CN114804038A - 一种Co19NiSe20量子点化合物及其制备方法 - Google Patents

一种Co19NiSe20量子点化合物及其制备方法 Download PDF

Info

Publication number
CN114804038A
CN114804038A CN202210648043.5A CN202210648043A CN114804038A CN 114804038 A CN114804038 A CN 114804038A CN 202210648043 A CN202210648043 A CN 202210648043A CN 114804038 A CN114804038 A CN 114804038A
Authority
CN
China
Prior art keywords
quartz tube
nise
powder
precursor
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210648043.5A
Other languages
English (en)
Other versions
CN114804038B (zh
Inventor
王宗鹏
林志萍
钟文武
张欢欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN202210648043.5A priority Critical patent/CN114804038B/zh
Publication of CN114804038A publication Critical patent/CN114804038A/zh
Application granted granted Critical
Publication of CN114804038B publication Critical patent/CN114804038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种Co19NiSe20量子点化合物的制备方法,该方法为:制备前驱体;乙二胺处理;超声处理。本发明还公开一种Co19NiSe20量子点化合物,其采用如上所述的方法制备而成。

Description

一种Co19NiSe20量子点化合物及其制备方法
技术领域
本发明涉及一种制备Co19NiSe20量子点化合物的方法及利用该方法制备的化合物。
技术背景
氢能作为一种绿色可持续能源,由于产物无污染,对环境友好等特点受到大家的广泛关注。电解水产生氢气是一种有效的获得氢能的途径,而电催化剂能很好地促进电催化产氢过程。钴硒化合物是一类重要的析氢电催化剂,是替代贵金属电催化剂的有利竞争者。目前报道的钴硒化合物主要是采用水热的方式合成,制备得到的样品相对颗粒较大,比表面积小,从而限制其电化学活性位点的数量。因此,如何提高钴硒化合物的比表面积,进而提高化合物的催化活性位点的数量和催化性能,是促进钴硒电催化剂在工业领域上广泛运用的关键问题。
发明内容
本发明的目的在于公开一种具有优异电催化析氢活性的Co19NiSe20量子点化合物。本发明还提供一种制备Co19NiSe20量子点电催化剂的方法。
本发明的实现包括以下步骤:称量原子摩尔比为19:1:20的Co粉,Ni粉和Se粉,三种粉末的总摩尔数为0.1摩尔;在手套箱内用研钵将这三种粉末研磨半小时,使得这三种粉末混合均匀;将粉末倒入直径为10毫米的不锈钢模具中,用压片机将粉末压制成为直径为10毫米的圆片,将圆片分成三块,放入氧化铝坩埚中;称量0.055摩尔的K块,将其分成两块放入氧化铝坩埚中,将氧化铝坩埚密封在石英管内,在石英管内充入0.8个大气压的高纯氩气;将密封好的石英管放入马弗炉内,设置10小时升温到900摄氏度,在900摄氏度下保持5天后,随着马弗炉自然冷却,获得前驱体;将前驱体转移到手套箱内,用研钵将前驱体研磨成颗粒大小均匀的粉末,称取300毫克的前驱体放置在石英管内,在石英管内加入8毫升的乙二胺,用橡皮泥将石英管的口密封好,将石英管从手套箱内转移出来;将石英管放入微波超声清洗仪器进行8小时的超声,为了保证微波超声清洗仪器中的水温不升高,需要定时加入冰块进行冷却;将超声结束的石英管转移到手套箱的过渡舱内,取掉橡皮泥,利用过渡舱的机械泵将多余的乙二胺抽干;在石英管内加入30毫升的去离子水混合均匀,将混合溶液转移至超声波清洗器中,超声24小时,离心清洗后得到Co19NiSe20量子点化合物。
与现有技术相比,本发明所述的样品制备方法具有以下的优点:所制备的Co19NiSe20化合物体积非常小,直径在3~6 nm之间,具有量子点形貌;所制备的Co19NiSe20化合物电催化析氢性能优异,在10 mA/cm-2的电流密度下具有148 mV的过电位。
附图说明
图1为按照对比例和实施例的方法制备的Co19NiSe20化合物的XRD图谱。
图2为按照实施例的方法制备的Co19NiSe20量子点化合物的SEM图谱。
图3为按照实施例的方法制备的Co19NiSe20量子点化合物的TEM图谱。
图4为按照对比例和实施例的方法制备的Co19NiSe20化合物的过电位曲线图。
具体实施方式
下面通过具体实施例对本发明做出进一步的具体说明,但本发明并不局限于下述实例。
实施例:称量原子摩尔比为19:1:20的Co粉,Ni粉和Se粉,三种粉末的总摩尔数为0.1摩尔;在手套箱内用研钵将这三种粉末研磨半小时,使得这三种粉末混合均匀;将粉末倒入直径为10毫米的不锈钢模具中,用压片机将粉末压制成为直径为10毫米的圆片,将圆片分成三块,放入氧化铝坩埚中;称量0.055摩尔的K块,将其分成两块放入氧化铝坩埚中,将氧化铝坩埚密封在石英管内,在石英管内充入0.8个大气压的高纯氩气;将密封好的石英管放入马弗炉内,设置10小时升温到900摄氏度,在900摄氏度下保持5天后,随着马弗炉自然冷却,获得前驱体;将前驱体转移到手套箱内,用研钵将前驱体研磨成颗粒大小均匀的粉末,称取300毫克的前驱体放置在石英管内,在石英管内加入8毫升的乙二胺,用橡皮泥将石英管的口密封好,将石英管从手套箱内转移出来;将石英管放入微波超声清洗仪器进行8小时的超声,为了保证微波超声清洗仪器中的水温不升高,需要定时加入冰块进行冷却;将超声结束的石英管转移到手套箱的过渡舱内,取掉橡皮泥,利用过渡舱的机械泵将多余的乙二胺抽干;在石英管内加入30毫升的去离子水混合均匀,将混合溶液转移至超声波清洗器中,超声24小时,离心清洗后得到Co19NiSe20量子点化合物。
为了说明本实施例的技术效果,按照以下步骤制备样品作为本实施例的对比例:称量原子摩尔比为19:1:20的Co粉,Ni粉和Se粉,三种粉末的总摩尔数为0.1摩尔;在手套箱内用研钵将这三种粉末研磨半小时,使得这三种粉末混合均匀;将粉末倒入直径为10毫米的不锈钢模具中,用压片机将粉末压制成为直径为10毫米的圆片,将圆片分成三块,放入氧化铝坩埚中;称量0.055摩尔的K块,将其分成两块放入氧化铝坩埚中,将氧化铝坩埚密封在石英管内,在石英管内充入0.8个大气压的高纯氩气;将密封好的石英管放入马弗炉内,设置10小时升温到900摄氏度,在900摄氏度下保持5天后,随着马弗炉自然冷却,获得前驱体;将前驱体转移到手套箱内,用研钵将前驱体研磨成颗粒大小均匀的粉末,称取300毫克的前驱体放置在石英管内,在石英管内加入30毫升的饱和氢氧化钠溶液混合均匀,将混合溶液转移至超声波清洗器中,超声24小时,离心清洗后得到Co19NiSe20量子点化合物。
为了说明本实施例的技术效果,对按实施例和对比例的样品进行了表征。图1是按对比例和实施例的Co19NiSe20化合物的XRD图谱,可以看到对比例的样品结晶性好,且衍射峰与四方结构CoSe的(001)、(101)、(111)、(112)、(003)和(211)特征峰一一对应,没有杂相。实施例样品的衍射峰的强度明显变弱,且衍射峰宽化,说明实施例样品的颗粒明显小于对比例样品。图2是按对比例的Co19NiSe20化合物的SEM图谱,可以看到样品呈现出薄片状,尺寸均在纳米级别。图3是按实施例的Co19NiSe20量子点化合物的TEM图谱,可以看到样品是典型的纳米点形貌,体积非常小,直径在3~6nm之间。图4是按对比例和实施例的Co19NiSe20化合物的过电位曲线图,可以看到实施例的在10 mA/cm2 电流密度下的过电位为148 mV,明显优于对比例的192 mV的过电位。本发明还公开了一种Co19NiSe20纳米点状电催化剂,其采用如实施例所述的方法制备而成。
需要声明的是,以上所述的仅是本发明的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的基本构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (3)

1.一种制备Co19NiSe20量子点化合物的方法,包括如下步骤:称量原子摩尔比为19:1:20的Co粉,Ni粉和Se粉,三种粉末的总摩尔数为0.1摩尔;在手套箱内用研钵将这三种粉末研磨半小时,使得这三种粉末混合均匀;将粉末倒入直径为10毫米的不锈钢模具中,用压片机将粉末压制成为直径为10毫米的圆片,将圆片分成三块,放入氧化铝坩埚中;称量0.055摩尔的K块,将其分成两块放入氧化铝坩埚中,将氧化铝坩埚密封在石英管内,在石英管内充入0.8个大气压的高纯氩气;将密封好的石英管放入马弗炉内,设置10小时升温到900摄氏度,在900摄氏度下保持5天后,随着马弗炉自然冷却,获得前驱体;将前驱体转移到手套箱内,用研钵将前驱体研磨成颗粒大小均匀的粉末,称取300毫克的前驱体放置在石英管内,在石英管内加入8毫升的乙二胺,用橡皮泥将石英管的口密封好,将石英管从手套箱内转移出来;将石英管放入微波超声清洗仪器进行8小时的超声,为了保证微波超声清洗仪器中的水温不升高,需要定时加入冰块进行冷却;将超声结束的石英管转移到手套箱的过渡舱内,取掉橡皮泥,利用过渡舱的机械泵将多余的乙二胺抽干;在石英管内加入30毫升的去离子水混合均匀,将混合溶液转移至超声波清洗器中,超声24小时,离心清洗后得到Co19NiSe20量子点化合物。
2.一种Co19NiSe20量子点化合物,其特征在于,采用如权利要求1中的方法制备而成。
3.一种如权利要求2所述的Co19NiSe20量子点化合物,其特征在于,用于电催化析氢领域。
CN202210648043.5A 2022-06-09 2022-06-09 一种Co19NiSe20量子点化合物及其制备方法 Active CN114804038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210648043.5A CN114804038B (zh) 2022-06-09 2022-06-09 一种Co19NiSe20量子点化合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210648043.5A CN114804038B (zh) 2022-06-09 2022-06-09 一种Co19NiSe20量子点化合物及其制备方法

Publications (2)

Publication Number Publication Date
CN114804038A true CN114804038A (zh) 2022-07-29
CN114804038B CN114804038B (zh) 2023-08-25

Family

ID=82521798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210648043.5A Active CN114804038B (zh) 2022-06-09 2022-06-09 一种Co19NiSe20量子点化合物及其制备方法

Country Status (1)

Country Link
CN (1) CN114804038B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277838A1 (en) * 2010-03-12 2011-11-17 The Regents Of The University Of California Photovoltaic Devices Employing Ternary Compound Nanoparticles
US20160333267A1 (en) * 2015-05-14 2016-11-17 National Tsing Hua University Quantum dot nanocrystal structure
WO2018015891A1 (en) * 2016-07-21 2018-01-25 Ecole Polytechnique Federale De Lausanne (Epfl) Nickel iron diselenide compound, process for the preparation thereof and its use as a catalyst for oxygen evolution reaction
US20180072947A1 (en) * 2016-09-12 2018-03-15 Nanoco Technologies Ltd. Solution-Phase Synthesis of Layered Transition Metal Dichalcogenide Nanoparticles
CN111205859A (zh) * 2020-01-19 2020-05-29 国家纳米科学中心 一种量子点及其制备方法
KR20200120530A (ko) * 2019-04-11 2020-10-21 덕산네오룩스 주식회사 Ⅲ­ⅴ계 양자점 및 이의 제조방법
CN112246253A (zh) * 2020-10-31 2021-01-22 台州学院 一种Co15Fe3S16纳米点状化合物及其制备方法
US20210340438A1 (en) * 2020-04-30 2021-11-04 National Tsing Hua University Composite quantum dot, method for preparing the same, and method for detecting metal ion using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277838A1 (en) * 2010-03-12 2011-11-17 The Regents Of The University Of California Photovoltaic Devices Employing Ternary Compound Nanoparticles
US20160333267A1 (en) * 2015-05-14 2016-11-17 National Tsing Hua University Quantum dot nanocrystal structure
WO2018015891A1 (en) * 2016-07-21 2018-01-25 Ecole Polytechnique Federale De Lausanne (Epfl) Nickel iron diselenide compound, process for the preparation thereof and its use as a catalyst for oxygen evolution reaction
US20180072947A1 (en) * 2016-09-12 2018-03-15 Nanoco Technologies Ltd. Solution-Phase Synthesis of Layered Transition Metal Dichalcogenide Nanoparticles
KR20200120530A (ko) * 2019-04-11 2020-10-21 덕산네오룩스 주식회사 Ⅲ­ⅴ계 양자점 및 이의 제조방법
CN111205859A (zh) * 2020-01-19 2020-05-29 国家纳米科学中心 一种量子点及其制备方法
US20210340438A1 (en) * 2020-04-30 2021-11-04 National Tsing Hua University Composite quantum dot, method for preparing the same, and method for detecting metal ion using the same
CN112246253A (zh) * 2020-10-31 2021-01-22 台州学院 一种Co15Fe3S16纳米点状化合物及其制备方法

Also Published As

Publication number Publication date
CN114804038B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
Zeng et al. Design strategies toward transition metal selenide-based catalysts for electrochemical water splitting
CN108212157B (zh) 金属硼化物水裂解催化剂、制备方法及其在电催化水裂解方面的应用
CN110787806B (zh) 一种具备异质结结构的全解水催化剂的制备方法
Meng et al. Recent advances in the application of phosphates and borates as electrocatalysts for water oxidation
CN112647094B (zh) 全pH电催化析氢的二硫化钼改性硫、钼共掺杂石墨相氮化碳异质结构材料及其制备方法
Zhang et al. Reversing Mg suppression effect on Co-site water oxidation of MgCo 2 O 4 based on vanadium-atom electronic affinity synergy with Mg sites toward electronic redistribution
CN113060770B (zh) 一种异质结CoO/CoS多孔纳米棒的制备方法及所得材料和应用
CN110681406B (zh) 一种氮磷掺杂碳纳米管@Mo/MoS2/MoP复合材料及其制备方法
CN108479791B (zh) 一种Co/Ni-MoO2复合电解水催化剂的制备方法
Zhang et al. Heterointerface enhanced NiFe LDH/V–Co 4 N electrocatalysts for the oxygen evolution reaction
CN109266892B (zh) 电解制氢用高强度长寿命多孔镍基固溶体的制备方法
Cao et al. A Co/CoO hybrid rooted on carbon cloth as an efficient electrocatalyst for the hydrogen evolution reaction in alkaline solution
CN113832492A (zh) 一种镍钴硫材料及制备方法和在电催化oer中的应用
CN111530483A (zh) 一种自支撑Ni掺杂WP2纳米片阵列电催化剂及其制备方法
CN107649165A (zh) 一种泡沫金属‑石墨烯复合衬底上的光催化薄膜及制备方法
CN111974398B (zh) 热致全重构的纳米线阵列及其制备方法和应用
CN114804038B (zh) 一种Co19NiSe20量子点化合物及其制备方法
CN112246253B (zh) 一种Co15Fe3S16纳米点状化合物及其制备方法
CN115094457B (zh) 一种原位生长型复合过渡金属氧化物析氧催化电极材料及其制备方法和应用
CN113649035A (zh) 一种磷化钼基多晶块体及其制备方法与应用
CN114561655A (zh) 一种稀土铈掺杂硫化镍/硫化铁异质结材料的制备方法和应用
CN111514911B (zh) 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN114807963A (zh) 一种铜掺杂硫化钴多孔纳米片/镍泡沫电极及其制备方法和应用
CN113862719A (zh) 一种过渡金属氧化物催化剂及其制备方法和应用
CN113755880A (zh) 一种钌酸盐材料在电催化析氢反应中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant