CN112334597A - 硅氧烷组合物和使用该组合物沉积含硅膜的方法 - Google Patents

硅氧烷组合物和使用该组合物沉积含硅膜的方法 Download PDF

Info

Publication number
CN112334597A
CN112334597A CN201980039882.3A CN201980039882A CN112334597A CN 112334597 A CN112334597 A CN 112334597A CN 201980039882 A CN201980039882 A CN 201980039882A CN 112334597 A CN112334597 A CN 112334597A
Authority
CN
China
Prior art keywords
film
composition
substrate
silicon
flowable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980039882.3A
Other languages
English (en)
Other versions
CN112334597B (zh
Inventor
李建恒
雷新建
R·N·维蒂斯
R·G·里奇韦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Versum Materials US LLC
Original Assignee
Versum Materials US LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Versum Materials US LLC filed Critical Versum Materials US LLC
Publication of CN112334597A publication Critical patent/CN112334597A/zh
Application granted granted Critical
Publication of CN112334597B publication Critical patent/CN112334597B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Abstract

本发明公开了含硅氧烷的组合物和方法。所公开的方法涉及一种在衬底上沉积介电膜的方法,该方法包括以下步骤:a)将衬底放置在反应室中;b)引入包含环状含硅化合物和氧化剂的工艺气体;和c)在使得环状含硅化合物和氧化剂反应以在衬底表面上形成可流动膜的条件下,将衬底暴露于工艺气体。所述方法可进一步包括将可流动膜转化成固体介电材料(例如氧化硅膜)。在某些实施方案中,膜的转化可通过热、等离子体退火对如此沉积的膜进行退火和UV固化来实现。

Description

硅氧烷组合物和使用该组合物沉积含硅膜的方法
背景技术
在本领域中已知使用可流动化学气相沉积工艺通过气相聚合来沉积氧化硅膜。例如,现有技术聚焦于使用诸如三甲硅烷基胺(TSA)的化合物来沉积含硅、氢、氮的低聚体,该低聚体随后通过臭氧暴露被氧化成SiOx膜。这方面的实例见:美国公开号2014/0073144;美国公开号2013/230987;美国专利号7,521,378、7,557,420和8,575,040;和美国专利号7,825,040。这些工艺总是需要高温水蒸汽处理和>1000℃的热退火。
美国专利7825038 B2公开了在衬底上沉积氧化硅层的方法,该方法包括以下步骤:向沉积室提供衬底,在沉积室外产生原子氧前体,以及将原子氧前体引入室中。该沉积还可包括将硅前体引入沉积室,其中硅前体和原子氧前体首先在该室中混合。如八甲基三硅氧烷(OMTS)、八甲基环四硅氧烷(OMCTS)和四甲基环四硅氧烷(TOMCATS)的前体被用于该申请中。
美国专利号7998536、7989033和Yim,K.S.(2009)“Novel silicon precursors tomake ultra low-k films with high mechanical properties by plasma enhancedchemical vapor deposition”公开了用于形成低k、含Si-C膜的前体和工艺。
美国专利9362107B2公开了在图案化衬底上形成可流动低k介电膜的方法。该膜可以是硅-碳-氧(Si-C-O)层,其中硅和碳成分来自含硅和碳的前体,而氧可以来自在远程等离子体区中激活的含氧前体。在沉积后不久,硅-碳-氧层在固化前通过暴露于含氢和氮的前体(例如氨)进行处理。该处理可以从硅-碳-氧层中去除残留水分,并且可以使晶格在固化和后续处理过程中更有弹性。该处理可以减少后续处理期间硅-碳-氧层的收缩。如八甲基环四硅氧烷(OMCTS)和四甲基环四硅氧烷(TOMCATS)的前体宣称用于该应用。
已知的前体和沉积工艺可以沉积吸收水分并导致介电常数提高的亲水膜。
前述专利和专利申请的公开内容在此通过引入并入本文。
发明内容
本发明通过提供环状硅氧烷组合物和用于沉积含硅膜的方法,以及在一个实施方案中用于填充半导体各种特征之间的间隙的膜,解决了与已知前体和工艺相关的问题。
更具体地,本发明包括一种用于在衬底上形成含硅膜的可流动化学气相沉积方法。该方法包括将衬底置于反应室中,并将至少一种由式I表示的环状硅氧烷化合物和至少一种激活的物质引入到反应室中:
Figure BDA0002833466420000021
其中R1-4独立地选自氢、直链或支链的C1至C10烷基、直链或支链的C3至C10烯基、直链或支链的C3至C10炔基、二-C1至C6-烷基氨基和C6至C10芳基,且n=1、2、3、4。控制反应器条件,使含硅化合物和激活的物质发生反应并作为可流动膜凝结在衬底上。所述至少一种激活的物质相对于反应室被远程激活。
在某些情况下,所述可流动膜具有至少一个Si-C和Si-O键。所述可流动膜填充衬底表面特征上的高纵横比间隙。然后,例如通过等离子体、UV和/或热退火将可流动膜转化成最终氧化硅膜。本发明的方法可用于填充高纵横比间隙,包括纵横比范围为3:1至10:1或更大的间隙。
可使用远程等离子体源、远程微波源或远程热线系统产生所述激活的物质。
根据一个实施方案,所述至少一种激活的物质是通过等离子体源或远程微波源作用于选自水蒸气、臭氧、氧气、氧气/氦气、氧气/氩气、氮氧化物、二氧化碳、过氧化氢、有机过氧化物及其混合物的物质而生成的氧化剂。
根据另一个实施方案,通过等离子体源或远程微波源作用于选自氮气、氮气和氦气的混合物、氮气和氩气的混合物、氨;氨和氦气的混合物、氨和氩气的混合物、氦气、氩气;氢气、氢气和氦气的混合物、氢气和氩气的混合物、氨和氢气的混合物、有机胺及其混合物而生成所述至少一种激活的物质。
根据另一个实施方案,所述至少一种环状硅氧烷化合物包括2,2,5,5-四甲基-1-氧杂-2,5-二硅杂环戊烷和2,2,6,6-四甲基-1-氧杂-2,6-二硅杂环己烷中的一种或两种。
在进行上述步骤后,所述可流动膜可以用选自等离子体、UV辐射和热退火的处理方法进行处理。用所述处理方法处理可流动膜将该可流动膜转化成介电材料。
如前所述,本发明的一些实施方案涉及为用介电材料填充衬底上的间隙的目的使用上述形成介电膜的方法。在这样的实施方案中,含硅化合物和氧化剂反应以在将可流动膜转化为介电材料之前在间隙中形成可流动膜。
在再进一步的实施方案中,含硅膜通过等离子体辅助的反应沉积到间隙中。在这样的实施方案中,在等离子体辅助的反应和含硅膜沉积到间隙中之后,将氧化剂引入反应室,并且含硅膜暴露于氧化剂,使得在间隙中形成包含Si-O和Si-C键中至少一种的可流动膜。原样沉积的膜随后转化为介电材料。
本发明的另一方面涉及通过本发明方法获得的膜。
另一个实施方案涉及一种用于将膜可流动化学气相沉积到衬底上的组合物,该组合物包含2,2,5,5-四甲基-1-氧杂-2,5-二硅杂环戊烷,并且具有少于10ppm的卤离子杂质,该卤离子选自氯离子、氟离子、溴离子和碘离子。
另一个实施方案涉及一种用于在衬底上可流动化学气相沉积膜的组合物,该组合物包含2,2,5,5-四甲基-1-氧杂-2,5-二硅杂环戊烷,并且具有少于10ppm的金属离子杂质,该金属离子选自Al3+、Fe2+、Fe3+、Ni2+和Cr3+
另一个实施方案涉及一种用于将膜可流动化学气相沉积到衬底上的组合物,该组合物包含2,2,6,6-四甲基-1-氧杂-2,6-二硅杂环己烷,并且具有少于10ppm的卤离子杂质,该卤离子选自由氯离子、氟离子、溴离子和碘离子。
另一个实施方案涉及一种用于将膜可流动化学气相沉积到衬底上的组合物,该组合物包含2,2,6,6-四甲基-1-氧杂-2,6-二硅杂环己烷,并且具有少于10ppm的金属离子杂质,该金属离子选自Al3+、Fe2+、Fe3+、Ni2+和Cr3+
本发明的各个方面可以单独使用或相互结合使用。
附图说明
图1是根据实施例1沉积的具有有机硅酸盐玻璃膜的图案化晶片在热退火后的SEM照片;
图2是图1所示图案化晶片在UV固化步骤后的SEM照片;
图3是根据实施例1的原样沉积的膜在热退火或UV固化之前的FTIR图;
图4是根据实施例1的原样沉积的膜在热退火后但在UV固化前的FTIR图;和
图5是根据实施例1的原样沉积的膜在热退火后和也在UV固化后的FTIR图。
具体实施方式
接下来的详细描述仅提供了优选的示例性实施方案,并不旨在限制本发明的范围、适用性或配置。相反,随后对优选示例性实施方案的详细描述将为本领域技术人员提供用于实现本发明的优选示例性实施方案的可行描述。在不脱离如所附权利要求所述的本发明的精神和范围的情况下,可以对要素的功能和布置进行各种改变。
在权利要求中,字母可用于确定所主张的方法步骤(例如a、b和c)。这些字母用于帮助提及方法步骤,并不旨在指示执行所要求保护的步骤的顺序,除非且仅在权利要求书中明确列举该顺序的程度。
可流动的介电涂层可通过使用类似于本领域已知的方法(例如美国专利号7,888,233、7,582,555和美国专利号7,915,139B1中描述的那些方法;上述所有均通过引用纳入本文)来实现。将待涂覆的衬底置于沉积室中。衬底的温度可以控制为低于室壁的温度。衬底温度保持在低于150℃,优选低于80℃,和最优选低于60℃且高于-30℃的温度。本发明的优选示例性衬底温度范围为-30-0℃,0-20℃,10-30℃,20-40℃,30-60℃,40-80℃,70-150℃。所述衬底任选地具有在其上具有小尺寸的特征,其宽度小于100μm,优选宽度小于1μm和最优选宽度小于0.5μm。如果存在,所述特征的纵横比(深度与宽度之比)大于0.1:1,优选大于1:1,和最优选大于2:1。
所述衬底可以是单晶硅晶片、碳化硅晶片、氧化铝(蓝宝石)晶片、玻璃片材、金属箔、有机聚合物膜,或者可以是聚合物、玻璃、硅或金属的三维制品。该衬底可以涂覆有本领域众所周知的各种材料,包括氧化硅、氮化硅、无定形碳、碳氧化硅、氮氧化硅、碳化硅、砷化镓、氮化镓等的膜。这些涂层可以完全覆盖衬底,可以是各种材料的多个层,并且可以被部分蚀刻以暴露下面的材料层。该表面还可具有已用图案曝光并显影以部分覆盖该衬底的光致抗蚀剂材料。
尽管根据本发明可以使用任何合适的环状硅氧烷前体,但是合适的硅前体的实例包括至少一种具有如下所示结构的化合物:
Figure BDA0002833466420000051
其中R1-4独立地选自氢、直链或支链的C1至C10烷基、直链或支链的C3至C10烯基、直链或支链的C3至C10炔基、C1至C6二烷基氨基和C6至C10芳基;n=1、2、3、4。优选地,R1-4独立地选自氢和甲基。具有式I的示例性化合物包括但不限于2,2,5,5-四甲基-1-氧杂-2,5-二硅杂环戊烷、2,2,6,6-四甲基-1-氧杂-2,6-二硅杂环己烷。
本文所述的硅前体化合物可以以多种方式输送至反应室,例如等离子体增强CVD反应器。在一个实施方案中,可以使用液体输送系统。在一个替代实施方案中,可采用液体输送和快速气化组合工艺单元,例如由MSP Corporation(Shoreview,MN)制造的涡轮气化器,以使低挥发性材料能够定量输送,这导致可重现的输送和沉积,而前体不会发生热分解。在液体输送方式中,本文所述的前体可以以纯液体形式输送,或者可选地,可以以包含该前体的溶剂制剂或组合物使用。因此,在某些实施方案中,前体制剂可以包含合适性质的一种或多种溶剂组分,如在对于在衬底上形成膜的给定的最终用途应用中可能是期望的和有利的。
可以使用直接等离子体或远程等离子体源进行沉积。对于远程等离子体源,双充气喷淋头可用于防止喷头内的硅前体蒸汽与自由基之间的预混合,从而避免产生颗粒。可以施行特氟龙涂层以最大化自由基寿命和自由基传输。远程等离子体源可以是例如微波等离子体源。
硅前体化合物优选基本上不含卤离子如氯离子或金属离子如铝、铁、镍、铬。如本文所用,术语“基本上不含”当其涉及卤离子(或卤化物)如氯离子和氟离子、溴离子、碘离子,和当其涉及金属离子例如Al3+、Fe2+、Fe3+、Ni2+和Cr3+时,指小于10ppm(重量)或小于5ppm(重量),优选小于3ppm,和更优选小于1ppm,和最优选0ppm(例如大于约0ppm至小于约1ppm)。氯离子或金属离子已知起到硅前体的分解催化剂的作用。最终产品中的显著量的氯化物可导致硅前体降解。硅前体的逐渐降解可直接影响膜沉积工艺,使得半导体制造商难以满足膜规格。另外,硅前体的较高降解速率会对保质期或稳定性产生负面影响,从而难以保证1-2年的保质期。此外,已知一些硅前体在分解后形成易燃和/或自然气体,例如氢气和硅烷。因此,硅前体的加速分解带来了与这些易燃和/或自燃气体副产物的形成相关的安全和性能问题。
根据本发明的基本不含卤化物的组合物可通过以下方式实现:(1)在化学合成过程中减少或消除氯化物源,和/或(2)实施有效的纯化处理以从粗产物中去除氯化物,使得最终的纯化产物基本不含氯化物。可在合成过程中通过使用不含卤化物(如氯乙硅烷、溴乙硅烷或碘乙硅烷)的试剂减少氯化物源,从而避免产生含卤离子的副产物。另外,上述试剂应基本上不含氯化物杂质,使得得到的粗产物基本上不含氯化物杂质。以类似的方式,合成不应使用基于卤化物的溶剂、催化剂或含有不可接受的高水平卤化物污染的溶剂。粗产物也可通过各种纯化方法进行处理以使最终产物基本不含卤化物,例如氯化物。这样的方法在现有技术中已有详细描述,并且可包括但不限于纯化处理,例如蒸馏或吸附。蒸馏通常用于利用沸点差异从所需产物中分离杂质。吸附也可用于利用组分的差异吸附性质来实现分离,使得最终产物基本上不含卤化物。吸附剂,例如商业上可获得的MgO-Al2O3共混物,可用于除去卤化物,例如氯化物。
用于形成本文所述膜或涂层的方法是可流动化学沉积工艺。用于本文公开的方法的合适沉积工艺的实例包括但不限于等离子体增强化学气相沉积(PECVD)、远程等离子体化学气相沉积(RPCVD)、热线化学气相沉积(HWCVD)或等离子体增强循环CVD(PECCVD)工艺。如本文所用,术语“可流动化学气相沉积工艺”是指其中将衬底暴露于一种或多种挥发性前体的任何工艺,该前体在衬底表面上反应和/或分解以提供可流动的低聚含硅物质,然后在进一步处理时产生固体膜或材料。尽管在此使用的前体、试剂和源有时可被描述为“气体的”,但应当理解,所述前体可以是液体或固体,其通过直接气化、鼓泡或升华在有或无惰性气体的情况下被输送到反应器中。在某些情况下,气化的前体可以通过等离子体发生器。在一个实施方案中,使用基于等离子体的(例如,远程生成或原位)CVD工艺来沉积膜。这里使用的术语“反应器”包括但不限于反应室或沉积室。
在某些实施方案中,可将衬底暴露于一种或多种沉积前处理,例如但不限于等离子体处理、热处理、化学处理、紫外光暴露、电子束暴露及其组合,以影响膜的一种或多种性能。这些沉积前处理可以在选自惰性、氧化和/或还原的气氛下进行。
向所述化合物、含氮源、氧源、其他前体或其组合中的至少一种施加能量,以诱导反应并在衬底上形成含硅膜或涂层。这种能量可通过但不限于热、等离子体、脉冲等离子体、螺旋波等离子体、高密度等离子体、电感耦合等离子体、X射线、电子束、光子、远程等离子体方法及其组合来提供。在某些实施方案中,二次RF频率源可用于改变衬底表面的等离子体特性。在其中沉积涉及等离子体的实施方案中,等离子体生成过程可以包括直接等离子体生成过程,其中等离子体在反应器中直接生成,或者可选地,远程等离子体生成过程,其中等离子体在反应器外部生成并供应到反应器中。
如前所述,所述方法在包含表面特征的衬底的至少一部分表面上沉积膜。将所述衬底置于反应器中,并将所述衬底保持在约-20℃至约100℃范围的一个或多个温度下。在一个特定的实施方案中,所述衬底的温度低于室壁。衬底温度保持在低于150℃的温度,优选低于60℃的温度,和最优选低于40℃且高于-20℃的温度。
如前所述,所述衬底包括一个或多个表面特征,例如间隙。在一个特定实施方案中,表面特征的宽度为100μm或更小、1μm或更小或0.5μm。在该实施方案或其他实施方案中,表面特征(如果存在)的纵横比(深度与宽度之比)为0.1:1或更大,或1:1或更大,或10:1或更大,或20:1或更大,或40:1或更大。所述衬底可以是单晶硅晶片、碳化硅晶片、氧化铝(蓝宝石)晶片、玻璃片材、金属箔、有机聚合物膜,或者可以是聚合物、玻璃、硅或金属三维制品。所述衬底可以涂覆有本领域众所周知的各种材料,包括氧化硅、氮化硅、无定形碳、碳氧化硅、氮氧化硅、碳化硅、砷化镓、氮化镓等的膜。这些涂层可以完全覆盖衬底,可以是各种材料的多个层,并且可以被部分蚀刻以暴露下面的材料层。该表面上还可在其上具有已用图案曝光并被显影以部分覆盖该衬底的光致抗蚀剂材料。
在某些实施方案中,反应器的压力为低于大气压的压力或50托或更低,或10托或更低。在优选的实施方案中,反应器的压力保持在约0.1托至约10托的范围内。在另一个实施方案中,反应器的压力保持在约10托至约30托的范围内,以提供在热退火时具有较小收缩的可流动氧化硅。
在总的方面,本发明涉及上述发明内容中所述的方法和组合物。
另一方面,提供了一种用于沉积含硅膜的方法,该方法包括:
将包含表面特征的衬底置于反应器中,其中该衬底保持在约-20℃至约150℃范围的一个或多个温度下,并且反应器的压力保持在100托或更低;
引入至少一种化合物,该化合物选自至少一种具有以下所示结构的化合物:
Figure BDA0002833466420000091
其中R1-4独立地选自氢、直链或支链的C1至C10烷基、直链或支链的C3至C10烯基、直链或支链的C3至C10炔基、C1至C6二烷基氨基和C6至C10芳基;n=1、2、3、4。优选地,R1-4独立地选自氢和甲基;
向反应器中提供激活的氧源,以与该至少一种化合物反应而形成膜并覆盖表面特征的至少一部分,该氧源由例如原位等离子体或远程等离子体激活;
在约100℃至1000℃范围的一个或多个温度下对膜进行退火,并且任选地在该热退火步骤之后,通过将涂层暴露于UV辐射以进行进一步退火;和
任选地,在约100℃至约1000℃范围的一个或多个温度下,用氧源处理衬底,以在表面特征的至少一部分上形成含硅膜。在某些实施方案中,氧源选自水蒸气、水等离子体、臭氧、氧气、氧等离子体、氧/氦等离子体、氧/氩等离子体、氮氧化物等离子体、二氧化碳等离子体、过氧化氢、有机过氧化物及其混合物。在该实施方案或其他实施方案中,重复该方法步骤,直至表面特征被含硅膜填充。在其中使用水蒸气作为氧源的实施方案中,衬底温度范围为约-20℃至约40℃或约-10℃至约25℃
在另一方面,提供了一种用于沉积含硅膜的方法,该含硅膜选自氮化硅、碳掺杂氮化硅、氮氧化硅和碳掺杂氮氧化硅膜,该方法包括:
将包含表面特征的衬底置于反应器中,该反应器被加热至-20℃至约150℃范围的温度,并保持在100托或更低的压力下;
向反应器中引入至少一种化合物,该化合物选自至少一种具有如下所示结构的化合物:
Figure BDA0002833466420000101
其中R1-4独立地选自氢、直链或支链的C1至C10烷基、直链或支链的C3至C10烯基、直链或支链的C3至C10炔基、C1至C6二烷基氨基和C6至C10芳基;n=1、2、3、4。优选地,R1-6独立地选自氢和甲基;
向反应器提供远程或原位的等离子体源以与该化合物反应,从而在表面特征的至少一部分上形成涂层。在一个特定实施方案中,与化合物反应以形成涂层的等离子体源选自氮等离子体;含氮和氦的等离子体;含氮和氩的等离子体;氨等离子体;含氨和氦的等离子体;含氨和氩的等离子体;氦等离子体;氩等离子体;氢等离子体;含氢和氦的等离子体;含氢和氩的等离子体;含氨和氢的等离子体;有机胺等离子体;及其混合物;和
在约100℃至1000℃或约100℃至400℃范围的一个或多个温度下对涂层进行退火,以在表面特征的至少一部分上形成含硅膜。在该热退火步骤之后可任选地将涂层暴露于UV辐射以进行进一步退火。对于可流动的等离子体增强CVD方法,上述步骤可重复进行,直至表面特征被一个或多个致密化膜填充。
本发明的前体和含有其中包含的一种或多种成分的其他相关制剂可以在玻璃、塑料或金属容器或本领域已知的其他合适的容器中储存、运输和输送,例如以下美国专利号4,828,131、6,077,356、6,526,824、7,124,913和7,261,118中公开的容器,所有这些文件均通过引用整体并入本文。
也可以使用塑料或玻璃内衬的金属器皿或容器。优选地,材料从顶部空间中具有惰性气体的气密密封的高纯度不锈钢或镍合金容器中储存和输送。最优选地,所述材料从配备有下降管(down tube)和与容器的蒸气空间连通的出口的气密密封的高纯度不锈钢或镍合金容器中储存和输送;允许产品作为液体从下降管输送,或作为蒸汽从与气相连通的出口连接输送。在后一种情况下,下降管可以任选地用于将载气引入容器中以促进混合物的气化。在该实施方案中,下降管和蒸汽出口连接均配备有高完整性无填料阀。尽管液体的输送是优选的以避免本文所述的该制剂的成分分隔,但应当注意,本发明的制剂与成分的蒸汽压足够紧密地匹配以使制剂能够以蒸汽混合物的形式输送。不锈钢可以优选地从UNS合金编号S31600、S31603、S30400、S30403、S31700、S31703、S31500、S31803、S32750和S31254中选择。镍合金可以优选地从UNS合金编号N06625、N10665、N06022、N10276和N06007中选择。最优选地,容器由合金S31603或N06022制成,或者未涂覆、内部电抛光或内部涂覆有含氟聚合物。
本文所述的制剂可用于提供可流动氧化硅膜的快速且均匀的沉积。本文所述的制剂可与包含水和任选的共溶剂、表面活性剂和其他添加剂的另一种反应物一起使用,并沉积在衬底上。该反应制剂的分配或输送可通过直接液体注射、喷雾、浸渍、共冷凝或离心旋涂实现。然后允许制剂反应直至获得固体膜或固体实体。使用惰性气体、真空、热或外部能量源(光、热、等离子、电子束等)以除去未反应的挥发性物质,包括溶剂和未反应的水,从而促进膜的凝结。本发明的制剂可优选向包含在沉积室中的衬底输送工艺流体,例如但不限于气相、液滴、薄雾、浓雾、气溶胶、升华固体或其与水的组合,且任选的共溶剂和其他添加剂也作为工艺流体加入,例如气体、蒸汽、气溶胶、薄雾或其组合。优选地,本发明的制剂在衬底表面上凝结或溶解成凝结的膜,该衬底可有利地保持在低于室壁温度的温度下。本发明的共混合的沉积前体和催化剂可以在衬底表面上以均匀的速率反应,从而使反应产物形成非挥发性膜。未反应的前体、水和任选的共溶剂和添加剂然后可以通过气体吹扫、真空、加热、增加外部辐射(光、等离子体、电子束等)来除去,直至获得稳定的固体含硅膜。
在整个说明书中,本文中使用的术语“氧化硅”指包含硅和氧的膜,其选自化学计量或非化学计量的氧化硅、碳掺杂的氧化硅、碳氮化硅及其混合物。使用具有式I或II的硅前体和本文所述方法形成的含硅膜或氮化硅膜的实例具有化学式SixOyCzNvHw,其中Si的范围为约10%至约50%;O的范围为约0%至约70%;C的范围为约0%至约40%;N的范围为约10%至约75%或约10%至60%;和H的范围为约0%至约10%原子百分比,其中x+y+z+v+w=100原子百分比,例如通过x射线光电子能谱(XPS)或二次离子质谱(SIMS)确定的。
在整个说明书中,这里使用的术语“特征”指具有通孔、凹槽等的半导体衬底或部分制造的半导体衬底。
本发明的某些实施方案通过以下实施例进行说明。这些实施例不应限制所附权利要求的范围。
实施例
将可流动的化学气相沉积(FCVD)膜沉积在中等电阻率(8-12Ωcm)单晶硅晶片和硅图案晶片上。对于图案晶片,优选的图案宽度为20-100nm,纵横比为5:1-20:1。沉积在Applied Materials Precision 5000系统的改良FCVD室中使用双充气喷淋头进行。该室配备了直接液体注射(DLI)输送能力。前体是液体,其输送温度取决于前体的沸点。为了沉积初始可流动氧化硅膜,典型的液体前体流速范围为约100至约5000mg/min,优选1000至2000mg/min;室压范围为约0.75-12托,优选0.5-2托。特别是,远程功率由0至3000W的MKS微波发生器提供,其频率为2.455GHz,以2至8托操作。为了使原样沉积的可流动膜致密化,在真空中使用改进的PECVD室在100-1000℃,优选300-400℃下对膜进行热退火和/或UV固化。通过SCI反射计或Woollam椭偏仪测量厚度和632nm处的折射率(RI)。典型的膜厚度范围为约10至约2000nm。通过Nicolet透射傅里叶变换红外光谱(FTIR)设备测量和分析硅基膜的键合性能和氢含量(Si-H和C-H)。进行x射线光电子能谱(XPS)分析以确定膜的元素组成。采用汞探头进行电性质测量,包括介电常数、漏电流和击穿场。使用日立S-4800系统,通过截面扫描电子显微分析(SEM)以2.0nm的分辨率观察Al图案化晶片上的可流动性和间隙填充效果。
2,2,5,5-四甲基-2,5-二硅杂-1-氧杂环戊烷(TMDSOCH)用于使用远程等离子体源(RPS)的可流动SiOC膜沉积。TMDSOCH流量为2100mg/min,氧气流量为3000sccm,压力为2.5托。衬底温度为40℃。微波功率为2000W。原样沉积的膜在300℃下热退火5分钟,然后在400℃下UV固化4分钟。原样沉积的膜的厚度和折射率分别为1675.8nm和1.431,热退火后的厚度和折射率分别为1249.9nm和1.423,表明在提高的温度下一些挥发性低聚物的损失。通过XPS测量的热退火膜的元素组成为30.6%C、40.0%O和29.4%Si。热退火后膜的介电常数为3.50,这归因于由悬键引起的一些水分吸收。在UV固化后,膜的厚度和折射率分别为968.3nm和1.349,表明膜通过UV固化改性并引入了一些多孔性。通过XPS测量的热退火和UV固化后的膜的元素组成为21.6%C、45.4%O和33.0%Si,这表明经UV固化后的膜中存在碳的损失。UV固化膜的介电常数为2.56。横截面SEM表明,在图案化的晶片上实现了良好的间隙填充。图1和图2显示了良好的间隙填充。所述膜经热退火和UV固化。图3显示了(a)原样沉积的膜,(b)热退火后的膜和(c)热退火和UV固化后的膜的FTIR谱。
本发明的原理已经结合优选实施方案在上文中进行了描述,但是应当清楚地理解,该描述仅作为示例而非对本发明范围的限制。

Claims (18)

1.一种用于在衬底上形成含硅膜的可流动化学气相沉积方法,该方法包括
将所述衬底置于反应室中,并将至少一种式I所示的环状硅氧烷化合物和至少一种激活的物质引入到所述反应室中,
Figure FDA0002833466410000011
其中R1-4独立地选自氢、直链或支链的C1至C10烷基、直链或支链的C3至C10烯基、直链或支链的C3至C10炔基、二-C1至C6-烷基氨基和C6至C10芳基,且n=1、2、3、4,
其中控制反应器条件,从而使得所述含硅化合物和所述激活的物质反应并作为可流动膜凝结在所述衬底上,并且其中所述至少一种激活的物质相对于所述反应室被远程激活。
2.根据权利要求1所述的方法,其中所述衬底包括表面特征,所述表面特征之间具有高纵横比间隙,并且其中所述含硅化合物和所述激活的物质反应以在所述间隙内形成所述可流动膜。
3.根据权利要求2所述的方法,其中所述高纵横比间隙具有3:1至10:1范围内的深度与宽度的纵横比。
4.根据权利要求1所述的方法,其中所述激活的物质使用远程等离子体源、远程微波源或远程热线系统生成。
5.根据权利要求1所述的方法,其中所述至少一种激活的物质是通过等离子体源或远程微波源作用于选自水蒸气、臭氧、氧气、氧气/氦气、氧气/氩气、氮氧化物、二氧化碳、过氧化氢、有机过氧化物及其混合物的物质上而生成的氧化剂。
6.根据权利要求1所述的方法,其中所述至少一种环状硅氧烷化合物包含2,2,5,5-四甲基-1-氧杂-2,5-二硅杂环戊烷和2,2,6,6-四甲基-1-氧杂-2,6-二硅杂环己烷中的一种或两种。
7.根据权利要求1所述的方法,进一步包括:
用选自等离子体、UV辐射和热退火的处理来处理所述可流动膜。
8.根据权利要求7所述的方法,其中用所述处理来处理所述可流动膜的步骤将所述可流动膜转化为介电材料。
9.根据权利要求1所述的方法,其中所述至少一种激活的物质通过等离子体源或远程微波源作用于选自氮气,氮气和氦气的混合物,氮气和氩气的混合物,氨;氨和氦气的混合物,氨和氩气的混合物,氦气,氩气;氢气,氢气和氦气的混合物,氢气和氩气的混合物,氨气和氢气的混合物,有机胺及其混合物上而生成。
10.通过根据权利要求1所述的方法形成的膜。
11.用于在衬底上膜的可流动化学气相沉积的组合物,该组合物包含2,2,5,5-四甲基-1-氧杂-2,5-二硅杂环戊烷,其中所述组合物包含少于10ppm的卤离子杂质,该卤离子选自氯离子、氟离子、溴离子和碘离子。
12.根据权利要求11所述的组合物,其中所述组合物包含少于1ppm的所述卤离子杂质。
13.根据权利要求11所述的组合物,其中所述组合物包含少于10ppm的金属离子杂质,所述金属离子选自Al3+、Fe2+、Fe3+、Ni2+和Cr3+
14.根据权利要求13所述的组合物,其中所述组合物包含少于1ppm的所述金属离子杂质。
15.用于在衬底上膜的可流动化学气相沉积的组合物,该组合物包含2,2,6,6-四甲基-1-氧杂-2,6-二硅杂环己烷,其中该组合物包含少于10ppm的卤离子杂质,该卤离子选自氯离子、氟离子、溴离子和碘离子。
16.根据权利要求15所述的组合物,其中所述组合物包含少于1ppm的所述卤离子杂质。
17.根据权利要求15所述的组合物,其中所述组合物包含少于10ppm的金属离子杂质,所述金属离子选自Al3+、Fe2+、Fe3+、Ni2+和Cr3+
18.根据权利要求17所述的组合物,其中所述组合物包含少于1ppm的所述金属离子杂质。
CN201980039882.3A 2018-06-15 2019-06-16 硅氧烷组合物和使用该组合物沉积含硅膜的方法 Active CN112334597B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862685867P 2018-06-15 2018-06-15
US62/685,867 2018-06-15
PCT/US2019/037402 WO2019241763A1 (en) 2018-06-15 2019-06-16 Siloxane compositions and methods for using the compositions to deposit silicon containing films

Publications (2)

Publication Number Publication Date
CN112334597A true CN112334597A (zh) 2021-02-05
CN112334597B CN112334597B (zh) 2023-03-10

Family

ID=68839645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980039882.3A Active CN112334597B (zh) 2018-06-15 2019-06-16 硅氧烷组合物和使用该组合物沉积含硅膜的方法

Country Status (9)

Country Link
US (1) US20190382886A1 (zh)
EP (1) EP3807446A4 (zh)
JP (1) JP7230067B2 (zh)
KR (1) KR102555932B1 (zh)
CN (1) CN112334597B (zh)
IL (1) IL279320A (zh)
SG (1) SG11202011887XA (zh)
TW (2) TWI710659B (zh)
WO (1) WO2019241763A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021202335A1 (en) * 2020-03-31 2021-10-07 Versum Materials Us, Llc New precursors for depositing films with high elastic modulus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070173071A1 (en) * 2006-01-20 2007-07-26 International Business Machines Corporation SiCOH dielectric
US20100022792A1 (en) * 2006-09-14 2010-01-28 Qionghua Shen Synthetic process for cyclic organosilanes
US20140302688A1 (en) * 2013-04-04 2014-10-09 Applied Materials, Inc. Flowable silicon-carbon-oxygen layers for semiconductor processing
US20150364321A1 (en) * 2014-06-16 2015-12-17 Air Products And Chemicals, Inc. Alkyl-Alkoxysilacyclic Compounds and Methods for Depositing Films Using Same
US20180025907A1 (en) * 2016-07-19 2018-01-25 Applied Materials, Inc. Deposition Of Flowable Silicon-Containing Films

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636888A1 (de) 1986-10-30 1988-05-11 Merck Patent Gmbh Transportbehaelter fuer hochreine chemikalien
US6717014B1 (en) * 1996-06-28 2004-04-06 Fmc Corporation Processes for preparing haloamines and tertiary aminoalkylorganometallic compounds
EP0953064B1 (en) 1996-12-17 2007-09-12 Advanced Technology Materials, Inc. Reagent supply vessel for chemical vapor deposition
US6235864B1 (en) * 1999-05-12 2001-05-22 Sandia Corporation Non-strinking siloxane polymers
US6440876B1 (en) * 2000-10-10 2002-08-27 The Boc Group, Inc. Low-K dielectric constant CVD precursors formed of cyclic siloxanes having in-ring SI—O—C, and uses thereof
US6526824B2 (en) 2001-06-07 2003-03-04 Air Products And Chemicals, Inc. High purity chemical container with external level sensor and liquid sump
US7124913B2 (en) 2003-06-24 2006-10-24 Air Products And Chemicals, Inc. High purity chemical container with diptube and level sensor terminating in lowest most point of concave floor
US7261118B2 (en) 2003-08-19 2007-08-28 Air Products And Chemicals, Inc. Method and vessel for the delivery of precursor materials
US7582555B1 (en) 2005-12-29 2009-09-01 Novellus Systems, Inc. CVD flowable gap fill
US7524735B1 (en) 2004-03-25 2009-04-28 Novellus Systems, Inc Flowable film dielectric gap fill process
US7521378B2 (en) 2004-07-01 2009-04-21 Micron Technology, Inc. Low temperature process for polysilazane oxidation/densification
US7825038B2 (en) 2006-05-30 2010-11-02 Applied Materials, Inc. Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen
US7989033B2 (en) 2007-07-12 2011-08-02 Applied Materials, Inc. Silicon precursors to make ultra low-K films with high mechanical properties by plasma enhanced chemical vapor deposition
US7998536B2 (en) 2007-07-12 2011-08-16 Applied Materials, Inc. Silicon precursors to make ultra low-K films of K<2.2 with high mechanical properties by plasma enhanced chemical vapor deposition
JP2010275602A (ja) * 2009-05-29 2010-12-09 Adeka Corp 化学気相成長用原料とこれを用いたシリコン含有薄膜形成方法
US7825040B1 (en) 2009-06-22 2010-11-02 Asm Japan K.K. Method for depositing flowable material using alkoxysilane or aminosilane precursor
DE102012015571B4 (de) * 2011-08-12 2017-01-26 Gelest Technologies, Inc. Dual funktionelle lineare Siloxane, durch stufenweise ansteigendes Polymerisationswachstum entstehende Polymere, und Verfahren zum Herstellen dieser Polymere
US8889566B2 (en) * 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US20140302690A1 (en) * 2013-04-04 2014-10-09 Applied Materials, Inc. Chemical linkers to impart improved mechanical strength to flowable films
US9362107B2 (en) 2014-09-30 2016-06-07 Applied Materials, Inc. Flowable low-k dielectric gapfill treatment
KR102332415B1 (ko) * 2014-10-24 2021-12-01 버슘머트리얼즈 유에스, 엘엘씨 실리콘-함유 막을 증착시키기 위한 조성물 및 이를 사용하는 방법
US9840503B2 (en) * 2015-05-11 2017-12-12 Incyte Corporation Heterocyclic compounds and uses thereof
CN108140555B (zh) * 2015-10-22 2024-03-15 应用材料公司 沉积包含SiO及SiN的可流动薄膜的方法
US10703915B2 (en) * 2016-09-19 2020-07-07 Versum Materials Us, Llc Compositions and methods for the deposition of silicon oxide films
US10249489B2 (en) * 2016-11-02 2019-04-02 Versum Materials Us, Llc Use of silyl bridged alkyl compounds for dense OSG films

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070173071A1 (en) * 2006-01-20 2007-07-26 International Business Machines Corporation SiCOH dielectric
US20100022792A1 (en) * 2006-09-14 2010-01-28 Qionghua Shen Synthetic process for cyclic organosilanes
US20140302688A1 (en) * 2013-04-04 2014-10-09 Applied Materials, Inc. Flowable silicon-carbon-oxygen layers for semiconductor processing
US20150364321A1 (en) * 2014-06-16 2015-12-17 Air Products And Chemicals, Inc. Alkyl-Alkoxysilacyclic Compounds and Methods for Depositing Films Using Same
US20180025907A1 (en) * 2016-07-19 2018-01-25 Applied Materials, Inc. Deposition Of Flowable Silicon-Containing Films

Also Published As

Publication number Publication date
CN112334597B (zh) 2023-03-10
US20190382886A1 (en) 2019-12-19
WO2019241763A1 (en) 2019-12-19
JP7230067B2 (ja) 2023-02-28
TWI710659B (zh) 2020-11-21
SG11202011887XA (en) 2020-12-30
KR102555932B1 (ko) 2023-07-13
IL279320A (en) 2021-01-31
KR20210008172A (ko) 2021-01-20
EP3807446A4 (en) 2022-03-30
TW202120734A (zh) 2021-06-01
TW202000968A (zh) 2020-01-01
JP2021527956A (ja) 2021-10-14
EP3807446A1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6849792B2 (ja) 表面フィーチャを充填する低k膜を作るための前駆体および流動性CVD法
CN107429391B (zh) 组合物和使用所述组合物沉积含硅膜的方法
CN108603287B (zh) 用于沉积含硅膜的组合物及使用其的方法
JP2019507956A (ja) ケイ素含有膜の堆積のための組成物及びそれを使用した方法
JP2004320005A (ja) 有機シリカ多孔性膜製造のための化学気相成長方法
JP7125515B2 (ja) 組成物、及びケイ素含有膜の堆積のための組成物を使用する方法
KR20200026143A (ko) 규소 및 질소 포함 필름의 제조 방법
TWI729417B (zh) 矽化合物及使用其沉積膜的方法
JP2020036013A (ja) 高い炭素含有量を有するケイ素含有膜の製造方法
CN112334597B (zh) 硅氧烷组合物和使用该组合物沉积含硅膜的方法
KR20210047966A (ko) 실리콘 및 질소 함유 막의 제조 방법
US20220349049A1 (en) Compositions and methods using same for deposition of silicon-containing film
JP2022542582A (ja) ケイ素含有膜の堆積のためのシラシクロアルカンを含む組成物及びその組成物を使用する方法
JP7485732B2 (ja) 組成物、及びケイ素含有膜の堆積のための組成物を使用する方法
KR20240054222A (ko) 실리콘 및 붕소를 포함하는 필름을 위한 조성물 및 이의 사용 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant