CN112246253A - 一种Co15Fe3S16纳米点状化合物及其制备方法 - Google Patents

一种Co15Fe3S16纳米点状化合物及其制备方法 Download PDF

Info

Publication number
CN112246253A
CN112246253A CN202011198748.9A CN202011198748A CN112246253A CN 112246253 A CN112246253 A CN 112246253A CN 202011198748 A CN202011198748 A CN 202011198748A CN 112246253 A CN112246253 A CN 112246253A
Authority
CN
China
Prior art keywords
quartz tube
raw materials
sample
compound
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011198748.9A
Other languages
English (en)
Other versions
CN112246253B (zh
Inventor
林志萍
王宗鹏
钟文武
申士杰
张欢欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN202011198748.9A priority Critical patent/CN112246253B/zh
Publication of CN112246253A publication Critical patent/CN112246253A/zh
Application granted granted Critical
Publication of CN112246253B publication Critical patent/CN112246253B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种Co15Fe3S16纳米点状化合物的制备方法,该方法为:称取原料和球磨处理;制备前驱体;液氨处理;水热法处理。本发明还公开一种Co15Fe3S16纳米点状化合物,其采用如上所述的方法制备而成。

Description

一种Co15Fe3S16纳米点状化合物及其制备方法
技术领域
本发明涉及一种制备Co15Fe3S16纳米点的方法及利用该方法制备的化合物。
背景技术
近年来,通过电催化的方法获得绿色能源氢能是当今世界的一个核心话题。析氧反应是限制电催化分解水反应速率的关键步骤。基于钴硫化合物的析氧电催化剂由于不含贵金属且地球储量丰富受到广泛的关注。目前已经报道的钴硫化合物电催化剂主要是通过水热的方法制备得到。由于水热法制备的样品颗粒较大,导致电化学活性面积有限。同时钴硫化合物本身催化活性仍未达到广泛应用的要求。因此,如何提高比表面积、增大电化学活性面积,并提高钴硫化合物电催化剂的催化析氧性能成为一个关键问题。
发明内容
本发明的目的在于公开一种具有优异电催化析氧活性的Co15Fe3S16纳米点状化合物。本发明还提供一种制备Co15Fe3S16纳米点状电催化剂的方法。
本发明的实现包括以下步骤:将钴粉、铁粉和硫粉按摩尔比5:1:6的比例称取,原料的总量为0.15摩尔,将称量好的原料密封在球磨罐中,球磨两小时使原料混合均匀;将混合好的原料转移到手套箱内,加入0.0375摩尔的钾块,密封在石英管内,并充入0.2个大气压,将石英管加热到900℃,在该温度下保持2天,将自然冷却后的样品重新研磨均匀,密封在石英管内,将石英管加热到950℃,在该温度下保持2天,石英管自然冷却后,将样品研磨均匀后即得到前驱体;将400毫克的前驱体置于石英管内,利用封管设备缓慢地将石英管抽成真空后,同时用液氮对石英管进行冷却,缓慢地将8毫升的液氨引入到石英管内,摇晃液氨使得样品与液氨充分混合均匀,反应10分钟后,将液氨缓慢抽干;将所得到的样品转移到水热釜内衬中,加入30毫升的氨水,10毫升的乙醇,混合均匀,将混合溶液转移至超声波清洗器中,超声12小时,离心清洗后得到Co15Fe3S16纳米点状化合物。
与现有技术相比,本发明所述的样品制备方法具有以下的优点:所制备的Co15Fe3S16化合物体积非常小,直径在3~5nm之间,具有纳米点形貌;所制备的Co15Fe3S16化合物电催化析氧性能优异,在10 mA/cm-2的电流密度下具有265 mV的过电位。
附图说明
图1为按照对比例和实施例的方法制备的Co15Fe3S16化合物的XRD图谱。
图2为按照对比例的方法制备的Co15Fe3S16化合物的SEM图谱。
图3为按照实施例的方法制备的Co15Fe3S16纳米点状化合物的TEM图谱。
图4为按照对比例和实施例的方法制备的Co15Fe3S16化合物的过电位曲线图。
具体实施方式
下面通过具体实施例对本发明做出进一步的具体说明,但本发明并不局限于下述实例。
实施例:将钴粉、铁粉和硫粉按摩尔比5:1:6的比例称取,原料的总量为0.15摩尔,将称量好的原料密封在球磨罐中,球磨两小时使原料混合均匀;将混合好的原料转移到手套箱内,加入0.0375摩尔的钾块,密封在石英管内,并充入0.2个大气压,将石英管加热到900℃,在该温度下保持2天,将自然冷却后的样品重新研磨均匀,密封在石英管内,将石英管加热到950℃,在该温度下保持2天,石英管自然冷却后,将样品研磨均匀后即得到前驱体;将400毫克的前驱体置于石英管内,利用封管设备缓慢地将石英管抽成真空后,同时用液氮对石英管进行冷却,缓慢地将8毫升的液氨引入到石英管内,摇晃液氨使得样品与液氨充分混合均匀,反应10分钟后,将液氨缓慢抽干;将所得到的样品转移到水热釜内衬中,加入30毫升的氨水,10毫升的乙醇,混合均匀,将混合溶液转移至超声波清洗器中,超声12小时,离心清洗后得到Co15Fe3S16纳米点状化合物。
为了说明本实施例的技术效果,按照以下步骤制备样品作为本实施例的对比例:配置30毫升的0.033摩尔每升的六水硝酸钴溶液,加入1毫升的乙二胺,得到混合溶液;配置10毫升的0.1摩尔每升的硫脲溶液缓慢加入混合溶液中,搅拌30分钟;加入0.115克的铁粉,将溶液转移至高压反应釜的内衬中,在180 ℃下保持12小时后自然冷却,离心清洗后得到对比例的样品。
为了说明本实施例的技术效果,对按实施例和对比例的样品进行了表征。图1是按对比例和实施例的Co15Fe3S16化合物的XRD图谱,可以看到对比例的样品结晶性好,且衍射峰与Co9S8(PDF#65-6801)的标准卡片的峰一一对应,没有杂相。实施例样品的衍射峰的强度明显变弱,只能观察到较强衍射峰,且衍射峰宽化,说明实施例样品的颗粒明显小于对比例样品。图2是按对比例的Co15Fe3S16化合物的SEM图谱,可以看到颗粒的长度均在微米级别。图3是按实施例的Co15Fe3S16纳米点状化合物的TEM图谱,可以看到样品是典型的纳米点形貌,体积非常小,直径在3~5 nm之间。图4是按对比例和实施例的Co15Fe3S16化合物的过电位曲线图,可以看到实施例的在10 mA/cm2 电流密度下的过电位为265 mV,明显优于对比例的384mV的过电位。本发明还公开了一种Co15Fe3S16纳米点状电催化剂,其采用如实施例所述的方法制备而成。
需要声明的是,以上所述的仅是本发明的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的基本构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (3)

1.一种制备Co15Fe3S16纳米点状化合物的方法,包括如下步骤:将钴粉、铁粉和硫粉按摩尔比5:1:6的比例称取,原料的总量为0.15摩尔,将称量好的原料密封在球磨罐中,球磨两小时使原料混合均匀;将混合好的原料转移到手套箱内,加入0.0375摩尔的钾块,密封在石英管内,并充入0.2个大气压,将石英管加热到900℃,在该温度下保持2天,将自然冷却后的样品重新研磨均匀,密封在石英管内,将石英管加热到950℃,在该温度下保持2天,石英管自然冷却后,将样品研磨均匀后即得到前驱体;将400毫克的前驱体置于石英管内,利用封管设备缓慢地将石英管抽成真空后,同时用液氮对石英管进行冷却,缓慢地将8毫升的液氨引入到石英管内,摇晃液氨使得样品与液氨充分混合均匀,反应10分钟后,将液氨缓慢抽干;将所得到的样品转移到水热釜内衬中,加入30毫升的氨水,10毫升的乙醇,混合均匀,将混合溶液转移至超声波清洗器中,超声12小时,离心清洗后得到Co15Fe3S16纳米点状化合物。
2.一种Co15Fe3S16纳米点状化合物,其特征在于,采用如权利要求1中的方法制备而成。
3.一种如权利要求2所述的Co15Fe3S16纳米点状化合物用于电催化析氧领域。
CN202011198748.9A 2020-10-31 2020-10-31 一种Co15Fe3S16纳米点状化合物及其制备方法 Expired - Fee Related CN112246253B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011198748.9A CN112246253B (zh) 2020-10-31 2020-10-31 一种Co15Fe3S16纳米点状化合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011198748.9A CN112246253B (zh) 2020-10-31 2020-10-31 一种Co15Fe3S16纳米点状化合物及其制备方法

Publications (2)

Publication Number Publication Date
CN112246253A true CN112246253A (zh) 2021-01-22
CN112246253B CN112246253B (zh) 2022-05-24

Family

ID=74267171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011198748.9A Expired - Fee Related CN112246253B (zh) 2020-10-31 2020-10-31 一种Co15Fe3S16纳米点状化合物及其制备方法

Country Status (1)

Country Link
CN (1) CN112246253B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804038A (zh) * 2022-06-09 2022-07-29 台州学院 一种Co19NiSe20量子点化合物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094376A (zh) * 1993-04-26 1994-11-02 中国石化齐鲁石油化工公司 钴-钼系一氧化碳变换催化剂的硫化方法
CN105776353A (zh) * 2016-03-29 2016-07-20 中国石油大学(北京) 硫铁化合物及其制备方法
CN107083501A (zh) * 2017-05-19 2017-08-22 广东省钢铁研究所 一种铁镍钼合金粉体的制备方法
CN109999865A (zh) * 2019-05-15 2019-07-12 台州学院 一种镍磷硫硒电催化剂的制备方法
CN111686735A (zh) * 2020-06-30 2020-09-22 中国石油大学(华东) 一种载体煤改性制备高分散型煤/重油加氢共炼催化剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094376A (zh) * 1993-04-26 1994-11-02 中国石化齐鲁石油化工公司 钴-钼系一氧化碳变换催化剂的硫化方法
CN105776353A (zh) * 2016-03-29 2016-07-20 中国石油大学(北京) 硫铁化合物及其制备方法
CN107083501A (zh) * 2017-05-19 2017-08-22 广东省钢铁研究所 一种铁镍钼合金粉体的制备方法
CN109999865A (zh) * 2019-05-15 2019-07-12 台州学院 一种镍磷硫硒电催化剂的制备方法
CN111686735A (zh) * 2020-06-30 2020-09-22 中国石油大学(华东) 一种载体煤改性制备高分散型煤/重油加氢共炼催化剂

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804038A (zh) * 2022-06-09 2022-07-29 台州学院 一种Co19NiSe20量子点化合物及其制备方法
CN114804038B (zh) * 2022-06-09 2023-08-25 台州学院 一种Co19NiSe20量子点化合物及其制备方法

Also Published As

Publication number Publication date
CN112246253B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
CN101264888B (zh) 一种纳米级碳化钨粉的制备方法
US20210316286A1 (en) Core-shell structured nise2@nc electrocatalytic material and preparation method and use thereof
CN112058296B (zh) 一种碳化木头负载钴、氮共掺杂碳纳米管复合材料的制备方法及应用
CN113151856B (zh) 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用
CN108212157B (zh) 金属硼化物水裂解催化剂、制备方法及其在电催化水裂解方面的应用
Zhang et al. Heterointerface enhanced NiFe LDH/V–Co 4 N electrocatalysts for the oxygen evolution reaction
CN110327943B (zh) 一种Cu-Mo-S复合材料及其制备方法和应用
CN111495407B (zh) 一种制备Co/MnO/氮掺杂碳复合电催化剂的方法
CN111036247B (zh) 一种钴铁氧化物-磷酸钴电催化析氧复合材料及其制备方法和应用
CN111036249A (zh) 一种FexP/Mn0.3Cd0.7S复合光催化剂及其制备方法与应用
CN111533103A (zh) 一种高压实磷酸铁及高压实磷酸铁锂的制备方法
CN112246253B (zh) 一种Co15Fe3S16纳米点状化合物及其制备方法
CN110560075A (zh) 一种核壳结构的纳米Cu-Eu合金催化剂及其制备方法和应用
CN106602083B (zh) 一种水热法合成Cu-N-C催化剂的方法
CN110013855B (zh) 高效氧化钴镍/氢氧化镍复合物电催化剂及其制备方法和应用
CN113318750B (zh) 流动相热催化氮气和氢气合成氨气的锂掺杂二维铁钼催化剂及其制备方法
Ingavale et al. In situ growth of copper oxide on MXene by combustion method for electrochemical ammonia production from nitrate
CN111137927A (zh) 一种钴酸镍铜纳米颗粒的制备方法及其在催化氨硼烷水解产氢上的应用
CN113716608A (zh) 一种二氧化钼-碳化钼复合材料及其制备方法和应用
CN114045522A (zh) NiMo6-S@HCS纳米复合材料、制备方法及电催化制氢中的应用
CN114452990A (zh) 过渡金属碳化物的制备方法和复合催化剂
CN111804313A (zh) Fe2O3@Co9S8双中空核壳结构纳米复合材料制备方法及其应用
CN107746057B (zh) 一种超细碳化钼的制备方法
CN114433868B (zh) 一种分支状CuAu合金纳米晶及其制备方法
CN109876813A (zh) 一种铜锌复合催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220524

CF01 Termination of patent right due to non-payment of annual fee