CN112251633B - 一种高强度抗菌钛合金板材及其制备方法 - Google Patents

一种高强度抗菌钛合金板材及其制备方法 Download PDF

Info

Publication number
CN112251633B
CN112251633B CN202011051088.1A CN202011051088A CN112251633B CN 112251633 B CN112251633 B CN 112251633B CN 202011051088 A CN202011051088 A CN 202011051088A CN 112251633 B CN112251633 B CN 112251633B
Authority
CN
China
Prior art keywords
plate
titanium alloy
antibacterial titanium
preparation
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011051088.1A
Other languages
English (en)
Other versions
CN112251633A (zh
Inventor
张书源
任玲
王海
杨柯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202011051088.1A priority Critical patent/CN112251633B/zh
Publication of CN112251633A publication Critical patent/CN112251633A/zh
Application granted granted Critical
Publication of CN112251633B publication Critical patent/CN112251633B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

本发明提供了一种高强度抗菌钛合金板材及其制备方法,所述钛合金的化学成分如下(重量%):Al:5.5~6.5;V:3.5~4.5;Cu:3~9;Ti余量。所述钛合金板材的制备方法为:真空自耗炉熔炼获得原材料铸锭;铸锭修磨后经过1000℃以上开坯锻造、精锻加工成板坯;板坯在1000℃‑1300℃保温一段时间后快速冷却,板材获得超细纳米板条组织;淬火后,板坯在温度800℃~900℃下进行粗轧,热轧累计变形量大于等于90%,获得超细纳米板条组织板材;粗轧后,板材在700℃~780℃,精轧至所需尺寸板材。经过该方法加工后获得的板材组织为等轴晶粒,尺寸小于400nm,且在650℃及以下时效3h以内晶粒不发生粗化长大。

Description

一种高强度抗菌钛合金板材及其制备方法
技术领域
本发明涉及钛合金加工制备领域,具体为一种高强度抗菌钛合金板材及其制备方法。
背景技术
钛合金是一种生物安全性优异的金属,其密度较低、弹性模量与人体骨骼接近、具有较高的强度,因此钛及其合金广泛地应用在医疗卫生领域,尤其是口腔和骨科修复领域,例如托槽、带环、矫治弓丝、支抗用种植体、人工关节(骻、膝、肩、踝、肘、腕、指关节等)、骨创伤产品(髓内钉、钢板、螺钉等)、脊柱矫形内固定系统等。
钛合金应用在医疗领域已经近70年,各种钛合金牌号层出不穷,更新迭代,已经逐渐不能跟上人们对更高医疗品质的需要,现有钛合金的缺点与人们的需求间的矛盾愈发凸显。首先,钛合金生物相容性良好,不会对人体造成损害,但其同时也给有害微生物的生长提供了无害的环境。随着医用钛合金广泛应用,术后感染这一严重的并发症也成为越来越受人们关注并亟待解决的问题。其次,医用钛合金的另一个优点是密度低,弹性模量与人体接近,但作为承力型植入体使用时,例如人工髋关节的关节炳,经常出现断裂失效而引发的植入失败,给患者带来极大的痛苦,造成了沉重的精神与经济负担。故实现植入材料更轻、更强、更健康将成为新的、更加贴合实际与未来需要的重要命题。
发明内容
本发明的目的在于提供一种高强度抗菌钛合金板材及其制备方法,该抗菌钛合金板材具有较高的强度。
为实现上述目的,本发明采用如下技术方案:
一种高强度抗菌钛合金板材,其化学成分为(重量百分比):Al:5.5~6.5、V:3.5~4.5、Cu:3~9(优选为5~7)、Ti余量。
本发明所述高强度抗菌钛合金板材制备过程为:
步骤一:采用真空自耗炉熔炼多次,获得原材料铸锭。铸锭修磨后经过1000℃以上开坯锻造、精锻加工成板坯;
步骤二:板坯在1000℃-1300℃保温,保温时间t=(2.0-4.0)D min,其中,D为试样的有效厚度(单位为毫米mm);
步骤三:板坯保温结束后快速冷却,冷却速率ΔT/t范围在150~350℃/s之间。板坯获得超细纳米板条组织;
步骤四:上述超细纳米板条组织板坯在温度800℃~900℃下进行粗轧,热轧累计变形量大于等于90%,获得超细纳米板条组织板材;
步骤五:上述超细纳米板条组织板材在700℃~780℃下进行精轧至目标厚度的板材。
本发明所述高强度抗菌钛合金板材的显微组织与性能如下:
(1)本发明所述高强度抗菌钛合金板材组织为等轴晶粒,尺寸小于400nm,且在650℃及以下时效3h以内,晶粒不发生粗化长大。
(2)本发明所述高强度抗菌钛合金板材(厚度<6毫米)的抗拉强度达到1300-1600MPa,延伸率高于15%。
本发明的有益效果是:
(1)本发明所提供的高强度抗菌钛合金板材,其显微组织为超细等轴晶粒,具有高的组织热稳定性,且本发明所提供的高强度抗菌钛合金板材的制备方法无需依靠大功率设备及昂贵的模具,通过常规热变形与热处理即可获得超细等轴晶,满足规模化工业生产的需要。
(2)本发明所提供的高强度抗菌钛合金板材及其制备方法可显著提高钛合金材料的综合力学性能。
附图说明
图1实施例3所得材料的金相显微组织。
具体实施方式
下面将通过几组具体实施例和对比例来对本申请进行说明、解释,但不应用来限制本申请的范围。
实施例:实施例1-6为根据本发明提供的化学成分范围进行冶炼的Ti6Al4V-Cu合金,其Cu元素的含量逐步提高,相应的制备工艺也在本发明规定的技术参数范围内进行适当调整,具体请见表1、2。
对比例:对比例1-2化学成分低于本发明提供的化学成分范围下限,对比例9的化学成分高于本发明提供的化学成分范围上限。对比例3的粗轧温度高于本发明提供的热轧温度范围上限;对比例3的板坯热处理加热温度低于本发明提供的加热温度范围下限;对比例4的板坯热处理保温时间低于本发明提供的保温时间范围下限;对比例5热处理后的板坯冷却速率高于本发明提供的冷却速度范围上限。对比例6的精轧温度高于本发明提供的精轧温度范围上限;对比例7的变形量低于本发明提供的变形量范围;对比例8的精轧温度低于本发明提供的精轧温度范围下限。对比例10为通过ECAP工艺制备的具有纳米晶组织的普通Ti6Al4V板材,具体请见表3、4。
表1实施例化学成份、热处理工艺
Figure BDA0002709583800000041
说明:D为试样的有效厚度(单位为毫米mm)
表2实施例热加工工艺及最终尺寸
Figure BDA0002709583800000042
表3对比例化学成份、热处理工艺
Figure BDA0002709583800000043
Figure BDA0002709583800000051
说明:D为试样的有效厚度(单位为毫米mm)
表4对比例热加工工艺及最终尺寸
Figure BDA0002709583800000052
1.硬度测试
对实施例和对比例材料的硬度进行测试。采用HTV-1000型硬度计测量退火后材料样品的维氏硬度。测试前,样品表面经过抛光处理。样品是尺寸为直径10mm,厚度为2mm的薄片。试验加载力为9.8N,加压持续时间为15s,通过测量压痕的对角线长度,经过计算机硬度分析软件自动计算得出硬度值。最终硬度值取15个点的平均值,每组样品选取三个平行样,具体结果见表5。
2.拉伸性能测试
采用Instron 8872型拉伸试验机对对比例和实施例材料的室温拉伸力学性能进行测试,拉伸速率为0.5mm/min。测试前,将材料加工成标准拉伸试样,每组热处理试样取三个平行样,实验得到的力学性能包括抗拉强度和延伸率,具体结果见表5。
3.晶粒尺寸统计
采用扫描电镜的电子背散射衍射(EBSD)分析系统对疲劳前后样品进行相体积分数统计,样品制备方法为,先将样品通过机械抛光得到平整光洁的表面,再将样品置于电解液(6%高氯酸+30%丁醇+64%甲醇)中在-25℃下电解抛光20s,去除表面应力。EBSD采集数据时,扫描电镜工作电压20kV,电流18nA,步长选取0.2μm,扫描范围解析率大于80%,采用Channel 5软件对晶粒尺寸进行分析,具体结果见表6。
表5实施例和对比例材料的力学性能
Figure BDA0002709583800000061
表6实施例和对比例材料的组织特征及在不同温度保温1h后的组织变化
Figure BDA0002709583800000071
从表5、6的结果可以看出,实施例1~6均为等轴纳米晶组织,这使得它们具有较高的强度、良好的塑性和较大的硬度。在本发明规定的Cu含量范围内,随着Cu含量的升高,材料的晶粒尺寸逐渐减小,它们的强度和硬度均有所提高,而延伸率逐渐下降。
从表5、6的结果可以看出,对比例1、2、9因Cu含量范围未在本发明提供的范围之内,最终其力学性能较差,同时未得到等轴纳米晶组织。对比例3-8因热处理、粗轧、精轧等工艺参数范围未在本发明提供的范围之内,导致最终力学性能较差,同时未得到等轴纳米晶组织。
从表6的结果可以看出,实施例1~6在650℃及以下时效过程中具有良好的组织热稳定性,晶粒尺寸在时效后未发生显著的变化。而对比例10晶粒发生显著的粗化长大。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (4)

1.一种高强度抗菌钛合金板材,其特征在于,其化学成分为重量百分比:Al:5.5~6.5;V:3.5~4.5;Cu:3~9;Ti余量;所述板材的厚度小于6毫米;
所述钛合金板材的制备方法为:
步骤一:采用真空自耗炉熔炼多次,获得原材料铸锭;铸锭修磨后经过1000℃以上开坯锻造、精锻加工成板坯;
步骤二:板坯在1000℃-1300℃保温,保温时间t= (2.0-4.0)D min,其中,D为试样的有效厚度,单位为毫米mm;
步骤三:板坯保温结束后快速冷却,冷却速率在150~350℃/s之间;板坯获得超细纳米板条组织;
步骤四:上述超细纳米板条组织板坯在温度800℃~900℃下进行粗轧,热轧累计变形量大于90%,获得超细纳米板条组织板材;
步骤五:上述超细纳米板条组织板材在700℃~780℃下进行精轧至目标厚度的板材,所得板材在650℃及以下时效3h以内,晶粒不发生粗化长大。
2.按照权利要求1所述高强度抗菌钛合金板材,其特征在于,所述合金中铜含量为重量百分比Cu:5~7。
3.按照权利要求1所述高强度抗菌钛合金板材,其特征在于:经过热变形加工后获得的板材组织为等轴晶粒,尺寸小于400nm。
4.按照权利要求1所述高强度抗菌钛合金板材,其特征在于:制备所得厚度小于6毫米抗菌钛合金板材的抗拉强度为1300-1600MPa,延伸率高于15%。
CN202011051088.1A 2020-09-29 2020-09-29 一种高强度抗菌钛合金板材及其制备方法 Active CN112251633B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011051088.1A CN112251633B (zh) 2020-09-29 2020-09-29 一种高强度抗菌钛合金板材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011051088.1A CN112251633B (zh) 2020-09-29 2020-09-29 一种高强度抗菌钛合金板材及其制备方法

Publications (2)

Publication Number Publication Date
CN112251633A CN112251633A (zh) 2021-01-22
CN112251633B true CN112251633B (zh) 2022-06-03

Family

ID=74233899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011051088.1A Active CN112251633B (zh) 2020-09-29 2020-09-29 一种高强度抗菌钛合金板材及其制备方法

Country Status (1)

Country Link
CN (1) CN112251633B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813302A (zh) * 2019-11-15 2021-05-18 苏州森锋医疗器械有限公司 高疲劳强度医用钛合金及其热加工与热处理方法及器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671771A (zh) * 2009-09-29 2010-03-17 燕山大学 高强度高塑性超细晶铁素体和纳米碳化物低碳钢制备方法
JP2010150624A (ja) * 2008-12-26 2010-07-08 Daido Steel Co Ltd 鋳造用アルファ+ベータ型チタン合金及びこれを用いたゴルフクラブヘッド
WO2016152663A1 (ja) * 2015-03-26 2016-09-29 株式会社神戸製鋼所 α-β型チタン合金
CN107630151A (zh) * 2016-07-18 2018-01-26 中国科学院金属研究所 一种具有抗菌及促进骨愈合功能的新型β型钛合金
CN110157948A (zh) * 2019-05-29 2019-08-23 中国科学院金属研究所 一种实现即刻种植的种植体专用医用钛合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150624A (ja) * 2008-12-26 2010-07-08 Daido Steel Co Ltd 鋳造用アルファ+ベータ型チタン合金及びこれを用いたゴルフクラブヘッド
CN101671771A (zh) * 2009-09-29 2010-03-17 燕山大学 高强度高塑性超细晶铁素体和纳米碳化物低碳钢制备方法
WO2016152663A1 (ja) * 2015-03-26 2016-09-29 株式会社神戸製鋼所 α-β型チタン合金
CN107630151A (zh) * 2016-07-18 2018-01-26 中国科学院金属研究所 一种具有抗菌及促进骨愈合功能的新型β型钛合金
CN110157948A (zh) * 2019-05-29 2019-08-23 中国科学院金属研究所 一种实现即刻种植的种植体专用医用钛合金及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Effect of Heat Treatment on Cu Distribution, Antibacterial Performance and Cytotoxicity of Tie6Ale4Ve5Cu Alloy;Zheng Ma 等;《Journal of Materials Science & Technology》;20150429;第7卷(第31期);第724页第3-4段,表1 *
Zheng Ma 等.Effect of Heat Treatment on Cu Distribution, Antibacterial Performance and Cytotoxicity of Tie6Ale4Ve5Cu Alloy.《Journal of Materials Science & Technology》.2015,第7卷(第31期),第723-732页. *
生物医用抗菌Ti6A14V-xCu合金的性能优化研究;彭聪;《中国优秀博士学位论文全文数据库(电子期刊) 工程科技Ⅰ辑》;20190716;第I-II页 *

Also Published As

Publication number Publication date
CN112251633A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
CN112251639B (zh) 一种高强度抗菌钛合金棒材、丝材及其制备方法
JP5192382B2 (ja) 増大した酸素含有量を有していて改善された機械的特性を示すチタン合金
CN103740982B (zh) 一种低弹性模量亚稳β钛合金及制备方法
WO2005064026A1 (fr) Alliages ti a faible module et super-elasticite, procede de production correspondant
CN101215655A (zh) 亚稳β型Ti-Nb-Ta-Zr-O合金及其制备方法
CN115976440B (zh) 一种抗感染医用含铜钛合金棒丝材的加工方法
Jablokov et al. The application of Ti-15Mo beta titanium alloy in high strength structural orthopaedic applications
CN112251633B (zh) 一种高强度抗菌钛合金板材及其制备方法
CN112251634B (zh) 一种抗菌等轴纳米晶Ti-Cu板材及其制备方法
US9034017B2 (en) Spinal fixation rod made of titanium alloy
EP4060066A1 (en) Medical titanium alloy having high fatigue strength, and hot processing and hot treatment method therefor and device thereof
CN112251642B (zh) 纳米晶组织Ti-Cu合金及其激光选区熔化增材制造制备方法
CN116377281A (zh) 一种高强度抗感染的钛合金及其制备方法与应用
CN112226646B (zh) 一种抗菌等轴纳米晶Ti-Cu棒、丝材及其制备方法
AU2023201949A1 (en) Titanium based ceramic reinforced alloy
US20130139933A1 (en) Method for enhancing mechanical strength of a titanium alloy by aging
EP0812924A1 (de) Titanwerkstoff, Verfahren zu seiner Herstellung und Verwendung
Marquardt et al. Beta titanium alloy processed for high strength orthopedic applications
EP2788519B1 (en) Method for increasing mechanical strength of titanium alloys having &#34; phase by cold working
CN112553552B (zh) 提高钛锆合金机械性能的加工工艺、钛锆合金及种植牙
CN117512400A (zh) 一种多主元合金及其制备方法和应用
Murugabalaji et al. Introduction to Cross Rolling of Biomedical Alloys
CN115369285A (zh) 一种低模量亚稳β钛合金及其制备方法和金属植入物
CN116829746A (zh) 超弹性合金
Zhentao et al. A Novel Biomedical β-type Ti alloy TLM materials Used in Teeth Implants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant