/10min和50g/10min的FEP树脂乳液按照质量比1:1混合均匀,凝聚干燥得到FEP树脂粉末,其在372℃、5kg条件下的熔体流动速率为40g/10min;
(2)将0.1%润滑剂硅酮粉、0.1%填料高岭土喷洒到99.8%FEP树脂粉末上,并搅拌均匀,得到混合料;
(3)将混合料在脱挥造粒机上进行熔融加工造粒,加料段、熔融段、混炼段、脱挥段、计量段温度分别为280℃、340℃、350℃、350℃、360℃,得到高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,在372℃温度下测试其临界剪切速率;
(4)向制得的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物中添加总质量的3%的白色母粒进行挤线评价,线缆壁厚0.05mm,线速600m/min。
实施例5
(1)将粉体熔融指数为22g/10min和38g/10min的FEP树脂乳液按照质量比3:4混合均匀,凝聚干燥得到FEP树脂粉末,其在372℃、5kg条件下的熔体流动速率为32g/10min;
(2)将0.01%润滑剂硅酮粉、0.01%填料高岭土喷洒到99.98%FEP树脂粉末上,并搅拌均匀,得到混合料;
(3)将混合料在脱挥造粒机上进行熔融加工造粒,加料段、熔融段、混炼段、脱挥段、计量段温度分别为:310℃、360℃、370℃、370℃、375℃,得到高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,在372℃温度下测试其临界剪切速率;
(4)向制得的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物中添加总质量的3%的白色母粒进行挤线评价,线缆壁厚0.05mm,线速600m/min。
对比例1
将粉体熔融指数为30g/10minFEP树脂乳液,在372℃温度下测试其临界剪切速率,向其中添加总质量的3%的白色母粒进行挤线评价,线缆壁厚0.05mm,线速600m/min。
对比例2
将熔融指数为25g/10min和35g/10min的FEP树脂粉末按照质量比3:2混合均匀,将混合料在脱挥造粒机上进行熔融加工造粒,加料段、熔融段、混炼段、脱挥段、计量段温度分别为:320℃、370℃、380℃、380℃、385℃,在372℃温度下测试其临界剪切速率;再添加总质量的3%的白色母粒进行挤线评价,线缆壁厚0.05mm,线速600m/min。
对比例3
将粉体熔融指数为25g/10min和35g/10min的FEP树脂乳液按照质量比3:2混合均匀,凝聚干燥得到FEP粉末;在脱挥造粒机上进行熔融加工造粒,加料段、熔融段、混炼段、脱挥段、计量段温度分别为:320℃、370℃、380℃、380℃、385℃,在372℃温度下测试其临界剪切速率;再添加总质量的3%的白色母粒进行挤线评价,线缆壁厚0.05mm,线速600m/min。
对比例4
(1)将99.6%的熔融指数为30g/10minFEP树脂粉末、0.2%润滑剂硅酮粉、0.2%填料滑石粉搅拌混合均匀,在脱挥造粒机上进行熔融加工造粒,加料段、熔融段、混炼段、脱挥段、计量段温度分别为:320℃、370℃、380℃、380℃、385℃,得到混合物,在372℃温度下测试其临界剪切速率;
(2)向制得的混合物添加总质量的3%的白色母粒进行挤线评价,线缆壁厚0.05mm,线速600m/min。
实施例1-5和对比例1-4配方和工艺条件如表1所示。
表1实施例1-5和对比例1-4的配方和工艺条件
Figure BDA0002807080860000061
将实施例1-5和对比例1-4制得的聚全氟乙丙烯树脂混合物,采用高压毛细管流变仪,在372℃下测试其临界剪切速率,如表2所示。
表2实施例1-5和对比1-4制得的聚全氟乙丙烯树脂混合物的临界剪切速率
Figure BDA0002807080860000062
将实施例1-5和对比例1-4制得混合物,进行挤线评价结果,结果如表3所示。
表3实施例1-5和对比例1-4的挤线评价结果
Figure BDA0002807080860000063
Figure BDA0002807080860000071
由表2和表3可以看出:实施例1-5采用本发明的配方,以及FEP乳液混合的工艺方法,制备的聚全氟乙丙烯树脂混合物的临界剪切速率都大于600s-1,经挤线评价,无黏胶、无断胶,击穿个数在2个以下,凹凸个数在2个以下,解决了高速挤出薄壁线缆粘胶、疙瘩、击穿、凹凸多问题;对比例1和对比例4采用单一熔熔融指数的FEP树脂制备的产物,添加润滑剂和填料与否,临界剪切速率都较低且挤线评价比较差;对比例2和对比例3均不添加润滑剂和填料,其挤线评价结果不佳,其中对比例2采用不同熔熔融指数FEP树脂粉末混合的方式,其挤线评价结果不如对比例3。

Claims (5)

1.一种高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,其特征在于:包含以下重量百分比的组分:
FEP树脂粉末 98~99.98%
润滑剂 0.01~1%
填料 0.01~1%;
FEP树脂粉末由两种不同熔融指数的FEP树脂乳液混合后,凝聚干燥而得;
在372℃、5kg条件下,两种FEP树脂乳液烘干后的粉体的熔融指数范围分别为20~35g/10min和35~50g/10min,且不同时为35g/10min,前后两种的质量比为2:3~4:1;
FEP树脂粉末在372℃、5kg条件下的熔体流动速率为25-40g/10min;
润滑剂为硅酮粉,其热失重测试5%分解温度在380℃以上;
填料为云母粉、滑石粉、蒙脱粉、高岭土中的一种或两种以上混合物,粒径为100~500nm。
2.根据权利要求1所述的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,其特征在于:FEP树脂粉末为四氟乙烯、六氟丙烯二元共聚物,四氟乙烯、六氟丙烯、乙烯三元共聚物,四氟乙烯、六氟丙烯、全氟烷基乙烯基醚三元共聚物中的一种;
所述全氟烷基乙烯基醚为全氟甲基乙烯基醚、全氟乙基乙烯基醚、全氟丙基乙烯基醚中的一种。
3.根据权利要求1所述的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物,其特征在于:聚全氟乙丙烯树脂混合物在372℃温度下的临界剪切速率大于600s-1
4.一种权利要求1-3任一项所述的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物的制备方法,其特征在于:包括以下步骤:
(1)将两种不同熔融指数的FEP树脂乳液混合后,凝聚干燥,得到FEP树脂粉末;
(2)将润滑剂、填料喷洒到FEP树脂粉末上,得到混合料;
(3)将混合料在双螺杆挤出机上进行熔融加工造粒,得到高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物。
5.根据权利要求4所述的高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物的制备方法,其特征在于:步骤(3)中的双螺杆挤出机为脱挥造粒机,加料段温度为280-320℃,熔融段、混炼段、脱挥段温度为340-390℃,计量段温度为360-400℃。
CN202011372143.7A 2020-11-30 2020-11-30 高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物及其制备方法 Active CN112375316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011372143.7A CN112375316B (zh) 2020-11-30 2020-11-30 高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011372143.7A CN112375316B (zh) 2020-11-30 2020-11-30 高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物及其制备方法

Publications (2)

Publication Number Publication Date
CN112375316A CN112375316A (zh) 2021-02-19
CN112375316B true CN112375316B (zh) 2022-03-29

Family

ID=74588747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011372143.7A Active CN112375316B (zh) 2020-11-30 2020-11-30 高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物及其制备方法

Country Status (1)

Country Link
CN (1) CN112375316B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410040A (zh) * 2022-01-05 2022-04-29 立昌科技(赣州)有限公司 一种fep色母粒及其制备方法及fep预着色料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110480982A (zh) * 2018-05-10 2019-11-22 中昊晨光化工研究院有限公司 一种挤出用聚全氟乙丙烯树脂及其制备方法
CN111040066A (zh) * 2019-12-31 2020-04-21 山东华夏神舟新材料有限公司 高速挤出含氟聚合物及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102660A1 (en) * 2008-02-15 2009-08-20 Daikin America, Inc. Tetrafluoroethylene/hexafluoropropylene copolymer and the production method thereof, and electrical wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110480982A (zh) * 2018-05-10 2019-11-22 中昊晨光化工研究院有限公司 一种挤出用聚全氟乙丙烯树脂及其制备方法
CN111040066A (zh) * 2019-12-31 2020-04-21 山东华夏神舟新材料有限公司 高速挤出含氟聚合物及其制备方法

Also Published As

Publication number Publication date
CN112375316A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN105980426B (zh) 四氟乙烯/六氟丙烯系共聚物和电线
CN101163739B (zh) 氟树脂组合物和电线
US3248359A (en) Polyolefin compositions
US5051479A (en) Melt processable TFE copolymers with improved processability
US9704616B2 (en) Fluorinated elastomer composition and method for its production, molded product, cross-linked product, and covered electric wire
EP2144940A1 (en) Fluoropolymer wire insulation
WO2010132350A1 (en) Foamable fluoropolymer composition
CN108976745B (zh) 抗划伤高透明聚碳酸酯复合材料及其制备方法
JP2005511846A (ja) 押出可能なフルオロポリマーブレンド
JP6278282B2 (ja) 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線
CN109897347B (zh) 一种军工电连接器绝缘体及其制备方法
WO2005090469A1 (en) Cellulose reinforced resin compositions
CN112375316B (zh) 高速挤出薄壁线缆用聚全氟乙丙烯树脂混合物及其制备方法
CN103013021A (zh) 一种硅烷交联的无卤阻燃聚烯烃电缆料的制备方法
US8247486B2 (en) Creep resistant fluoropolymer
JP2009501839A (ja) 低融点フルオロポリマー添加剤を含む充填パーフルオロポリマー組成物
CN111662501B (zh) 一种低收缩聚乙烯护套料及其制备方法和应用
CN113292799A (zh) 一种透明pvc-u电工套管及其制备方法
EP3451350A1 (en) Coated cable
CN112920555B (zh) 一种适用于高速挤出的tpee复合材料及其制备方法
CN106589766A (zh) 一种pa‑abs合金及其制备方法
US20150021814A1 (en) Core/shell fluoropolymer
CN108034149B (zh) 一种改性聚丙烯母料及其制备方法和应用
CN112552618A (zh) 一种注塑用高流动性硬质pvc材料及其制备方法
KR100674747B1 (ko) 난연 열수축 튜브 제조용 조성물 및 난연 열수축 튜브

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant