CN112250890A - 一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法 - Google Patents

一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法 Download PDF

Info

Publication number
CN112250890A
CN112250890A CN202011087727.XA CN202011087727A CN112250890A CN 112250890 A CN112250890 A CN 112250890A CN 202011087727 A CN202011087727 A CN 202011087727A CN 112250890 A CN112250890 A CN 112250890A
Authority
CN
China
Prior art keywords
chitosan
fiber
aramid
aramid nano
composite hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011087727.XA
Other languages
English (en)
Other versions
CN112250890B (zh
Inventor
吴亚东
金苗苗
黄玉东
王芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202011087727.XA priority Critical patent/CN112250890B/zh
Publication of CN112250890A publication Critical patent/CN112250890A/zh
Application granted granted Critical
Publication of CN112250890B publication Critical patent/CN112250890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,它涉及一种制备水凝胶的方法。本发明的目的是要解决现有方法制备的芳纶纳米纤维水凝胶无法自成一体,形状不规则,均一性和柔软性均差,影响其性能的问题。方法:一、制备芳纶纳米纤维溶液;二、将壳聚糖加入到芳纶纳米纤维溶液中;三、静置;四、在膜状凝胶上方加入去离子水,静置,得到壳聚糖/芳纶纳米纤维复合水凝胶。本发明通过静置方法制备的壳聚糖/芳纶纳米纤维复合水凝胶能够自成一体,不影响水凝胶的性能同时又保持材料的柔软性。本发明可获得壳聚糖/芳纶纳米纤维复合水凝胶。

Description

一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法
技术领域
本发明涉及一种制备水凝胶的方法。
背景技术
近年来,水凝胶的日益发展促进了复合材料学科的发展和开发。水凝胶是一种含水量很大、固含量较低、含有大量亲水基团的、柔软湿润的、具备三维立体结构的高分子聚合物网络。冻干后的水凝胶一般呈现疏松、多孔的网络结构,而且这种网络结构有利于水凝胶保持大量水分。水凝胶的这些优异特性使其成为了目前的研究热点,人们致力于将其应用于各个领域。如:干旱地区的抗旱,在化妆品中的面膜、退热贴、镇痛贴、农用薄膜、建筑中的结露防止剂、调湿剂、石油化工中的堵水调剂,原油或成品油的脱水,在矿业中的抑尘剂,食品中的保鲜剂、增稠剂,医疗中的药物载体等等。值得注意的是,不同的应用领域应该选用不同的高分子原料,以满足不同的需求。
芳纶纳米纤维是一种拥有优良性能的对位芳香族聚酰胺类有机纤维。因其具有高强度、高模量、耐高温等优于一般纤维的性能而被广泛使用。除了一般纤维所必备的高强度、高模量、耐高温等性质,芳纶纳米纤维同时还具备阻燃性好、防水性好、耐化学腐蚀等优异的性质,芳纶纳米纤维优异的综合性能,使其作为一种轻质高强材料被广泛应用于军工、航空航天等方面。芳纶纳米纤维由长分子链组成,这些长分子链由聚对苯二甲酸对苯二胺(PPTA)制成,它们之间有氢键以及苯环间的π-π共轭,使得材料非常坚硬。芳纶纳米纤维由于其结构的特殊性,无论是作为主体,还是作为添加物,对复合材料的力学性能、吸附性能、耐温性能等都有很大的提升,在许多研究领域中均有着潜在的应用价值。
凝胶的形成原理是因为作为凝胶化试剂的去离子水是给质子体,会使带负电的N获得质子,纤维呈电中性,于是被破坏的氢键重新建立起来,加上苯环间的π-π共轭作用,纤维迅速析出,形成水凝胶。但如果实验所制备的芳纶纳米纤维溶液浓度较高,在制备芳纶纳米纤维与其他材料的复合水凝胶时若采用传统的边加水边搅拌的方式,部分芳纶纳米纤维会迅速析出,变成凝胶,而其他纤维仍然保持溶液状态,这将直接导致所制备的水凝胶无法自成一体,显著影响其性能,见说明书附图图1所示。因此,我们迫切需要一种较为温和的方法制备来制备水凝胶,使水凝胶均匀的自成为一体,并且不影响其性能。
发明内容
本发明的目的是要解决现有方法制备的芳纶纳米纤维水凝胶无法自成一体,形状不规则,均一性和柔软性均差,影响其性能的问题,而提供一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法。
一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,是按以下步骤完成的:
一、制备芳纶纳米纤维溶液:
将芳纶纤维浸入到KOH/DMSO溶液中,再在室温下搅拌反应5~7天,得到芳纶纳米纤维溶液;
二、在室温和搅拌条件下将壳聚糖加入到芳纶纳米纤维溶液中,得到芳纶纳米纤维/壳聚糖混合液;
三、将芳纶纳米纤维/壳聚糖混合液放入容器中静置4h~12h,芳纶纳米纤维/壳聚糖混合液的表层形成一层膜状凝胶;
四、在膜状凝胶上方加入去离子水,静置3天~8天,再倾倒出容器中上层的去离子水,得到壳聚糖/芳纶纳米纤维复合水凝胶。
本发明的优点:
一、本发明制备的壳聚糖/芳纶纳米纤维复合水凝胶的整体性、成型性优于边加水边搅拌的传统制备出的水凝胶,同时还能保持材料的性能;
二、本发明通过静置方法制备的壳聚糖/芳纶纳米纤维复合水凝胶能够自成一体,不影响水凝胶的性能同时又保持材料的柔软性。
本发明可获得壳聚糖/芳纶纳米纤维复合水凝胶。
附图说明
图1为采用现有边搅拌边加水的方法制备出的水凝胶的数码照片图;
图2为实施例一步骤三中芳纶纳米纤维/壳聚糖混合液放入容器中静置4h后的数码照片图,图中1为膜状凝胶,2为芳纶纳米纤维/壳聚糖混合液;
图3为实施例一步骤四中在膜状凝胶上方加入去离子水的原理示意图;
图4为实施例一步骤四中加入去离子水后静置过程中的数码照片图,图中1为去离子水,2为壳聚糖/芳纶纳米纤维复合水凝胶,3为芳纶纳米纤维/壳聚糖混合液;
图5为实施例一步骤四中在膜状凝胶上方加入去离子水,静置3天后得到的壳聚糖/芳纶纳米纤维复合水凝胶的数码照片图,图中1为去离子水,2为壳聚糖/芳纶纳米纤维复合水凝胶;
图6为实施例二步骤三中芳纶纳米纤维/壳聚糖混合液放入容器中静置4h后的数码照片图,图中1为膜状凝胶,2为芳纶纳米纤维/壳聚糖混合液;
图7为实施例二步骤四中在膜状凝胶上方加入去离子水,静置3天后得到的壳聚糖/芳纶纳米纤维复合水凝胶的数码照片图,图中1为去离子水,2为壳聚糖/芳纶纳米纤维复合水凝胶;
图8为实施例三制备的复合气凝胶的扫描电镜图;
图9为实施例四制备的复合气凝胶的扫描电镜图。
具体实施方式
下面结合实施例对本发明作进一步的描述:但本发明的范围不限于这些实施例。
具体实施方式一:本实施方式是一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,是按以下步骤完成的:
一、制备芳纶纳米纤维溶液:
将芳纶纤维浸入到KOH/DMSO溶液中,再在室温下搅拌反应5~7天,得到芳纶纳米纤维溶液;
二、在室温和搅拌条件下将壳聚糖加入到芳纶纳米纤维溶液中,得到芳纶纳米纤维/壳聚糖混合液;
三、将芳纶纳米纤维/壳聚糖混合液放入容器中静置4h~12h,芳纶纳米纤维/壳聚糖混合液的表层形成一层膜状凝胶;
四、在膜状凝胶上方加入去离子水,静置3天~8天,再倾倒出容器中上层的去离子水,得到壳聚糖/芳纶纳米纤维复合水凝胶。
本实施方式的优点:
一、本实施方式制备的壳聚糖/芳纶纳米纤维复合水凝胶的整体性、成型性优于边加水边搅拌的传统制备出的水凝胶,同时还能保持材料的性能;
二、本实施方式通过静置方法制备的壳聚糖/芳纶纳米纤维复合水凝胶能够自成一体,不影响水凝胶的性能同时又保持材料的柔软性。
本实施方式可获得壳聚糖/芳纶纳米纤维复合水凝胶。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中所述的KOH/DMSO(二甲基亚砜)溶液中KOH的浓度为1mg/mL~3mg/mL。其它步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的芳纶纳米纤维溶液的浓度为1mg/mL~10mg/mL。其它步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一中所述的搅拌速度为200r/min~1500r/min。其它步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤一中所述的芳纶纤维为Kevlar-29。其它步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤二中所述的搅拌速度为500r/min~2000r/min。其它步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤二中所述的芳纶纳米纤维/壳聚糖混合液中芳纶纳米纤维与壳聚糖的质量比为(1~5):1。其它步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤三中将芳纶纳米纤维/壳聚糖混合液放入容器中静置4h~8h,芳纶纳米纤维/壳聚糖混合液的表层形成一层膜状凝胶。其它步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤四中在膜状凝胶上方加入去离子水,静置3天~4天,再倾倒出容器中上层的去离子水,得到壳聚糖/芳纶纳米纤维复合水凝胶;步骤四中所述的去离子水与步骤三中所述的芳纶纳米纤维/壳聚糖混合液的体积比为(5~30):(10~30)。其它步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:将步骤四中得到的壳聚糖/芳纶纳米纤维复合水凝胶进行冷冻干燥,得到复合气凝胶;所述的冷冻干燥的温度为-50℃~80℃,冷冻干燥的时间为24h~72h。其它步骤与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法是按以下步骤完成的:
一、制备芳纶纳米纤维溶液:
将5g芳纶纤维浸入到KOH/DMSO溶液中,再在室温和搅拌速度为1200r/min的条件下搅拌反应7天,得到浓度为10mg/mL的芳纶纳米纤维溶液;
步骤一中所述的KOH/DMSO溶液中KOH的浓度为2mg/mL;
步骤一中所述的芳纶纤维为Kevlar-29;
二、在室温和搅拌速度为1500r/min的条件下将0.2g壳聚糖加入到20mL芳纶纳米纤维溶液中,得到芳纶纳米纤维/壳聚糖混合液;
三、室温下,将步骤二得到的芳纶纳米纤维/壳聚糖混合液放入50mL的容器中敞口静置4h,芳纶纳米纤维/壳聚糖混合液的表层形成一层膜状凝胶,见图2所示;
四、在膜状凝胶上方缓慢加入15mL去离子水,静置3天,再倾倒出容器中上层的去离子水,得到壳聚糖/芳纶纳米纤维复合水凝胶,见图4所示。
实施例一中由于芳纶纳米纤维水凝胶并不能隔绝水分子,并且DMSO与水也是互溶的,水会逐渐渗透到溶液内部,芳纶纳米纤维得以析出,其原理示意图与实物数码照片图见图2~图3所示。
图2为实施例一步骤三中芳纶纳米纤维/壳聚糖混合液放入容器中静置4h后的数码照片图,图中1为膜状凝胶,2为芳纶纳米纤维/壳聚糖混合液;
图3为实施例一步骤四中在膜状凝胶上方加入去离子水的原理示意图;
图4为实施例一步骤四中加入去离子水后静置过程中的数码照片图,图中1为去离子水,2为壳聚糖/芳纶纳米纤维复合水凝胶,3为芳纶纳米纤维/壳聚糖混合液;
图5为实施例一步骤四中在膜状凝胶上方加入去离子水,静置3天后得到的壳聚糖/芳纶纳米纤维复合水凝胶的数码照片图,图中1为去离子水,2为壳聚糖/芳纶纳米纤维复合水凝胶;
从图5可知,实施例一制备的壳聚糖/芳纶纳米纤维复合水凝胶保持着一种紧密结合的状态。
由此可见,实施例一通过静置的方法来制备的壳聚糖/芳纶纳米纤维复合水凝胶可以得到结构紧密、均匀的、自成一体的胶体,并且不会影响其性能。而通过传统方法边加水边搅拌的方法来制备的复合水凝胶得到的即是散落的、不成形状的、不均匀的胶体,甚至还会影响其性能。通过静置的方法来制备壳聚糖/芳纶纳米纤维复合水凝胶所得到的水凝胶要明显优于通过传统边加水边搅拌的方法。
实施例二:一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法是按以下步骤完成的:
一、制备芳纶纳米纤维溶液:
将4g芳纶纤维浸入到KOH/DMSO溶液中,再在室温和搅拌速度为1200r/min的条件下搅拌反应7天,得到浓度为8mg/mL的芳纶纳米纤维溶液;
步骤一中所述的KOH/DMSO溶液中KOH的浓度为2mg/mL;
步骤一中所述的芳纶纤维为Kevlar-29;
二、在室温和搅拌速度为1500r/min的条件下将0.2g壳聚糖加入到20mL芳纶纳米纤维溶液中,得到芳纶纳米纤维/壳聚糖混合液;
三、室温下,将步骤二得到的芳纶纳米纤维/壳聚糖混合液放入50mL的容器中敞口静置6h,芳纶纳米纤维/壳聚糖混合液的表层形成一层膜状凝胶,见图5所示;
四、在膜状凝胶上方缓慢加入15mL去离子水,静置5天,再倾倒出容器中上层的去离子水,得到壳聚糖/芳纶纳米纤维复合水凝胶,见图6所示。
由于芳纶纳米纤维水凝胶并不能隔绝水分子,并且DMSO与水也是互溶的,水会逐渐渗透到溶液内部,芳纶纳米纤维得以析出,其原理示意图与如图3所示。
图6为实施例二步骤三中芳纶纳米纤维/壳聚糖混合液放入容器中静置4h后的数码照片图,图中1为膜状凝胶,2为芳纶纳米纤维/壳聚糖混合液;
图7为实施例二步骤四中在膜状凝胶上方加入去离子水,静置3天后得到的壳聚糖/芳纶纳米纤维复合水凝胶的数码照片图,图中1为去离子水,2为壳聚糖/芳纶纳米纤维复合水凝胶。
从图7可知,实施例二制备的壳聚糖/芳纶纳米纤维复合水凝胶保持着一种紧密结合的状态。
由此可见,实施例二通过静置的方法来制备的壳聚糖/芳纶纳米纤维复合水凝胶可以得到结构紧密、均匀的、自成一体的胶体,并且不会影响其性能。而通过传统方法边加水边搅拌的方法来制备复合水凝胶得到的即是散落的、不成形状的、不均匀的胶体,甚至还会影响其性能。通过静置的方法来制备壳聚糖/芳纶纳米纤维复合水凝胶所得到的水凝胶要明显优于通过传统边加水边搅拌的方法。
将实施例一、实施例二制备的壳聚糖/芳纶纳米纤维复合水凝胶的含水率数据列于表1。
表1
样品 含水率(100%)
实施例一 11.54
实施例二 15.27
实施例三:
将实施例一制备的壳聚糖/芳纶纳米纤维复合水凝胶进行冷冻干燥,得到复合气凝胶;所述的冷冻干燥的温度为-55℃,冷冻干燥的时间为48h。
图8为实施例三制备的复合气凝胶的扫描电镜图。
从图8可知,实施例一制备的壳聚糖/芳纶纳米纤维复合水凝胶经过冷冻干燥后形成的复合气凝胶的结构保持着孔状结构。
实施例四:
将实施例二制备的壳聚糖/芳纶纳米纤维复合水凝胶进行冷冻干燥,得到复合气凝胶;;所述的冷冻干燥的温度为-55℃,冷冻干燥的时间为48h。
图9为实施例四制备的复合气凝胶的扫描电镜图。
从图9可知,实施例二制备的壳聚糖/芳纶纳米纤维复合水凝胶经过冷冻干燥后形成的复合气凝胶的结构保持着孔状结构。

Claims (10)

1.一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,其特征在于一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法是按以下步骤完成的:
一、制备芳纶纳米纤维溶液:
将芳纶纤维浸入到KOH/DMSO溶液中,再在室温下搅拌反应5~7天,得到芳纶纳米纤维溶液;
二、在室温和搅拌条件下将壳聚糖加入到芳纶纳米纤维溶液中,得到芳纶纳米纤维/壳聚糖混合液;
三、将芳纶纳米纤维/壳聚糖混合液放入容器中静置4h~12h,芳纶纳米纤维/壳聚糖混合液的表层形成一层膜状凝胶;
四、在膜状凝胶上方加入去离子水,静置3天~8天,再倾倒出容器中上层的去离子水,得到壳聚糖/芳纶纳米纤维复合水凝胶。
2.根据权利要求1所述的一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,其特征在于步骤一中所述的KOH/DMSO溶液中KOH的浓度为1mg/mL~3mg/mL。
3.根据权利要求1所述的一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,其特征在于步骤一中所述的芳纶纳米纤维溶液的浓度为1mg/mL~10mg/mL。
4.根据权利要求1所述的一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,其特征在于步骤一中所述的搅拌速度为200r/min~1500r/min。
5.根据权利要求1所述的一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,其特征在于步骤一中所述的芳纶纤维为Kevlar-29。
6.根据权利要求1所述的一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,其特征在于步骤二中所述的搅拌速度为500r/min~2000r/min。
7.根据权利要求1所述的一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,其特征在于步骤二中所述的芳纶纳米纤维/壳聚糖混合液中芳纶纳米纤维与壳聚糖的质量比为(1~5):1。
8.根据权利要求1所述的一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,其特征在于步骤三中将芳纶纳米纤维/壳聚糖混合液放入容器中静置4h~8h,芳纶纳米纤维/壳聚糖混合液的表层形成一层膜状凝胶。
9.根据权利要求1所述的一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,其特征在于步骤四中在膜状凝胶上方加入去离子水,静置3天~4天,再倾倒出容器中上层的去离子水,得到壳聚糖/芳纶纳米纤维复合水凝胶;步骤四中所述的去离子水与步骤三中所述的芳纶纳米纤维/壳聚糖混合液的体积比为(5~30):(10~30)。
10.根据权利要求1所述的一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法,其特征在于将步骤四中得到的壳聚糖/芳纶纳米纤维复合水凝胶进行冷冻干燥,得到复合气凝胶;所述的冷冻干燥的温度为-50℃~80℃,冷冻干燥的时间为24h~72h。
CN202011087727.XA 2020-10-12 2020-10-12 一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法 Active CN112250890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011087727.XA CN112250890B (zh) 2020-10-12 2020-10-12 一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011087727.XA CN112250890B (zh) 2020-10-12 2020-10-12 一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法

Publications (2)

Publication Number Publication Date
CN112250890A true CN112250890A (zh) 2021-01-22
CN112250890B CN112250890B (zh) 2022-05-13

Family

ID=74241813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011087727.XA Active CN112250890B (zh) 2020-10-12 2020-10-12 一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法

Country Status (1)

Country Link
CN (1) CN112250890B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278191A (zh) * 2021-05-28 2021-08-20 陕西科技大学 一种芳纶纳米纤维基复合气凝胶及其制备方法
CN116376058A (zh) * 2023-03-31 2023-07-04 陕西科技大学 一种芳纶纳米纤维导电水凝胶及制备方法和应用
CN116574331A (zh) * 2023-05-31 2023-08-11 立达超微科技(安徽青阳)有限公司 一种改性熔喷聚丙烯及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011084326A2 (en) * 2009-12-21 2011-07-14 Resodyn Corporation Hemostatic agents and wound dressings
CN102961260A (zh) * 2012-11-29 2013-03-13 哈尔滨欧替药业有限公司 承载有效组分的膨胀载体及其应用
CN108699259A (zh) * 2015-12-30 2018-10-23 密执安州立大学董事会 含anf的凝胶和纳米复合材料
US20190031835A1 (en) * 2015-12-04 2019-01-31 Colorado State University Research Foundation Thermoplastic elastomer hydrogels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011084326A2 (en) * 2009-12-21 2011-07-14 Resodyn Corporation Hemostatic agents and wound dressings
CN102961260A (zh) * 2012-11-29 2013-03-13 哈尔滨欧替药业有限公司 承载有效组分的膨胀载体及其应用
US20190031835A1 (en) * 2015-12-04 2019-01-31 Colorado State University Research Foundation Thermoplastic elastomer hydrogels
CN108699259A (zh) * 2015-12-30 2018-10-23 密执安州立大学董事会 含anf的凝胶和纳米复合材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUNYING TONG等: "Solution-blown core–shell hydrogel nanofibers for bovine serum albumin affinity adsorption", 《RSC ADVANCES》 *
申炎仃等: "高分子水凝胶的研究进展及在纺织上的应用", 《印染》 *
金苗苗: "壳聚糖/芳纶纳米纤维复合气凝胶的制备与性能研究", 《万方学位论文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278191A (zh) * 2021-05-28 2021-08-20 陕西科技大学 一种芳纶纳米纤维基复合气凝胶及其制备方法
CN116376058A (zh) * 2023-03-31 2023-07-04 陕西科技大学 一种芳纶纳米纤维导电水凝胶及制备方法和应用
CN116574331A (zh) * 2023-05-31 2023-08-11 立达超微科技(安徽青阳)有限公司 一种改性熔喷聚丙烯及其制备方法

Also Published As

Publication number Publication date
CN112250890B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
CN112250890B (zh) 一种静置法制备壳聚糖/芳纶纳米纤维复合水凝胶的方法
CN109734842B (zh) 一种透明导电柔性细菌纤维素复合材料及其制备方法
CN111138631B (zh) 一种高强度高阻隔tpu复合材料的制备方法
DE60114776T2 (de) Verfahren zur herstellung einer polymerelektrolytmembran
Wang et al. Preparation of a novel sodium alginate/polyvinyl formal composite with a double crosslinking interpenetrating network for multifunctional biomedical application
Zhou et al. Flexible and tough cellulose nanocrystal/polycaprolactone hybrid aerogel based on the strategy of macromolecule cross-linking via click chemistry
CN105153438A (zh) 高强度高溶胀性纳米纤维素/聚乙烯醇复合水凝胶的制备方法
CN113278191A (zh) 一种芳纶纳米纤维基复合气凝胶及其制备方法
Kumar et al. Development of pectin based hydrogel membranes for biomedical applications
CN112957525B (zh) 一种纳米羟基磷灰石/丝素蛋白/纤维素复合气凝胶及其制备方法
CN110218339B (zh) 串珠状纳米纤维素微纤维、制备方法及其在复合水凝胶制备中的应用
CN102206342A (zh) 导电聚合物及其合成方法、表面覆盖有所述导电聚合物的电活性电极
CN111228213A (zh) 一种生物相容性纳米复合水凝胶的制备方法及应用
Yu et al. Conjugation of CMCS to silk fibroin for tuning mechanical and swelling behaviors of fibroin hydrogels
CN115232465A (zh) 一种可在海水中实现自修复的强韧自修复材料的制备方法
CN113248743B (zh) 一种生物相容的可降解的三维纤维素凝胶及其制备方法和应用
CN114396869A (zh) 一种极端环境耐受型高灵敏度应变传感器的制备方法
KR101862457B1 (ko) 다공성 실리카 입자에 의해 기계적 강도가 향상된 하이브리드 하이드로겔 및 이의 제조 방법
CN109880346B (zh) 一种有机-无机复合导电凝胶的制备方法
CN115449118B (zh) 一种轻质耐磨聚氨酯鞋底及其制备方法
CN114853952B (zh) 一种超拉伸、自修复纳米纤维素凝胶及其制备方法
CN114957728B (zh) 一种双网络胶原蛋白基超分子水凝胶及其制备方法
Zhang et al. Dynameric Collagen Self‐Healing Membranes with High Mechanical Strength for Effective Cell Growth Applications
CN110684175B (zh) 高透光率的超韧室温本征自修复弹性体材料及其制备方法
CN112521626A (zh) 一种基于海藻酸盐的高强度自愈合多层水凝胶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant