CN112297421A - 一种利用微波辐照修复fdm 3d打印制品层与层之间粘接强度的方法 - Google Patents

一种利用微波辐照修复fdm 3d打印制品层与层之间粘接强度的方法 Download PDF

Info

Publication number
CN112297421A
CN112297421A CN202011097298.4A CN202011097298A CN112297421A CN 112297421 A CN112297421 A CN 112297421A CN 202011097298 A CN202011097298 A CN 202011097298A CN 112297421 A CN112297421 A CN 112297421A
Authority
CN
China
Prior art keywords
printing
layers
microwave irradiation
fdm3d
printed product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011097298.4A
Other languages
English (en)
Inventor
陈少云
卓东贤
郑燕玉
瞿波
何淋静
刘小英
李文杰
罗永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Normal University
Original Assignee
Quanzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanzhou Normal University filed Critical Quanzhou Normal University
Priority to CN202011097298.4A priority Critical patent/CN112297421A/zh
Publication of CN112297421A publication Critical patent/CN112297421A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Abstract

本发明提供了一种利用微波辐照修复FDM 3D打印制品层与层之间粘接强度的方法,属于3D打印技术领域。本发明将吸波材料与3D打印材料通过熔融共混法,利用双螺杆挤出机造粒,再经过单螺杆挤出机挤出收卷得到3D打印线材。然后用3D打印机打印设计好的模型试样,对试样进行微波辐照处理。经微波处理后,由于吸波作用导致3D打印制品层与层之间粘接更加紧密,复合材料的拉伸强度和冲击强度比未微波的好。利用显微镜观察做完拉伸测试样品的断面形貌,经过微波辐照的制品层与层之间粘接较好,微波辐照改善了FDM 3D打印制品的界面缺陷。本发明提供的技术方案将大大解决熔融沉积打印件层与层之间粘结不紧,容易开裂、断裂等的问题,可广泛应用于3D打印技术领域。

Description

一种利用微波辐照修复FDM 3D打印制品层与层之间粘接强度 的方法
技术领域
本发明属于3D打印技术领域,具体涉及一种利用微波辐照修复FDM 3D打印制品层与层之间粘接强度的方法。
背景技术
自1986年,第一台3D打印机的问世,经过数十年的发展,3D打印技术已经逐渐贴近人们的生活。在各种3D打印技术中FDM熔融沉积技术由于其方便快捷、设备维护简单、操作简单且成本较低等优点,从而成为应用最为广、普及度最高的3D打印技术。
但FDM打印成型过程中,由于熔融沉积层与已成型层温度间距大,且用于打印的线材由于熔融后冷却收缩不均匀而产生内应力,都会使得打印制品层与层之间粘结力较弱,从而极易出现表面粗糙、变形翘曲等问题,研究FDM技术中出现的卷翘变形现象,解决制品层与层之间粘接强度较弱的问题则是其中关键。
发明内容
针对现有技术的情况和不足,本发明的目的在于提供一种利用微波辐照修复FDM3D打印制品层与层之间粘接强度的方法,将通过在3D打印制品中引入强吸波材料,运用微波辐照修复FDM技术打印制品层与层之间粘结较弱的问题,提高打印制品强度,为3D打印技术的性能优化提供理论和实验依据。
为了解决上述技术问题,本发明提出的技术方案是:利用微波辐照修复FDM3D打印制品层与层之间粘接强度的方法,包括以下步骤:
步骤1:将吸波材料与常见FDM 3D打印原料通过熔融共混法,利用双螺杆挤出机造粒,再经过单螺杆挤出机挤出收卷得到3D打印线材;
步骤2:用步骤1得到的混有吸波材料的3D打印线材打印出零件,得到3D打印零件;
步骤3:将步骤2得到零件微波处理。
所述的FDM 3D打印原料为ABS、PLA、HIPS、Nylon、TPE、TPU、TPR、PETG、PC中的任一种。
所述的吸波材料为石墨烯、碳纳米管、导电高分子,其中导电高分子包括聚苯胺、聚噻吩。
所述的3D打印速度为500-2000mm/min。
所述的微波的功率为500-2000W,微波的时间为20s-60min。
本发明有益效果是通过在3D打印制品中引入强吸波材料,经微波处理后,由于吸波作用导致3D打印制品层与层之间粘接更加紧密,复合材料的拉伸强度和冲击强度比未微波的好,利用显微镜观察做完拉伸测试样品的断面形貌,经过微波辐照的制品层与层之间粘接较好,微波辐照改善了FDM 3D打印制品的界面缺陷,解决熔融沉积打印件层与层之间粘结不紧,容易开裂、断裂等的问题,可广泛应用于3D打印技术领域。
附图说明
图1为微波处理对ABS/0.5%碳纳米管3D打印制品的影响显微镜图,其中(A)为未进行微波处理,(B)为微波300s后。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,显然,所描述的发明是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例以ABS为打印材料,碳纳米管为吸波材料。
步骤1:利用双螺杆的共混条件将不同含量的碳纳米管(CNTs)与ABS利用双螺杆挤出机共混挤出造粒,最终制备不同比例的ABS/碳纳米管复合材料,同时通过单螺杆挤出机的挤出丝条件将ABS/碳纳米管复合材料挤出丝状并收卷用于3D打印;
步骤2:利用FDM技术3D打印机将ABS/碳纳米管复合材料丝材打印成测试样品,打印速度设为1000mm/min;
步骤3:将样品在1000W的微波炉中微波辐照不同时间。再通过测试微波后3D打印制品的拉伸强度、抗冲击强度,最后用显微镜观察打印制品的侧面。
表1不同微波时间对ABS/0.5%碳纳米管打印制品的机械性能的影响
Figure BDA0002724162820000021
Figure BDA0002724162820000031
图1为微波修复对ABS/0.5%碳纳米管3D打印制品的影响显微镜图。
经微波处理后,由于吸波作用导致3D打印制品层与层之间粘接更加紧密,复合材料的拉伸强度和冲击强度比未微波的好。利用显微镜观察做完拉伸测试样品的断面形貌,经过微波辐照的制品层与层之间粘接较好,微波辐照改善了FDM3D打印制品的界面缺陷。
实施例2
本实施例以ABS为打印材料,石墨烯为吸波材料:
步骤1:利用双螺杆的共混条件将不同含量的石墨烯与ABS利用双螺杆挤出机共混挤出造粒,最终制备不同比例的ABS/石墨烯复合材料,同时通过单螺杆挤出机的挤出丝条件将ABS/石墨烯复合材料挤出丝状并收卷用于3D打印;
步骤2:利用FDM技术3D打印机将ABS/石墨烯复合材料丝材打印成测试样品,打印速度设为1200mm/min;
步骤3:将样品在1000W的微波炉中微波辐照不同时间,再通过测试微波前后3D打印制品的拉伸强度、抗冲击强度,最后用显微镜观察打印制品的侧面。
实施例3
本实施例以PLA为打印材料,石墨烯为吸波材料:
步骤1:利用双螺杆的共混条件将不同含量的石墨烯与PLA利用双螺杆挤出机共混挤出造粒,最终制备不同比例的PLA/石墨烯复合材料,同时通过单螺杆挤出机的挤出丝条件将PLA/石墨烯复合材料挤出丝状并收卷用于3D打印;
步骤2:利用FDM技术3D打印机将PLA/石墨烯复合材料丝材打印成测试样品,打印速度设为1500mm/min;
步骤3:将样品在800W的微波炉中微波辐照不同时间,再通过测试微波前后3D打印制品的拉伸强度、抗冲击强度,最后用显微镜观察打印制品的侧面。
实施例4
本实施例以PLA为打印材料,碳纳米管为吸波材料:
步骤1:利用双螺杆的共混条件将不同含量的碳纳米管与PLA利用双螺杆挤出机共混挤出造粒,最终制备不同比例的PLA/碳纳米管复合材料,同时通过单螺杆挤出机的挤出丝条件将PLA/碳纳米管复合材料挤出丝状并收卷用于3D打印;
步骤2:利用FDM技术3D打印机将PLA/碳纳米管复合材料丝材打印成测试样品,打印速度设为1500mm/min;
步骤3:将样品在1000W的微波炉中微波辐照不同时间,再通过测试微波前后3D打印制品的拉伸强度、抗冲击强度,最后用显微镜观察打印制品的侧面。
对比例
本实施例以ABS为打印材料,碳纳米管为吸波材料。
步骤1:利用双螺杆的共混条件将不同含量的碳纳米管(CNTs)与ABS利用双螺杆挤出机共混挤出造粒,最终制备不同比例的ABS/碳纳米管复合材料。同时通过单螺杆挤出机的挤出丝条件将ABS/碳纳米管复合材料挤出丝状并收卷用于3D打印;
步骤2:利用FDM技术3D打印机将ABS/碳纳米管复合材料丝材打印成测试样品,打印速度设为1000mm/min。
对比例1的显微镜图见图1(A)。

Claims (6)

1.一种利用微波辐照修复FDM 3D打印制品层与层之间粘接强度的方法,其特征在于:包括以下步骤:
步骤1:将吸波材料与FDM 3D打印原料通过熔融共混法,利用双螺杆挤出机造粒,再经过单螺杆挤出机挤出收卷得到3D打印线材;
步骤2:用步骤1得到的混有吸波材料的3D打印线材打印出零件,得到3D打印零件;
步骤3:将步骤2得到零件进行微波处理。
2.根据权利要求1所述的一种利用微波辐照修复FDM 3D打印制品层与层之间粘接强度的方法,其特征在于:所述的FDM 3D打印原料为ABS、PLA、HIPS、Nylon、TPE、TPU、TPR、PETG、PC中的任一种。
3.根据权利要求1所述的一种利用微波辐照修复FDM 3D打印制品层与层之间粘接强度的方法,其特征在于:所述的吸波材料为石墨烯、碳纳米管、纳米炭黑、导电高分子中的任一种。
4.根据权利要求3所述的一种利用微波辐照修复FDM 3D打印制品层与层之间粘接强度的方法,其特征在于:所述的导电高分子为聚苯胺或聚噻吩。
5.根据权利要求1所述的一种利用微波辐照修复FDM 3D打印制品层与层之间粘接强度的方法,其特征在于:3D打印速度为500-2000 mm/min。
6.根据权利要求1所述的一种利用微波辐照修复FDM 3D打印制品层与层之间粘接强度的方法,其特征在于:所述的微波处理的功率为500-2000W,微波处理的时间为20s-60min。
CN202011097298.4A 2020-10-14 2020-10-14 一种利用微波辐照修复fdm 3d打印制品层与层之间粘接强度的方法 Pending CN112297421A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011097298.4A CN112297421A (zh) 2020-10-14 2020-10-14 一种利用微波辐照修复fdm 3d打印制品层与层之间粘接强度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011097298.4A CN112297421A (zh) 2020-10-14 2020-10-14 一种利用微波辐照修复fdm 3d打印制品层与层之间粘接强度的方法

Publications (1)

Publication Number Publication Date
CN112297421A true CN112297421A (zh) 2021-02-02

Family

ID=74326724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011097298.4A Pending CN112297421A (zh) 2020-10-14 2020-10-14 一种利用微波辐照修复fdm 3d打印制品层与层之间粘接强度的方法

Country Status (1)

Country Link
CN (1) CN112297421A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619666A (zh) * 2021-11-23 2022-06-14 昆明理工大学 一种基于fdm打印技术制备隔离结构多功能材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10356193A1 (de) * 2003-03-15 2004-09-23 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels Mikrowellenstrahlung
CN104559088A (zh) * 2015-01-28 2015-04-29 上海材料研究所 一种适用于3d打印的改性复合材料及其制备方法
JP2015133416A (ja) * 2014-01-14 2015-07-23 大同特殊鋼株式会社 電磁波吸収体及びその製造方法
CN105196545A (zh) * 2015-10-20 2015-12-30 江苏科技大学 利用瞬间粘合剂提高聚合物三维打印制品粘接质量的方法
CN106042374A (zh) * 2015-12-27 2016-10-26 南京新月材料科技有限公司 一种解决熔融沉积3d打印强度的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10356193A1 (de) * 2003-03-15 2004-09-23 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels Mikrowellenstrahlung
JP2015133416A (ja) * 2014-01-14 2015-07-23 大同特殊鋼株式会社 電磁波吸収体及びその製造方法
CN104559088A (zh) * 2015-01-28 2015-04-29 上海材料研究所 一种适用于3d打印的改性复合材料及其制备方法
CN105196545A (zh) * 2015-10-20 2015-12-30 江苏科技大学 利用瞬间粘合剂提高聚合物三维打印制品粘接质量的方法
CN106042374A (zh) * 2015-12-27 2016-10-26 南京新月材料科技有限公司 一种解决熔融沉积3d打印强度的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619666A (zh) * 2021-11-23 2022-06-14 昆明理工大学 一种基于fdm打印技术制备隔离结构多功能材料的方法

Similar Documents

Publication Publication Date Title
He et al. 3D printed continuous CF/PA6 composites: Effect of microscopic voids on mechanical performance
Yang et al. 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance
Meng et al. Effect of nanoparticles on the mechanical properties of acrylonitrile–butadiene–styrene specimens fabricated by fused deposition modeling
CN106521718B (zh) 用于具有增强可模塑性的复合材料中的连续碳纤维的制造方法
JP5371437B2 (ja) 複合材料およびその製造方法
KR102068052B1 (ko) 다공질 탄소 재료, 탄소 재료 강화 복합 재료, 다공질 탄소 재료 전구체, 다공질 탄소 재료 전구체의 제조 방법, 및 다공질 탄소 재료의 제조 방법
Liu et al. Microstructure and mechanical properties of reinforced polyamide 12 composites prepared by laser additive manufacturing
JP2017043095A (ja) 繊維強化複合材料成形体およびその製造方法
JP2020100156A (ja) 積層基材およびその製造方法並びに炭素繊維強化樹脂基材
CN101488373B (zh) 导电复合材料的制备方法
Dave et al. Open hole tensile testing of 3D printed parts using in-house fabricated PLA filament
Ning et al. Additive manufacturing of CFRP composites using fused deposition modeling: effects of process parameters
CN110563977A (zh) 复合纤维布及其制备方法和复合材料
Chen et al. Preparation of CCF/PEEK filaments together with property evaluation for additive manufacturing
CN112297421A (zh) 一种利用微波辐照修复fdm 3d打印制品层与层之间粘接强度的方法
KR101461754B1 (ko) 강화 열가소성 수지 필름의 제조방법 및 이로부터 획득된 강화 열가소성 수지 필름
Liu et al. Mechanical and electrical properties of additive manufactured high-performance continuous glass fiber reinforced PEEK composites
Krajangsawasdi et al. Batch production and fused filament fabrication of highly aligned discontinuous fibre thermoplastic filaments
Mao et al. Insert injection molding of high‐density polyethylene single‐polymer composites
Heider et al. Closed loop recycling of CFRP into highly aligned high performance short fiber composites using the tuff process
Xin et al. Fusion-bonding performance of short and continuous carbon fiber synergistic reinforced composites using fused filament fabrication
Chen et al. Influence of preheating temperature and printing speed on interlaminar shear performance of laser‐assisted additive manufacturing for CCF/PEEK composites
Ji et al. Mechanism and behavior of laser irradiation on carbon fiber reinforced polyetheretherketone (CF/PEEK) during the laser-assisted in-situ consolidation additive manufacturing process
CN113185801B (zh) 一种可应用于空间环境的聚醚醚酮复合材料3d打印丝材及其制备方法
Aburaia et al. A production method for standardized continuous fiber reinforced FFF filament

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210202