CN112358632A - 一种单宁酸-聚吡咯-氧化石墨烯复合凝胶及其制备方法和应用 - Google Patents

一种单宁酸-聚吡咯-氧化石墨烯复合凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN112358632A
CN112358632A CN202011202374.3A CN202011202374A CN112358632A CN 112358632 A CN112358632 A CN 112358632A CN 202011202374 A CN202011202374 A CN 202011202374A CN 112358632 A CN112358632 A CN 112358632A
Authority
CN
China
Prior art keywords
graphene oxide
polypyrrole
tannic acid
tannin
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011202374.3A
Other languages
English (en)
Other versions
CN112358632B (zh
Inventor
李亮
肖代君
邓勇
刘玉兰
喻湘华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202011202374.3A priority Critical patent/CN112358632B/zh
Publication of CN112358632A publication Critical patent/CN112358632A/zh
Application granted granted Critical
Publication of CN112358632B publication Critical patent/CN112358632B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种单宁酸‑聚吡咯‑氧化石墨烯复合凝胶的制备方法,首先向单宁酸水溶液中加入吡咯,在0‑4℃下进行搅拌处理,然后加入氧化石墨烯,进行二次搅拌,得到单宁酸‑吡咯‑氧化石墨烯共混液;然后将铁盐水溶液加入步骤1)所得共混液中,进行静置处理,得所述单宁酸‑聚吡咯‑氧化石墨烯复合凝胶电极材料。本发明涉及的制备方法简单,无需复杂设备,不需要有机溶剂,对环境无污染,原料易得,可以满足不同应用需求,便于推广;所得复合电极材料可用于制备超级电容器,并表现出优秀的比电容和循环稳定性。

Description

一种单宁酸-聚吡咯-氧化石墨烯复合凝胶及其制备方法和 应用
技术领域
本发明属于聚合物功能材料技术领域,具体涉及一种单宁酸-聚吡咯-氧化石墨烯复合凝胶及其制备方法和应用。
背景技术
导电高分子水凝胶已成为各种先进应用中非常重要的一类智能软物质,水凝胶的三维结构增加了材料的比表面积,有利于与电解液的充分结合,从而提高了材料的比电容。具有良好电化学性能的导电水凝胶已成为可穿戴设备或可植入传感器中有前景的材料。然而,现有许多水凝胶材料在实际使用中受到一定限制。
在各种导电聚合物材料中,聚吡咯具有制备简单成本低廉、性能稳定等优点,将聚吡咯与氧化石墨烯结合,利用大比表面积的氧化石墨烯作为骨架,有利于电解液的充分浸润提高反应活性位点,同时可以减少聚吡咯在循环充放电过程中的体积变化提高电极材料体系的循环稳定性。将聚吡咯更均匀生长在氧化石墨烯表面,充分利用两者的优势性能是研究者们一直探索的方向。
然而,聚吡咯和氧化石墨烯的结合依然面临一些关键性的难题。例如,由于氧化石墨烯本身极易发生团聚,聚吡咯通常难以均匀负载在氧化石墨烯表面,而只有均匀复合才能使得电极材料充分发挥氧化石墨烯的大比表面积、高导电性和聚吡咯的高赝电容的双重优势,为复合电极的电化学性能提供保证。因此进一步探索聚吡咯-氧化石墨烯复合工艺并优化其电化学性能具有重要研究和应用意义。
发明内容
本发明的主要目的在于针对现有技术存在的不足,提供一种单宁酸-聚吡咯-氧化石墨烯复合凝胶的制备方法,涉及的制备方法简单,无需复杂设备,无需引入有机溶剂,环境友好,并可进一步提升所得聚吡咯-氧化石墨烯复合材料的电学性能。
为实现上述目的,本发明采用的技术方案为:
一种单宁酸-聚吡咯-氧化石墨烯复合凝胶的制备方法,包括如下步骤:
1)向单宁酸水溶液中加入吡咯,在0-4℃下进行搅拌处理,然后加入氧化石墨烯,进行二次搅拌,得到单宁酸-吡咯-氧化石墨烯共混液;
2)将铁盐水溶液加入步骤1)所得共混液中,进行静置处理,得所述单宁酸-聚吡咯-氧化石墨烯复合凝胶。
上述方案中,所述单宁酸水溶液的浓度为0.2-0.5wt%。
上述方案中,步骤1)中所述搅拌处理时间为10-30min,二次搅拌时间为10-30min。
上述方案中,所述铁盐为三氯化铁、硝酸铁或硫酸铁。
上述方案中,所述单宁酸、吡咯、氧化石墨烯的质量比为(1-3):(7-23):(1-5)。
上述方案中,所述铁盐与吡咯的摩尔比为(1-1.3):1。
上述方案中,所述铁盐溶液的浓度为0.1~0.5M。
上述方案中,步骤2)中所述静置温度为0-25℃,时间为24-28h。
根据上述方案制备的单宁酸-聚吡咯-氧化石墨烯复合凝胶,它具有三维网状的凝胶体系结构,将其应用于制备超级电容器,可表现出优秀的比电容和循环稳定性。
本发明的原理为:
本发明以单宁酸、聚吡咯和氧化石墨烯为主要原料,氧化石墨烯中羟基、环氧官能团、羰基、羧基等含氧官能团易于单宁酸分子中的酚羟基结合,同时聚吡咯也可在氧化石墨烯上原位生长;单宁酸分子中含有的酚羟基不仅易氧化石墨烯结合,也可与铁离子可以形成螯合物,而铁盐可进一步引发吡咯聚合形成聚吡咯;本发明以单宁酸作掺杂剂,铁离子为离子交联剂可有效加强氧化石墨烯和聚吡咯之间的相互作用,形成三维网状的凝胶体系,改善氧化石墨烯的团聚现象,并可调控充放电过程中离子传输速率及吸附脱附能力,进而提高所得复合材料的电化学性能。
与现有技术相比,本发明的有益效果为:
1)将本发明所述单宁酸-聚吡咯-氧化石墨烯复合凝胶应用于制备超级电容器,可表现出较高的比电容和循环稳定性;
2)通过控制氧化石墨烯的添加量,可有效调控负载在石墨烯上的单宁酸和聚吡咯,进而制备得到具有不同电化学性能的单宁酸-聚吡咯-氧化石墨烯复合凝胶电极材料,涉及的调控方式简单、易控;
3)铁盐的加入可使得单宁酸-吡咯-氧化石墨烯共混液快速失去流动性,15s内迅速形成凝胶;且引入的氧化石墨烯可进一步加速凝胶形成进程,有效缩短静置处理制得凝胶产物的时间,缩短合成周期;
4)本发明涉及的制备方法简单,无需引入有机溶剂,环境友好,对反应设备要求低,适合推广应用。
附图说明
图1为本发明实施例1制备的单宁酸-聚吡咯-氧化石墨烯复合凝胶的形貌图。
图2为本发明实施例1制备的单宁酸-聚吡咯-氧化石墨烯复合凝胶组成对称电容器的循环稳定图。
图3为本发明实施例1制备的单宁酸-聚吡咯-氧化石墨烯复合凝胶点亮灯泡实验照片。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种单宁酸-聚吡咯-氧化石墨烯复合凝胶的制备方法,包括如下步骤:
1)取4mg的单宁酸配制浓度为0.3wt%的单宁酸水溶液,然后在4℃下加入33.5mg的吡咯搅拌10min,加入6mg氧化石墨烯继续搅拌10min,混合均匀,得到单宁酸-吡咯-氧化石墨烯共混液;
2)取0.1g三氯化铁溶于5ml去离子水后加入到步骤1)所得单宁酸-吡咯-氧化石墨烯共混液中,再在10℃下静置24h,即得单宁酸-聚吡咯-氧化石墨烯复合凝胶。
本实施例得到的单宁酸-聚吡咯-氧化石墨烯复合凝胶如图1。
将本实施例制备的单宁酸-聚吡咯-氧化石墨烯复合凝胶进行电化学性能测试,测试仪器为辰华电化学工作站CHI900C,在硫酸钠电解液中进行测试,根据电容量计算公式,在电流密度为0.5A/g时比电容为369.14F/g。
将本实施例制备的单宁酸-聚吡咯-氧化石墨烯复合凝胶制备成对称电容器进行电化学循环稳定测试,测试仪器为辰华电化学工作站CHI900C,电解液为硫酸钠,在200mV/s的扫描速率下循环1000圈后电容仍能保持在92.53%;循环稳定性如图2所示。本实施例制备的单宁酸-聚吡咯-氧化石墨烯复合凝胶进行点亮灯泡实验,结果见图3。
实施例2
一种单宁酸-聚吡咯-氧化石墨烯复合凝胶的制备方法,包括如下步骤:
1)取4mg的单宁酸配制浓度为0.3wt%的单宁酸水溶液,然后在0℃下加入33.5mg的吡咯搅拌30min,加入2mg氧化石墨烯继续搅拌30min,混合均匀,得到单宁酸-吡咯-氧化石墨烯共混液;
2)取0.1g三氯化铁溶于5ml去离子水后加入到步骤1)所得单宁酸-吡咯-氧化石墨烯共混液中,再在15℃下静置26h,即得单宁酸-聚吡咯-氧化石墨烯复合凝胶。
将本实施例制备的单宁酸-聚吡咯-氧化石墨烯复合凝胶进行电化学性能测试,测试仪器为辰华电化学工作站CHI900C,在硫酸钠电解液中进行测试,根据电容量计算公式,在电流密度为0.5A/g时比电容为249.91F/g。
实施例3
一种单宁酸-聚吡咯-氧化石墨烯复合凝胶的制备方法,包括如下步骤:
1)取4mg的单宁酸配制浓度为0.3wt%的单宁酸水溶液,然后在3℃下加入33.5mg的吡咯搅拌20min,加入4mg氧化石墨烯继续搅拌20min,混合均匀,得到单宁酸-吡咯-氧化石墨烯共混液;
2)取0.1g三氯化铁溶于5ml去离子水后加入到步骤1)所得单宁酸-吡咯-氧化石墨烯共混液中,再在10℃下静置28h,即得单宁酸-聚吡咯-氧化石墨烯复合凝胶。
将本实施例制备的单宁酸-聚吡咯-氧化石墨烯复合凝胶进行电化学性能测试,测试仪器为辰华电化学工作站CHI900C,在硫酸钠电解液中进行测试,根据电容量计算公式,在电流密度为0.5A/g时比电容为300.87F/g。
对比例1
一种单宁酸-聚吡咯复合凝胶材料的制备,具体步骤如下:
1)取4mg的单宁酸配置成质量分数为0.3%的水溶液;然后在4℃下加入33.5mg的吡咯搅拌10min,混合均匀,得到单宁酸-吡咯共混液;
3)取0.1g三氯化铁溶于5ml去离子水后加入到步骤1)所得单宁酸-吡咯共混液中,再在10℃下静置36h,得单宁酸-聚吡咯复合凝胶材料。
将本对比例制备的单宁酸-聚吡咯复合材料进行电化学性能测试,在硫酸钠电解液中进行测试,根据电容量计算公式,在电流密度为0.5A/g时比电容为178.20F/g。
此外,与本发明实施例1对比,对比例1所述单宁酸-聚吡咯凝胶静置形成凝胶产物的时间较长,说明本发明引入的氧化石墨烯可进一步加速形成凝胶的进程。
对比例2
一种单宁酸-聚吡咯-氧化石墨烯复合材料的制备方法,包括如下步骤:
1)取4mg的单宁酸配制浓度为0.3wt%的单宁酸水溶液,然后在3℃下加入33.5mg的吡咯搅拌20min,加入4mg氧化石墨烯继续搅拌20min,混合均匀,得到单宁酸-吡咯-氧化石墨烯共混液;
2)取0.114g过硫酸铵溶于5ml去离子水后加入到步骤1)所得单宁酸-吡咯-氧化石墨烯共混液中,再在10℃下静置28h,即得单宁酸-聚吡咯-氧化石墨烯复合材料。
结果表明,本对比例制备的单宁酸-聚吡咯-氧化石墨烯体系静置后不能形成凝胶。
上述实施例仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (10)

1.一种单宁酸-聚吡咯-氧化石墨烯复合凝胶的制备方法,包括如下步骤:
1)向单宁酸水溶液中加入吡咯,在0-4℃下进行搅拌处理,然后加入氧化石墨烯,进行二次搅拌,得到单宁酸-吡咯-氧化石墨烯共混液;
2)将铁盐水溶液加入步骤1)所得共混液中,进行静置处理,得所述单宁酸-聚吡咯-氧化石墨烯复合凝胶电极材料。
2.根据权利要求1所述的制备方法,其特征在于,所述单宁酸水溶液的浓度为0.2-0.5wt%。
3.根据权利要求1所述的制备方法,其特征在于,步骤1)中所述搅拌处理时间为10-30min,二次搅拌时间为10-30min。
4.根据权利要求1所述的制备方法,其特征在于,所述铁盐为三氯化铁、硝酸铁或硫酸铁。
5.根据权利要求1所述的制备方法,其特征在于,所述单宁酸、吡咯、氧化石墨烯的质量比为(1-3):(7-23):(1-5)。
6.根据权利要求1所述的制备方法,其特征在于,所述铁盐与吡咯的摩尔比为(1-1.3):1。
7.根据权利要求1所述的制备方法,其特征在于,所述铁盐溶液的浓度为0.1-0.5M。
8.根据权利要求1所述的制备方法,其特征在于,步骤2)中所述静置温度为0-25℃,时间为24-28h。
9.权利要求1~8任一项所述制备方法制得的单宁酸-聚吡咯-氧化石墨烯复合凝胶电极材料。
10.权利要求9所述单宁酸-聚吡咯-氧化石墨烯复合凝胶电极材料在超级电容器领域中的应用。
CN202011202374.3A 2020-11-02 2020-11-02 一种单宁酸-聚吡咯-氧化石墨烯复合凝胶及其制备方法和应用 Active CN112358632B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011202374.3A CN112358632B (zh) 2020-11-02 2020-11-02 一种单宁酸-聚吡咯-氧化石墨烯复合凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011202374.3A CN112358632B (zh) 2020-11-02 2020-11-02 一种单宁酸-聚吡咯-氧化石墨烯复合凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112358632A true CN112358632A (zh) 2021-02-12
CN112358632B CN112358632B (zh) 2022-12-06

Family

ID=74514243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011202374.3A Active CN112358632B (zh) 2020-11-02 2020-11-02 一种单宁酸-聚吡咯-氧化石墨烯复合凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112358632B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831556A (zh) * 2021-11-10 2021-12-24 中新国际联合研究院 一种单宁酸交联聚吡咯导电聚合物水凝胶的制备方法及应用
CN113995889A (zh) * 2021-11-10 2022-02-01 中新国际联合研究院 负载外泌体的电信号与化学信号双传导水凝胶支架的制备方法及应用
CN115010111A (zh) * 2022-07-22 2022-09-06 东莞市创明电池技术有限公司 一种自支撑钠离子电池负极碳材料及其制备方法和应用
CN115312968A (zh) * 2022-09-09 2022-11-08 盐城师范学院 一种基于耐高温隔膜的锂离子电池及其制备方法
CN116426029A (zh) * 2023-03-06 2023-07-14 江南大学 一种金属单原子/共轭聚合物气凝胶复合材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220027A (zh) * 2011-04-25 2011-10-19 北京航空航天大学 一种石墨烯/导电聚合物复合材料及其制备方法
CN108493002A (zh) * 2018-04-10 2018-09-04 北京林业大学 一种单宁酸修饰氧化石墨烯制备水凝胶柔性电极的方法
CN109125813A (zh) * 2018-08-17 2019-01-04 西南交通大学 一种用于组织修复的导电粘附水凝胶制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220027A (zh) * 2011-04-25 2011-10-19 北京航空航天大学 一种石墨烯/导电聚合物复合材料及其制备方法
CN108493002A (zh) * 2018-04-10 2018-09-04 北京林业大学 一种单宁酸修饰氧化石墨烯制备水凝胶柔性电极的方法
CN109125813A (zh) * 2018-08-17 2019-01-04 西南交通大学 一种用于组织修复的导电粘附水凝胶制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李阳等: ""聚吡咯/石墨烯复合水凝胶的制备与性能"", 《武汉工程大学学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831556A (zh) * 2021-11-10 2021-12-24 中新国际联合研究院 一种单宁酸交联聚吡咯导电聚合物水凝胶的制备方法及应用
CN113995889A (zh) * 2021-11-10 2022-02-01 中新国际联合研究院 负载外泌体的电信号与化学信号双传导水凝胶支架的制备方法及应用
CN115010111A (zh) * 2022-07-22 2022-09-06 东莞市创明电池技术有限公司 一种自支撑钠离子电池负极碳材料及其制备方法和应用
CN115010111B (zh) * 2022-07-22 2023-09-01 东莞市创明电池技术有限公司 一种自支撑钠离子电池负极碳材料及其制备方法和应用
CN115312968A (zh) * 2022-09-09 2022-11-08 盐城师范学院 一种基于耐高温隔膜的锂离子电池及其制备方法
CN115312968B (zh) * 2022-09-09 2023-12-22 盐城师范学院 一种基于耐高温隔膜的锂离子电池及其制备方法
CN116426029A (zh) * 2023-03-06 2023-07-14 江南大学 一种金属单原子/共轭聚合物气凝胶复合材料及其制备方法与应用
CN116426029B (zh) * 2023-03-06 2024-02-02 江南大学 一种金属单原子/共轭聚合物气凝胶复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN112358632B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
CN112358632B (zh) 一种单宁酸-聚吡咯-氧化石墨烯复合凝胶及其制备方法和应用
CN105633369B (zh) 一种碳包覆磷酸铁锂材料的制备方法
CN106115653A (zh) 一种杂原子掺杂的多孔碳材料的制备方法
CN109244391A (zh) 一种氮参杂碳包覆磷酸锰铁锂材料及其制备方法
CN110289173A (zh) 一种高比电容的细菌纤维素基柔性氮掺杂石墨烯超级电容器电极材料及其制备方法和应用
CN103243563B (zh) 一种聚乳酸/聚苯胺复合导电纤维的制备方法
CN108172416A (zh) 具有多孔管壁纳米管的三维碳气凝胶的制备方法及其应用
CN109167043A (zh) 溶剂热连锁聚合法制备高分子复合电极材料
CN109786711A (zh) 一种多孔碳骨架包覆锡复合电极材料的制备方法
CN107068998A (zh) 含导电聚合物/石墨烯的电池电极及其制备方法和应用
CN111180790B (zh) 一种聚合物电解质及其制备方法和固态锂-空气电池
CN105261485B (zh) 一种电容器电极材料的制备方法
Han et al. One-pot synthesis of conductive polypyrrole incorporated ZIF-67 for high-performance supercapacitors
CN103996845A (zh) 一种复合富锂正极材料及其制备方法
CN109802131A (zh) 锂离子电池及其负极片及负极材料及制备工艺
CN112216518B (zh) 一种柔性锌离子混合电容器及其制备方法和应用
CN107746572B (zh) 分级多孔结构pnma/木质素磺酸杂化水凝胶的制备方法
CN105406035A (zh) 一种正八面体型磷酸铁/氧化石墨烯前驱体的制备方法
CN109721713A (zh) 一种电导率高的锂离子电池正极浆料及制备方法
CN103700855A (zh) 一种锂离子动力电池用高性能磷酸锰锂材料的制备方法
CN112071660B (zh) 一种超长聚吡咯纳米线型电极材料的制备方法
CN111710532B (zh) 一种三氧化二锑-碳纳米管复合材料及其制备和应用
CN107946565A (zh) 石墨烯包覆芳香族有机氧盐材料及其制备方法和应用
CN110491685B (zh) 一种石墨烯超级电容器浆料的制备方法及应用
CN100549086C (zh) 一种凝胶聚合物电解质及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant