CN112279670A - 一种低收缩率多孔氮化硅陶瓷及其制备方法 - Google Patents

一种低收缩率多孔氮化硅陶瓷及其制备方法 Download PDF

Info

Publication number
CN112279670A
CN112279670A CN202011243150.7A CN202011243150A CN112279670A CN 112279670 A CN112279670 A CN 112279670A CN 202011243150 A CN202011243150 A CN 202011243150A CN 112279670 A CN112279670 A CN 112279670A
Authority
CN
China
Prior art keywords
silicon nitride
porous silicon
ceramic
low
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011243150.7A
Other languages
English (en)
Inventor
李勇全
陈巨喜
曾庆党
朱福林
肖立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengyang Kaixin Special Materials Technology Co ltd
Original Assignee
Hengyang Kaixin Special Materials Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengyang Kaixin Special Materials Technology Co ltd filed Critical Hengyang Kaixin Special Materials Technology Co ltd
Priority to CN202011243150.7A priority Critical patent/CN112279670A/zh
Publication of CN112279670A publication Critical patent/CN112279670A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种低收缩率多孔氮化硅陶瓷及其制备方法,包括以下组成部分:甲基丙烯酰胺、纯水、烧结助剂、α‑氮化硅、金属氧化物、氧化铝、稀土氧化物、二甲基丙烯酰胺和分散剂。本发明通过采用上述技术方案,该方法制备的低收缩率多孔氮化硅陶瓷操作简单,陶瓷粉末分散在有机单体溶液中,有机单体在催化剂和引发剂作用下,发生原位聚合反应形成网状结构将陶瓷粉术包裹其中,成为硬实的坏体,相对注浆成型来说,成型周期短,制品的结构与密度均匀,性能稳定可靠,与注浆成型相比,凝胶注模成型不需要昂贵的成型模具,一般以水作分散介质,只需少量的粘合剂,因此不需要严格的排胶工序,适合批量生产及特殊制件的一次成型。

Description

一种低收缩率多孔氮化硅陶瓷及其制备方法
技术领域
本发明属于抗菌无醛硅藻泥墙面涂料技术领域,尤其涉及一种低收缩率多孔氮化硅陶瓷及其制备方法。
背景技术
多孔陶瓷具有优良的均匀透过性,较低的热传导性,耐高温、抗腐蚀等性能.被广泛应用于熔融金属过滤、催化剂载体、汽车尾气净化等传统领域以及传感器、生物材料、航天材料等新兴领域,研究表明多孔氮化硅陶瓷也能拥有良好的力学性能。
多孔陶瓷在制备的过程中通常采用碳热还原法、凝胶铸模成型制备,部分热压法、添加造孔剂制备、淀粉固结工艺制备、挤压成型制备、常压烧结法、包覆成孔剂法等方法,目前,多孔陶瓷在制备的过程中容易出现固相含量低,流动性差,气孔率不高等问题。
发明内容
针对现有技术存在的问题,本发明提供了一种低收缩率多孔氮化硅陶瓷及其制备方法,具备固相含量高、流动性好和气孔率高的优点,解决了多孔陶瓷在制备的过程中容易出现固相含量低,流动性差,气孔率不高等问题的问题。
本发明是这样实现的,一种低收缩率多孔氮化硅陶瓷及其制备方法,包括以下组成部分:甲基丙烯酰胺、纯水、烧结助剂、α-氮化硅、金属氧化物、氧化铝、稀土氧化物、二甲基丙烯酰胺和分散剂。
作为本发明优选的,所述低收缩率多孔氮化硅陶瓷及其制备方法包括以下步骤:
第一步、将所述甲基丙烯酰胺和所述二甲基丙烯酰胺按一定配比溶入去离子水中,配置成预混液;
第二步、将所述纯水、所述α-氮化硅、所述烧结助剂、所述金属氧化物、所述氧化铝、所述单体交联剂和所述稀土氧化物搅拌均匀,烘干后筛分得到均匀的混合粉末;
第三步、将所述混合粉末和所述分散剂加入所述预混液中利用湿法球磨混匀,得到陶瓷悬浮液;
第四步、将所述陶瓷悬浮液中加入适量的引发剂和催化剂,搅拌均匀后真空除去内部气体;
第五步、将所述陶瓷悬浮液通过冷冻干燥设备冰冻干燥,过筛后再冷等静压成型,将所述陶瓷悬浮液放入涂有氮化硼的石墨坩埚里,在氮气气氛下第一次固相无压烧结,得到多孔氮化硅粉体;
第六步、将所述筛分后的孔氮化硅粉体按照比例注射入二氧化硅溶胶的内部,经过凝胶过程成型,得到多孔氮化硅胚体;
第七步、将所述多孔氮化硅胚体干燥、排胶并在无氮气气氛保护下进行第二次无压烧结,得到多孔氮化硅陶瓷。
作为本发明优选的,所述甲基丙烯酰胺和二甲基丙烯酰胺的质量浓度占预混液的15%,且甲基丙烯酰胺和二甲基丙烯酰胺质量之比为24:1。
作为本发明优选的,所述分散剂为聚丙烯酸钠或聚乙烯醇,且所述分散剂占所述陶瓷悬浮液的0.02%-0.1%。
作为本发明优选的,所述纯水、所述α-氮化硅、所述烧结助剂、所述金属氧化物、所述氧化铝、所述单体交联剂和所述稀土氧化物搅拌均匀的时间为9-20h,采用氨水和稀盐酸调节pH值,所述混合粉末和所述分散剂加入所述预混液中利用湿法球磨时间为9-24h,得到陶瓷悬浮液,所述陶瓷悬浮液在低温-20摄氏度,湿度为90%-95%进行初次干燥。
作为本发明优选的,所述陶瓷悬浮液烧结时间为1600℃-1700℃,保温1h,所述多孔氮化硅胚体烧结时间为1700℃-1800℃,保温2h。
作为本发明优选的,所述引发剂为质量分数5%的过硫酸胺水溶液,四甲基乙酰胺为催化剂。
与现有技术相比,本发明的有益效果如下:
1、本发明通过采用上述技术方案,该方法制备的低收缩率多孔氮化硅陶瓷操作简单,陶瓷粉末分散在有机单体溶液中,有机单体在催化剂和引发剂作用下,发生原位聚合反应形成网状结构将陶瓷粉术包裹其中,成为硬实的坏体,相对注浆成型来说,成型周期短,制品的结构与密度均匀,性能稳定可靠,与注浆成型相比,凝胶注模成型不需要昂贵的成型模具,一般以水作分散介质,只需少量的粘合剂,因此不需要严格的排胶工序,适合批量生产及特殊制件的一次成型。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例。
实施例一:首先选择甲基丙烯酰胺、纯水、烧结助剂、α-氮化硅、金属氧化物、氧化铝、稀土氧化物、二甲基丙烯酰胺和分散剂、将上述材料按比例添加准确后经过搅拌均匀、冷冻干燥、过筛、除气和烧结,即可得到所需的多孔氮化硅陶瓷。
实施例一的具体操作步骤一:首先将甲基丙烯酰胺和二甲基丙烯酰胺按一定配比溶入去离子水中,配置成预混液;
步骤二:再将纯水、α-氮化硅、烧结助剂、金属氧化物、氧化铝、单体交联剂和稀土氧化物搅拌均匀,烘干后筛分得到均匀的混合粉末;
步骤三:其次将混合粉末和分散剂加入预混液中利用湿法球磨混匀,得到陶瓷悬浮液;
步骤四:将陶瓷悬浮液中加入适量的引发剂和催化剂,搅拌均匀后真空除去内部气体;
步骤五:将陶瓷悬浮液通过冷冻干燥设备冰冻干燥,过筛后再冷等静压成型,将陶瓷悬浮液放入涂有氮化硼的石墨坩埚里,在氮气气氛下第一次固相无压烧结,得到多孔氮化硅粉体;
步骤六:然后将筛分后的孔氮化硅粉体按照比例注射入二氧化硅溶胶的内部,经过凝胶过程成型,得到多孔氮化硅胚体;
步骤七:最后将多孔氮化硅胚体干燥、排胶并在无氮气气氛保护下进行第二次无压烧结,得到多孔氮化硅陶瓷。
经实施例一的实验结果得出:混合粉末分散在有机单体溶液中,有机单体在催化剂和引发剂的作用下发生原位聚合反应形成网状结构将混合粉末包裹其中,成为硬实的胚体,相对于注浆成型来说,上述步骤成型周期短、制品的结构与密度均匀,性能稳定可靠。
且由实施例一中得出的多孔氮化硅陶瓷固含量可达45%-50%,而且保证了具有高固含量的同时,还能维持足够的流动性。
实施例二:
实施例二与实施例一的区别在于,通过降低温度进行烧结。
烧结温度由1700℃逐渐降低为1650℃和1600℃,随着烧结温度的降低,液相的粘度增加,阻碍了致密化扩散进程,从而使气孔率增加。
实施例三:
实施例三与实施例一的区别在于,加入了不同含量的碳粉。
随着碳粉加入量的增加,碳粉燃烧后留下的孔洞体积增加,从而使气孔率增加,而且燃烧碳粉留下的孔洞对晶粒尺寸及整个致密基体的微观结构没有影响。
实施例四:
实施例四与实施例一的区别在于,通过降低加入分散剂的比例,使分散剂的比例下降至0.02%,有效提高了气孔率的增加量。
实施例五:
实施例五与实施例一的区别在于,以二氧化硅溶胶作为成型的单体,利用溶胶的凝胶过程成型,成型后,二氧化硅包裹在多孔氮化硅粉体表面,抑制了多孔氮化硅粉体在高温下的氧化和分解,因此,可以使多孔氮化硅粉体在空气气氛下烧结,而不必添加保护气氛,二氧化硅在烧结过程中又可以作为烧结助剂,提高了烧结体的强度,无需加入大量有机物,简化了烧结工艺,保证了制品的性能。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明,对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现,因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种低收缩率多孔氮化硅陶瓷及其制备方法,其特征在于:包括以下组成部分:甲基丙烯酰胺、纯水、烧结助剂、α-氮化硅、金属氧化物、氧化铝、稀土氧化物、二甲基丙烯酰胺和分散剂。
2.一种低收缩率多孔氮化硅陶瓷及其制备方法,包括以下步骤:
第一步、将所述甲基丙烯酰胺和所述二甲基丙烯酰胺按一定配比溶入去离子水中,配置成预混液;
第二步、将所述纯水、所述α-氮化硅、所述烧结助剂、所述金属氧化物、所述氧化铝、所述单体交联剂和所述稀土氧化物搅拌均匀,烘干后筛分得到均匀的混合粉末;
第三步、将所述混合粉末和所述分散剂加入所述预混液中利用湿法球磨混匀,得到陶瓷悬浮液;
第四步、将所述陶瓷悬浮液中加入适量的引发剂和催化剂,搅拌均匀后真空除去内部气体;
第五步、将所述陶瓷悬浮液通过冷冻干燥设备冰冻干燥,过筛后再冷等静压成型,将所述陶瓷悬浮液放入涂有氮化硼的石墨坩埚里,在氮气气氛下第一次固相无压烧结,得到多孔氮化硅粉体;
第六步、将所述筛分后的孔氮化硅粉体按照比例注射入二氧化硅溶胶的内部,经过凝胶过程成型,得到多孔氮化硅胚体;
第七步、将所述多孔氮化硅胚体干燥、排胶并在无氮气气氛保护下进行第二次无压烧结,得到多孔氮化硅陶瓷。
3.根据权利要求1所述的一种低收缩率多孔氮化硅陶瓷及其制备方法,其特征在于:所述甲基丙烯酰胺和二甲基丙烯酰胺的质量浓度占预混液的15%,且甲基丙烯酰胺和二甲基丙烯酰胺质量之比为24:1。
4.根据权利要求1所述的一种低收缩率多孔氮化硅陶瓷及其制备方法,其特征在于:所述分散剂为聚丙烯酸钠或聚乙烯醇,且所述分散剂占所述陶瓷悬浮液的0.02%-0.1%。
5.根据权利要求1所述的一种低收缩率多孔氮化硅陶瓷及其制备方法,其特征在于:所述纯水、所述α-氮化硅、所述烧结助剂、所述金属氧化物、所述氧化铝、所述单体交联剂和所述稀土氧化物搅拌均匀的时间为9-20h,采用氨水和稀盐酸调节pH值,所述混合粉末和所述分散剂加入所述预混液中利用湿法球磨时间为9-24h,得到陶瓷悬浮液,所述陶瓷悬浮液在低温-20摄氏度,湿度为90%-95%进行初次干燥。
6.根据权利要求1所述的一种低收缩率多孔氮化硅陶瓷及其制备方法,其特征在于:所述陶瓷悬浮液烧结时间为1600℃-1700℃,保温1h,所述多孔氮化硅胚体烧结时间为1700℃-1800℃,保温2h。
7.根据权利要求1所述的一种低收缩率多孔氮化硅陶瓷及其制备方法,其特征在于:所述引发剂为质量分数5%的过硫酸胺水溶液,四甲基乙酰胺为催化剂。
CN202011243150.7A 2020-11-10 2020-11-10 一种低收缩率多孔氮化硅陶瓷及其制备方法 Withdrawn CN112279670A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011243150.7A CN112279670A (zh) 2020-11-10 2020-11-10 一种低收缩率多孔氮化硅陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011243150.7A CN112279670A (zh) 2020-11-10 2020-11-10 一种低收缩率多孔氮化硅陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN112279670A true CN112279670A (zh) 2021-01-29

Family

ID=74351771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011243150.7A Withdrawn CN112279670A (zh) 2020-11-10 2020-11-10 一种低收缩率多孔氮化硅陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112279670A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248263A (zh) * 2021-05-25 2021-08-13 西北工业大学 Si3N4w/Si预制体及利用该预制体制备Si3N4w/Si3N4复合材料的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696041A (en) * 1995-05-10 1997-12-09 Saint-Gobain/Norton Industrial Ceramics Corp. High solids silicon nitride aqueous slurries
US6066279A (en) * 1997-09-16 2000-05-23 Lockheed Martin Energy Research Corp. Gelcasting methods
US6368525B1 (en) * 2000-02-07 2002-04-09 General Electric Company Method for removing volatile components from a ceramic article, and related processes
CN1686945A (zh) * 2005-04-01 2005-10-26 清华大学 硅溶胶凝固成型陶瓷部件的方法
CN101531538A (zh) * 2009-04-02 2009-09-16 哈尔滨工业大学 多孔氮化硅/氧氮化硅陶瓷复合材料的近净尺寸制备方法
US20100099547A1 (en) * 2007-02-21 2010-04-22 National Institute Of Advanced Industrial Science And Technology Ceramic Porous Body With Communication Macropores and Process for Producing the Ceramic Porous Body
CN103664190A (zh) * 2013-11-26 2014-03-26 河海大学 一种多孔氮化硅陶瓷的制备方法
CN104496521A (zh) * 2014-12-02 2015-04-08 航天特种材料及工艺技术研究所 一种制备Si3N4/BAS泡沫陶瓷材料的方法
CN107032824A (zh) * 2017-05-11 2017-08-11 西安交通大学 一种定向组织陶瓷基复合材料零件的制造方法
CN108752007A (zh) * 2018-06-12 2018-11-06 王金波 一种氮化硅坩埚及其制备方法
CN109369194A (zh) * 2018-11-09 2019-02-22 济南大学 一种低介电、高强度多孔氮化硅陶瓷及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696041A (en) * 1995-05-10 1997-12-09 Saint-Gobain/Norton Industrial Ceramics Corp. High solids silicon nitride aqueous slurries
US6066279A (en) * 1997-09-16 2000-05-23 Lockheed Martin Energy Research Corp. Gelcasting methods
US6368525B1 (en) * 2000-02-07 2002-04-09 General Electric Company Method for removing volatile components from a ceramic article, and related processes
CN1686945A (zh) * 2005-04-01 2005-10-26 清华大学 硅溶胶凝固成型陶瓷部件的方法
US20100099547A1 (en) * 2007-02-21 2010-04-22 National Institute Of Advanced Industrial Science And Technology Ceramic Porous Body With Communication Macropores and Process for Producing the Ceramic Porous Body
CN101531538A (zh) * 2009-04-02 2009-09-16 哈尔滨工业大学 多孔氮化硅/氧氮化硅陶瓷复合材料的近净尺寸制备方法
CN103664190A (zh) * 2013-11-26 2014-03-26 河海大学 一种多孔氮化硅陶瓷的制备方法
CN104496521A (zh) * 2014-12-02 2015-04-08 航天特种材料及工艺技术研究所 一种制备Si3N4/BAS泡沫陶瓷材料的方法
CN107032824A (zh) * 2017-05-11 2017-08-11 西安交通大学 一种定向组织陶瓷基复合材料零件的制造方法
CN108752007A (zh) * 2018-06-12 2018-11-06 王金波 一种氮化硅坩埚及其制备方法
CN109369194A (zh) * 2018-11-09 2019-02-22 济南大学 一种低介电、高强度多孔氮化硅陶瓷及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248263A (zh) * 2021-05-25 2021-08-13 西北工业大学 Si3N4w/Si预制体及利用该预制体制备Si3N4w/Si3N4复合材料的方法

Similar Documents

Publication Publication Date Title
CN100482614C (zh) 利用胶态成型工艺制备轻质、高强度陶瓷材料的方法
CN103922748B (zh) 一种多孔氮化硅陶瓷的制备方法
CN102807391B (zh) 多孔碳化硅陶瓷的制备方法
CN110483053B (zh) 一种用于高温吸波的SiC纳米线/SiC多孔陶瓷的制备方法
CN101503298A (zh) 一种利用凝胶注模法制备氮化硅多孔陶瓷的方法
KR101746128B1 (ko) MgAl2O4 Spinel 성형체의 제조방법
CN112521161B (zh) 一种氧化铝-二氧化锆复相陶瓷的凝胶注模方法
CN109437959B (zh) 一种环保型凝胶注模制备莫来石纤维基多孔陶瓷的方法
CN103664190A (zh) 一种多孔氮化硅陶瓷的制备方法
CN103508437A (zh) 一种酚醛树脂基玻璃碳微球的制备方法
CN101323536A (zh) 氮化硼多孔陶瓷保温材料、制备方法及其应用
CN108395240B (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
CN109369194A (zh) 一种低介电、高强度多孔氮化硅陶瓷及其制备方法
CN105294160A (zh) 一种凝胶注模、微波烧结制备多孔氮化硅陶瓷的方法
CN111533540A (zh) 复杂形状氧化铝陶瓷的制备方法
CN112279670A (zh) 一种低收缩率多孔氮化硅陶瓷及其制备方法
CN106588026A (zh) 基于琼脂糖凝胶注模成型致密或多孔AlN陶瓷的方法
CN114524666A (zh) 一种高强度无暗斑的95氧化铝陶瓷及其制备方法
CN108975949B (zh) 一种基于原位发泡AlON-AlN多孔材料及其制备方法
CN109081685B (zh) 一种氧化铝陶瓷及其制备方法
CN116023124B (zh) 一种基于注凝成型的氧化铝陶瓷及其制备方法
CN104496490A (zh) 一种凝胶注模成型陶瓷坯体及其制备方法
CN108503360B (zh) Lsm块体材料的制备方法
JPH11503709A (ja) セラミック物品の製造
Szafran et al. NEW MULTIFUNCTIONAL COMPOUNDS IN GELCASTING PROCESS- INTRODUCTION TO THEIR SYNTHESIS AND APPLICATION

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210129