CN112323035A - 用于齿轮表面的自润滑耐磨薄膜的制备方法 - Google Patents

用于齿轮表面的自润滑耐磨薄膜的制备方法 Download PDF

Info

Publication number
CN112323035A
CN112323035A CN202010855984.7A CN202010855984A CN112323035A CN 112323035 A CN112323035 A CN 112323035A CN 202010855984 A CN202010855984 A CN 202010855984A CN 112323035 A CN112323035 A CN 112323035A
Authority
CN
China
Prior art keywords
gear
self
resistant film
lubricating wear
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010855984.7A
Other languages
English (en)
Inventor
张昕
王冉
邱维维
赵硕
包知迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy Of Machinery Science And Technology Group Co ltd
Original Assignee
China Academy Of Machinery Science And Technology Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy Of Machinery Science And Technology Group Co ltd filed Critical China Academy Of Machinery Science And Technology Group Co ltd
Priority to CN202010855984.7A priority Critical patent/CN112323035A/zh
Publication of CN112323035A publication Critical patent/CN112323035A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种用于齿轮表面的自润滑耐磨薄膜的制备方法,包括如下步骤:S100,齿轮表面清洗;S200,采用离子注入技术在齿轮表面制备TiN/Ta基底层,包括:将清洗后的齿轮放入真空室内,所述真空室与离子源连接,抽真空至3.0~6.0×10‑4Pa,对齿轮进行表面改性,生成TiN/Ta基底层,其中,所述离子源的离子注入能量为80keV~150keV,所述离子源的离子注入总剂量为5.0×1017ions/cm2~10×1017ions/cm2;S300,通过物理气相沉积技术中的溅射沉积技术在TiN/Ta基底层表面制备WS2自润滑耐磨薄膜,其中,电压为600~1000V,电流为0.5~1A,占空比为30~70%。本发明利用离子束复合沉积技术在齿轮表面制备WS2自润滑耐磨薄膜,膜层均匀,并增强了自润滑耐磨膜层与基体间的结合力,从而有效解决自润滑耐磨膜层脱落的问题。

Description

用于齿轮表面的自润滑耐磨薄膜的制备方法
技术领域
本发明涉及自润滑耐磨薄膜的制造技术,具体的说,是涉及一种齿轮表面非平面基体的自润滑耐磨薄膜的制备方法。
背景技术
工业技术中常用的液体润滑剂在航空齿轮运转过程中,会遇到如受燃烧室附近高温影响、机动动作导致载荷陡增等情况,使润滑效果下降、油膜破裂或失效,从而出现摩擦副呈边界润滑甚至干摩擦状态的问题,无法进一步满足航空领域大推重比、低油耗发动机的发展的需求。近些年来,科学家们十分重视对自润滑耐磨领域的研究和探索,其中WS2作为一种优秀的自润滑耐磨材料进入科学家们的视野,WS2自润滑耐磨薄膜具有耐磨、摩擦系数低等优异的性能,适用于高温、高真空、高负荷、高转速、高辐射、强腐蚀、超低温等苛刻环境。但是WS2自润滑耐磨薄膜在使用中存在如WS2自润滑耐磨膜层结合力不足易脱落,耐磨寿命不足,无法满足航空发动机的长期使用需求等问题。另外,由于齿轮本身齿状结构存在对等离子体沉积不利的因素,如何加强自润滑耐磨膜层与基体间的结合力,并在复杂的非平面结构上均匀制备自润滑耐磨薄膜成为亟待解决的问题。
发明内容
针对上述技术缺陷,本发明提出了一种用于齿轮表面的自润滑耐磨薄膜的制备方法,利用离子束复合沉积技术在渐开线航空齿轮表面制备WS2自润滑耐磨薄膜,膜层均匀,可有效解决自润滑耐磨膜层脱落的问题,增强自润滑耐磨膜层与基体间的结合力,提高其使用寿命。
为实现上述目的,本发明的用于齿轮表面的自润滑耐磨薄膜的制备方法包括如下步骤:
S100,齿轮表面清洗;
S200,采用离子注入技术在齿轮表面制备TiN/Ta基底层,包括:将清洗后的齿轮放入真空室内,所述真空室与离子源连接,抽真空至3.0~6.0×10-4Pa,对齿轮进行表面改性,生成TiN/Ta基底层,其中,所述离子源的离子注入能量为80keV~150keV,所述离子源的离子注入总剂量为5.0×1017ions/cm2~10×1017ions/cm2
S300,通过物理气相沉积技术中的溅射沉积技术在TiN/Ta基底层表面制备WS2自润滑耐磨薄膜,其中,电压为600~1000V,电流为0.5~1A,占空比为30~70%。
上述的用于齿轮表面的自润滑耐磨薄膜的制备方法的一实施方式中,利用离子束复合沉积技术在齿轮的渐开线齿状表面上均匀制备自润滑耐磨薄膜。
上述的用于齿轮表面的自润滑耐磨薄膜的制备方法的一实施方式中,齿轮的自转转速为30~100r/min,公转转速为30~60r/min。
上述的用于齿轮表面的自润滑耐磨薄膜的制备方法的一实施方式中,所述步骤S100的齿轮表面清洗包括:将齿轮放入丙酮溶剂中,超声清洗5~10分钟后取出,用干净绸布擦干,再将齿轮放入无水四氯乙烯溶剂中,超声清洗5~10分钟后取出,用干净绸布擦干,并放置于真空烘箱中烘干1~2小时。
上述的用于齿轮表面的自润滑耐磨薄膜的制备方法的一实施方式中,所述步骤S200中,离子源采用的阴极纯度为99%。
上述的用于齿轮表面的自润滑耐磨薄膜的制备方法的一实施方式中,所述步骤S200中,制备的TiN/Ta基底层的厚度为15~50nm。
上述的用于齿轮表面的自润滑耐磨薄膜的制备方法的一实施方式中,所述步骤S300中,制备的WS2膜层的厚度为0.5~2μm。
上述的用于齿轮表面的自润滑耐磨薄膜的制备方法的一实施方式中,所述步骤S300之后还包括:
S400,将表面形成自润滑耐磨薄膜后的齿轮放入丙酮溶剂清洗取出,烘干后真空密封保存。
本发明的技术效果在于:本发明采用离子束复合沉积技术在齿轮非平面表面制备WS2自润滑耐磨薄膜,通过在基体和WS2自润滑耐磨膜层之间加入离子注入形成TiN/Ta基底改性层来增加膜层结合力,其中TiN层具有良好的耐磨性,Ta元素具有良好的延展性,可以调节TiN与WS2膜层之间的过渡连接。其中,齿轮例如为渐开线航空齿轮,齿轮材质例如为35Cr2Ni4MoA材质。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1为本发明的用于齿轮表面的自润滑耐磨薄膜的制备方法的步骤流程图;
图2为采用本发明的自润滑耐磨薄膜的制备方法进行表面改性后的航空齿轮;
图3为采用本发明的用于齿轮表面的自润滑耐磨薄膜的制备方法镀有自润滑耐磨薄膜层试样的摩擦磨损曲线图;
图4a为齿轮表面采用传统方法制备WS2膜层的声发射曲线及表面划痕形貌;
图4b为齿轮表面使用本发明制备WS2膜层的声发射曲线及表面划痕形貌。
具体实施方式
下面结合附图和具体实施例对本发明技术方案进行详细的描述,以更进一步了解本发明的目的、方案及功效,但并非作为本发明所附权利要求保护范围的限制。
本发明的用于齿轮表面的自润滑耐磨薄膜的制备方法,采用离子束复合沉积技术在航空齿轮表面形成以TiN/Ta膜层为基底的高耐磨WS2自润滑耐磨薄膜,如图1所示,本方法包括以下步骤:
S100,齿轮表面清洗步骤。该步骤用于去除齿轮表面的油污和杂质等,例如包括以下内容:齿轮放入无水四氯乙烯溶剂中,超声清洗10分钟后取出,再将齿轮放入丙酮溶剂中,超声清洗5~10分钟后取出,用干净绸布擦干,再将齿轮放入无水四氯乙烯溶剂中,超声清洗5~10分钟后取出,用干净绸布擦干,并放置于真空烘箱中烘干1~2小时。
S200,TiN/Ta基底层制备步骤。该步骤采用离子注入技术在齿轮表面制备TiN/Ta基底层,包括:将清洗后的齿轮放入真空室内,所述真空室与离子源连接,抽真空至3.0~6.0×10-4Pa,对齿轮进行表面改性,生成TiN/Ta基底层,其中,所述离子源的离子注入能量为80keV~150keV,所述离子源的离子注入总剂量为5.0×1017ions/cm2~10×1017ions/cm2
S300,WS2自润滑耐磨膜制备步骤。该步骤通过物理气相沉积技术中的溅射沉积技术在TiN/Ta基底层表面制备WS2自润滑耐磨薄膜,其中电压为600~1000V,电流为0.5~1A,占空比为30~70%。
S400,将表面形成自润滑耐磨薄膜后的齿轮放入丙酮溶剂清洗取出,烘干后真空密封保存。
其中,上述齿轮例如为渐开线航空齿轮,本发明利用离子束复合沉积技术在齿轮的渐开线齿状表面上均匀制备自润滑耐磨薄膜。齿轮的自转转速为30~100r/min,公转转速为30~60r/min。齿轮材质例如为35Cr2Ni4MoA材质。
如图2所示,图2为采用本发明的自润滑耐磨薄膜的制备方法进行表面改性后的航空齿轮1。
上述步骤S200中,离子源采用的阴极纯度为99%,制备的TiN/Ta基底层的厚度例如为15~50nm。上述步骤S300中,制备的WS2膜层的厚度例如为0.5~2μm。
综上,本发明中,通过离子源注入能量和离子注入总剂量等参数控制TiN/Ta基底改性层的结构和性能。大量的高能离子束对航空齿轮表面进行轰击,对材料表面进行改性。其中注入的离子数通过离子注入总剂量来进行控制,离子注入的深度通过离子源注入能量进行控制,另外,通过调节溅射过程中的功率、沉积时间、气压、偏压和占空比等参数,可以获得不同厚度的WS2自润滑耐磨膜层。在制备过程中,同时通过控制系统调节航空齿轮的自转和公转速度,实现复杂曲面基体的均匀注入和镀膜。本发明改性的航空齿轮,在200g载荷、500r/min转速下进行摩擦磨损测试,表面干摩擦系数小于0.2。
如图3所示,图3为采用本发明的用于齿轮表面的自润滑耐磨薄膜的制备方法镀有自润滑耐磨薄膜层试样的摩擦磨损曲线图。图3中,横轴为摩擦磨损时间(min),竖轴为摩擦系数,从测试结果来看采用本发明的自润滑耐磨薄膜层试样在整个测试过程中摩擦系数曲线波动小、走势稳定,摩擦系数值始终保持在0.2以下,具备良好的自润滑性能和耐磨寿命。
如图4a和图4b所示,图4a为齿轮表面采用传统方法制备WS2膜层的声发射曲线及表面划痕形貌,图4b为齿轮表面使用本发明制备WS2膜层的声发射曲线及表面划痕形貌,即图4a和4b分别为传统方法和本发明方法制备的WS2涂层划痕测试结果。采用传统方法制备WS2膜层的试样2在划痕测试进行至一半时便已在划痕底部出现膜基分离、脱落的现象;采用本发明方法制备WS2膜层的试样3直至测试结束依然与基体结合紧密、未出现脱落现象,表明本发明方法能显著提高WS2自润滑耐磨膜层与基体的结合强度。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (8)

1.一种用于齿轮表面的自润滑耐磨薄膜的制备方法,其特征在于,包括如下步骤:
S100,齿轮表面清洗;
S200,采用离子注入技术在齿轮表面制备TiN/Ta基底层,包括:将清洗后的齿轮放入真空室内,所述真空室与离子源连接,抽真空至3.0~6.0×10-4Pa,对齿轮进行表面改性,生成TiN/Ta基底层,其中,所述离子源的离子注入能量为80keV~150keV,所述离子源的离子注入总剂量为5.0×1017ions/cm2~10×1017ions/cm2
S300,通过物理气相沉积技术中的溅射沉积技术在TiN/Ta基底层表面制备WS2自润滑耐磨薄膜,其中电压为600~1000V,电流为0.5~1A,占空比为30~70%。
2.如权利要求1所述的用于齿轮表面的自润滑耐磨薄膜的制备方法,其特征在于,利用离子束复合沉积技术在齿轮的渐开线齿状表面上均匀制备自润滑耐磨薄膜。
3.如权利要求2所述的用于齿轮表面的自润滑耐磨薄膜的制备方法,其特征在于,齿轮的自转转速为30~100r/min,公转转速为30~60r/min。
4.如权利要求1所述的用于齿轮表面的自润滑耐磨薄膜的制备方法,其特征在于,所述步骤S100的齿轮表面清洗包括:将齿轮放入丙酮溶剂中,超声清洗5~10分钟后取出,用干净绸布擦干,再将齿轮放入无水四氯乙烯溶剂中,超声清洗5~10分钟后取出,用干净绸布擦干,并放置于真空烘箱中烘干1~2小时。
5.如权利要求1所述的用于齿轮表面的自润滑耐磨薄膜的制备方法,其特征在于,所述步骤S200中,离子源采用的阴极纯度为99%。
6.如权利要求1所述的用于齿轮表面的自润滑耐磨薄膜的制备方法,其特征在于,所述步骤S200中,制备的TiN/Ta基底层的厚度为15~50nm。
7.如权利要求1所述的用于齿轮表面的自润滑耐磨薄膜的制备方法,其特征在于,所述步骤S300中,制备的WS2膜层的厚度为0.5~2μm。
8.如权利要求1至7任一项所述的用于齿轮表面的自润滑耐磨薄膜的制备方法,其特征在于,所述步骤S300之后还包括:
S400,将表面形成自润滑耐磨薄膜后的齿轮放入丙酮溶剂清洗取出,烘干后真空密封保存。
CN202010855984.7A 2020-08-24 2020-08-24 用于齿轮表面的自润滑耐磨薄膜的制备方法 Pending CN112323035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010855984.7A CN112323035A (zh) 2020-08-24 2020-08-24 用于齿轮表面的自润滑耐磨薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010855984.7A CN112323035A (zh) 2020-08-24 2020-08-24 用于齿轮表面的自润滑耐磨薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN112323035A true CN112323035A (zh) 2021-02-05

Family

ID=74303719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010855984.7A Pending CN112323035A (zh) 2020-08-24 2020-08-24 用于齿轮表面的自润滑耐磨薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN112323035A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331410A (ja) * 1994-06-02 1995-12-19 Kobe Steel Ltd 耐酸化性および耐摩耗性に優れた硬質皮膜
JP2000340166A (ja) * 1999-05-27 2000-12-08 Sony Corp 成膜方法及び成膜物
CN101962746A (zh) * 2010-10-08 2011-02-02 中国航空工业集团公司北京航空制造工程研究所 在金属零件表面制备高附着力Ta/TaN叠层薄膜的方法
US20110220415A1 (en) * 2009-08-18 2011-09-15 Exxonmobil Research And Engineering Company Ultra-low friction coatings for drill stem assemblies
CN104928643A (zh) * 2014-09-05 2015-09-23 北京机械工业自动化研究所 一种金属材料表面改性层的制造方法及装置
CN104962859A (zh) * 2014-09-05 2015-10-07 北京机械工业自动化研究所 WS2/Ag复合梯度固体润滑薄膜的制造方法
CN105385998A (zh) * 2015-12-03 2016-03-09 重庆动沃机车产业有限公司 一种自润滑金属材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331410A (ja) * 1994-06-02 1995-12-19 Kobe Steel Ltd 耐酸化性および耐摩耗性に優れた硬質皮膜
JP2000340166A (ja) * 1999-05-27 2000-12-08 Sony Corp 成膜方法及び成膜物
US20110220415A1 (en) * 2009-08-18 2011-09-15 Exxonmobil Research And Engineering Company Ultra-low friction coatings for drill stem assemblies
CN101962746A (zh) * 2010-10-08 2011-02-02 中国航空工业集团公司北京航空制造工程研究所 在金属零件表面制备高附着力Ta/TaN叠层薄膜的方法
CN104928643A (zh) * 2014-09-05 2015-09-23 北京机械工业自动化研究所 一种金属材料表面改性层的制造方法及装置
CN104962859A (zh) * 2014-09-05 2015-10-07 北京机械工业自动化研究所 WS2/Ag复合梯度固体润滑薄膜的制造方法
CN105385998A (zh) * 2015-12-03 2016-03-09 重庆动沃机车产业有限公司 一种自润滑金属材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
桑瑞鹏等: "固体润滑轴承用9Cr18不锈钢离子注入与磁控溅射改性真空摩擦学研究", 《真空科学与技术学报》 *
王治乐编著: "《"薄膜光学与真空镀膜技术"》", 30 June 2013, 哈尔滨:哈尔滨工业大学出版社 *
黄思俞著: "《大学物理实验 第2版》", 31 December 2017, 厦门大学出版社 *

Similar Documents

Publication Publication Date Title
CN111005002B (zh) 一种压气机叶片耐冲蚀防腐蚀自洁涂层的制备方法
CN105644059B (zh) 一种磁控溅射含银超低摩擦系数类石墨碳膜的制备方法
CN107034440B (zh) 一种复合类金刚石碳膜及其制备方法
CN108977776A (zh) 空间宽温域环境下高结合力固体润滑膜层及其制备方法
CN110055496A (zh) 一种在核用锆合金基底表面制备Cr涂层的制备工艺
CN109930120B (zh) 一种空间活动零部件表面智能复合润滑薄膜及其制备方法
CN106521441A (zh) 一种二硫化钼/铅钛合金纳米多层薄膜及其制备方法
CN108411244A (zh) 一种提高M50NiL轴承钢表面摩擦学性能的方法
CN109778119A (zh) 一种Ni-CrSiN耐磨耐蚀涂层及其制备方法
CN107686976B (zh) 一种星用二硫化钼基复合润滑膜的制备方法
CN109295433A (zh) 一种深长孔管道内壁用超厚碳基润滑涂层的沉积方法
CN107058949B (zh) 一种耐磨二硫化钨薄膜的制备方法
CN104962860A (zh) 一种多相耦合ws2/wn固体润滑薄膜制造方法
CN104928622B (zh) 一种ws2固体润滑薄膜的制造方法
CN107326363A (zh) 基体表面的高硬度、耐磨损,且在乳化液环境中耐腐蚀的碳基涂层及其制备方法
CN101363111B (zh) 制造碳薄膜的方法和碳薄膜涂覆体
CN112323035A (zh) 用于齿轮表面的自润滑耐磨薄膜的制备方法
CN110117774A (zh) 一种tc4钛合金表面涂层及其制备方法和tc4钛合金产品
CN108456883A (zh) 一种基体表面碳基减摩耐磨薄膜的制备方法
CN111534803B (zh) 一种Mo-V-C-N复合涂层的制备方法
CN101880876B (zh) 压缩机滑片及其表面涂层处理方法
CN114672777B (zh) 一种抗氧化Cr/CrAl纳米多层涂层及其制备方法
CN108893711A (zh) 利用离子束加厚非晶四面体碳涂层的方法及装置及涂层
CN108359938A (zh) 一种活塞环表面超厚类金刚石薄膜涂层制备方法
CN115928019B (zh) 一种具有高温自润滑周期性多层结构涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210205