CN112242526A - 一种Mo掺杂VS4镁离子电池正极材料及其应用 - Google Patents

一种Mo掺杂VS4镁离子电池正极材料及其应用 Download PDF

Info

Publication number
CN112242526A
CN112242526A CN202011123676.1A CN202011123676A CN112242526A CN 112242526 A CN112242526 A CN 112242526A CN 202011123676 A CN202011123676 A CN 202011123676A CN 112242526 A CN112242526 A CN 112242526A
Authority
CN
China
Prior art keywords
ion battery
doped
magnesium ion
positive electrode
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011123676.1A
Other languages
English (en)
Other versions
CN112242526B (zh
Inventor
李镇江
丁诗琦
孙长龙
戴鑫
孟阿兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202011123676.1A priority Critical patent/CN112242526B/zh
Publication of CN112242526A publication Critical patent/CN112242526A/zh
Priority to NL2028807A priority patent/NL2028807B1/en
Application granted granted Critical
Publication of CN112242526B publication Critical patent/CN112242526B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/006Compounds containing, besides vanadium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种Mo掺杂VS4镁离子电池正极材料及其应用,属于电池材料技术领域。将偏钒酸铵和钼酸铵按适当的比例进行混合,再与过量的硫代乙酰胺溶液混合后,转移到反应釜中,在200℃进行水热反应4h;分别用去离子水和无水乙醇清洗3次,并通过离心收集产物;将所得产物真空干燥,得到Mo掺杂VS4正极材料。然后将Mo掺杂VS4正极材料与金属镁负极组装成扣式电池。本发明所制得的正极材料为空心花状微球形貌,并且使VS4层间距增大,而且形成了丰富的S空位。由其组装的镁离子电池,在保持较高的容量下,具有良好的循环稳定性和倍率特能,使其在镁离子电池中具有广阔的应用前景。

Description

一种Mo掺杂VS4镁离子电池正极材料及其应用
技术领域
本发明涉及电池材料技术领域,具体涉及一种Mo掺杂VS4镁离子电池正极材料及其应用。
背景技术
随着经济和科技的不断发展,人类对能源的需求日益增加,可再生能源在未来发展中极具发展前景。目前,二次电池作为新一代储能设备而广受关注,其中由于金属镁的还原电势低,理论体积容量高,成本低和环境友好等优势,使镁离子电池的发展备受关注,有望成为下一代离子电池。但是,二价镁离子的电荷密度大,并且正极材料还存在着较为严重的极化现象等问题,限制了镁离子电池的进一步发展。因此,开发出合适的镁离子电池正极材料从而获得具有更加优异电化学性能的镁离子电池仍是一项极具挑战性的工作。在已有的正极材料中,由于VS4独特的一维链状结构和具有有利于镁离子脱嵌的较大层间距,而使其有可能成为一种具有优异性能的镁离子电池正极材料。然而,其固有的低导电率限制了VS4的在镁离子电池中的应用。因此,通过对VS4加以修饰以提高其导电率,并应用在镁离子电池中是一项非常有意义的工作。
由于离子掺杂可以改变能带结构和局部电子分布,表现出增强的电子/离子的传导率或键极化,进而提高电化学稳定性和倍率性能,被视为提高电极材料电化学性能的有效途径。此外,离子掺杂会诱导产生丰富的空位,丰富的空位有助于缓解体积膨胀和衰减结构应力及应变,并有助于提供额外的吸附碱金属离子的活性位点(参见文献:High valenceMo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodiumbattery,Xiang Li et al.J.Mater.Chem.A,2018,6,1390-1396)。在众多金属阳离子中,Mo是一种常见的n型掺杂剂,可以增加活性材料中的自由电子的浓度(参见文献:UltrafineMo-doped SnO2 nanostructure and derivative Mo-dope Sn/C nanofibers for high-performance lithium-ion batteries,Yanli Chen et al.Nanoscale,2018,10,17378-17387),并且Mo离子拥有更加稳定的电化学界面以增强金属键。因此,当Mo作为掺杂剂掺入电极材料中,将有助于提高材料本身的导电率,提供更多活性位点,还可以缩短镁离子的扩散路径从而提高反应动力学,并且在充放电过程中还有利于维持其结构的稳定性。此外,由于Mo离子与V离子的半径相近,因此,Mo离子易于掺入到VS4晶格中。然而,Mo掺杂VS4作为正极材料应用于镁离子电池中还鲜有报道。
本发明通过一步水热法制备了Mo掺杂VS4作为镁离子电池正极材料,并研究了其电化学性能。电化学性能测试结果表明,由于Mo的掺杂,VS4的电化学循环性能和倍率性能均得到了提升,在50mA g-1的电流密度下,350个循环后Mo掺杂VS4的比容量仍维持在120mAhg-1左右,并且在电流密度达到500mA g-1时,表现出较好的倍率性能,对新型镁离子电池正极材料的开发具有重要意义。
发明内容
本发明的目的在于提供一种镁离子电池正极材料,尤其提供一种Mo掺杂VS4镁离子电池正极材料,并探究其在镁离子电池中的应用,该镁离子电池正极材料是由许多纳米片自组装而成的空心花状微球形貌,并且表现出好的循环稳定性和高的倍率性能等特点。
为实现上述发明目的,本发明所提供的Mo掺杂VS4作为镁离子电池正极材料的制备过程包括以下步骤:
1.按照1160:1的比例分别称取偏钒酸铵和四水合钼酸铵,并将两种药品配置成浓度为0.167M的水溶液,在60℃下恒温磁力搅拌30min至完全溶解,得到溶液A;
2.称取过量的硫代乙酰胺溶于30ml乙二醇中,在常温下磁力搅拌30min至完全溶解,得到溶液B;
3.将溶液B倒入溶液A中,在60℃下恒温磁力搅拌30min至两种溶液完全混合;
4.将充分混合的混合溶液转移至100ml的反应釜中进行水热反应,水热反应温度为200℃,反应时间为4h,反应结束后随炉冷却至室温;
5.分别用去离子水和无水乙醇清洗3次,并通过离心收集到沉淀,将所得沉淀物放入真空干燥箱内进行干燥处理,烘干温度为60℃,烘干时间为12h,得到Mo掺杂VS4化合物。
本发明还提供了Mo掺杂VS4作为镁离子电池正极材料的应用,将所述Mo掺杂VS4制成正极片,并与金属镁负极材料、玻璃纤维隔膜和APC-THF电解液组装成扣式电池。将组装好的电池静置24h后,在CT2001A电池程控测试仪上进行电化学性能测试,测试电压窗口为0.2~2.1V,电流密度为20~500mA g-1
本发明提供的Mo掺杂VS4镁离子电池正极材料的优势在于:
1、采用本发明合成的Mo掺杂VS4镁离子电池正极材料具有规则的空心花状微球形貌;
2、采用本发明制备的Mo掺杂VS4镁离子电池正极材料,由于Mo的掺入使VS4层间距而扩大,并且形成了丰富的硫空位,提供了更多的活性位点,提高了Mo掺杂VS4材料的导电率,缩短了镁离子在Mo掺杂VS4电极材料中的扩散距离,有利于镁离子的存储和扩散。
3、采用本发明制备的Mo掺杂VS4作为镁离子电池正极材料表现出优异的电化学性能:在50mA g-1的电流密度下实现350个循环的长循环寿命,并保持比容量在120mAh g-1左右;并且当电流密度达到500mA g-1时,表现出良好的倍率性能。
以下结合附图对本发明的构思、形貌、结构及所产生的技术效果作进一步说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为实施例1中所得Mo掺杂VS4镁离子电池正极材料的SEM照片;
图2为实施例1中所得Mo掺杂VS4镁离子电池正极材料的TEM照片;
图3为实施例1中所得Mo掺杂VS4镁离子电池正极材料的XRD图;
图4为实施例1中所得Mo掺杂VS4镁离子电池正极材料的EDS图;
图5为实施例1中所得Mo掺杂VS4镁离子电池正极材料的Mo高分辨XPS图谱;
图6为实施例1中所得Mo掺杂VS4镁离子电池正极材料的S高分辨XPS图谱;
图7为实施例1中所得Mo掺杂VS4镁离子电池正极材料的循环性能曲线和倍率性能曲线;
具体实施方式
以下结合具体实施例对本发明作进一步详细的说明,但是这些实施例不以任何方式限制本发明的范围。
实施例1
Mo掺杂VS4镁离子电池正极材料的应用
称取0.5814g的偏钒酸铵和0.0265g的四水合钼酸铵将两种药品溶于30ml去离子水中,在60℃下恒温磁力搅拌30min至完全溶解,得到溶液A;同时,称取过量的硫代乙酰胺溶于30ml乙二醇中,在常温下磁力搅拌30min至完全溶解,得到溶液B;将溶液B倒入溶液A中进行混合,在60℃下恒温磁力搅拌30min至两种溶液完全混合。将充分混合的混合溶液转移至100ml的反应釜中进行水热反应,水热反应温度为200℃,反应时间为4h,反应结束后随炉冷却至室温;分别用去离子水和无水乙醇清洗3次,并通过离心收集产物,将所得产物放入真空干燥箱内中烘干,烘干温度为60℃,烘干时间为12h,得到Mo掺杂VS4化合物。
所得Mo掺杂VS4材料是由许多纳米片自组装而成的空心花状微球形貌,见SEM照片(图1)和TEM照片(图2)。XRD结果(图3)表明了所得产物为VS4,EDS结果(图4)显示有Mo元素的存在,因此Mo掺入VS4的晶格中。此外,XRD图谱的衍射峰相对标准图谱向低角度偏移,并且Mo高分辨XPS图谱中显示Mo的价态为+4价(图5),因此Mo是以Mo4+的价态掺杂进VS4晶格中,并扩大了VS4的层间距。S高分辨XPS图谱(图6)显示S同时以-1价和-2价存在,说明了Mo掺杂后形成了丰富的硫空位。
将合成的Mo掺杂VS4粉末作为正极活性材料,与炭黑和粘结剂(聚偏二氟乙烯PVDF)按照质量比8:1:1均匀混合,然后加入有机溶剂1-甲基-2-吡咯烷酮研磨,至粘稠状态。将泥浆用工字涂布器涂布在导电集流体碳纸上,随后放入60℃真空烘箱干燥12h。使用裁片机将烘干后的电极片裁成直径为12mm的圆片作为镁离子电池的正极。将0.1mm厚的镁箔用砂纸除去表面的氧化层,并使用裁片机裁成直径为16mm的圆片,作为镁离子电池的负极,并以玻璃纤维滤膜为隔膜,0.4M的APC/THF为电解液,在氩气氛围的手套箱中组装成扣式电池。将组装的扣式电池静置24h后,在CT2001A电池程控测试仪上进行电化学性能测试,测试电压窗口为0.2~2.1V,电流密度为20~500mA g-1
所得产物Mo掺杂VS4的电化学性能见说明书附图7,在50mA g-1的电流密度下,Mo掺杂VS4实现了350个循环,并且在循环过程中比容量保持在120mAh g-1左右,库伦效率接近100%。同时Mo掺杂VS4表现出优异的倍率性能,在电流密度达到500mA g-1时,比容量仍能保持在70mAh g-1左右,并且当电流密度回升到20mA g-1时,容量可以回升到130mAh g-1左右。

Claims (3)

1.一种Mo掺杂VS4镁离子电池正极材料及其应用,其特征在于,制备过程包括以下步骤:
按1160:1的比例分别称取偏钒酸铵和四水合钼酸铵,并放入去离子水中恒温磁力搅拌30min至完全溶解,制备浓度为0.167M的水溶液;称取过量的硫代乙酰胺溶于30ml乙二醇中,在常温下磁力搅拌30min至完全溶解;将上述两种溶液混合,并恒温磁力搅拌30min,至两种溶液完全混合;将混合溶液转移至反应釜中进行水热反应,反应温度为200℃,反应时间为4h,待反应结束后随炉冷却;分别用去离子水和无水乙醇清洗3次,并通过离心收集产物,将所得产物真空干燥,得到Mo掺杂VS4正极材料;
将得到的Mo掺杂VS4作为正极材料组装成扣式镁离子电池,电化学性能测试的电压窗口为0.2~2.1V,电流密度为20~500mA g-1
2.根据权利要求1所述的一种Mo掺杂VS4镁离子电池正极材料及其应用,其特征在于,所得样品表现出空心花状微球形貌。
3.根据权利要求1所述的一种Mo掺杂VS4镁离子电池正极材料及其应用,其特征在于,所得材料应用在镁离子电池中的比容量为120mAh g-1,循环寿命为350个循环,并具有良好的倍率性能。
CN202011123676.1A 2020-10-20 2020-10-20 一种Mo掺杂VS4镁离子电池正极材料 Expired - Fee Related CN112242526B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011123676.1A CN112242526B (zh) 2020-10-20 2020-10-20 一种Mo掺杂VS4镁离子电池正极材料
NL2028807A NL2028807B1 (en) 2020-10-20 2021-07-22 Mo-doped vs4 cathode material for magnesium ion battery and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011123676.1A CN112242526B (zh) 2020-10-20 2020-10-20 一种Mo掺杂VS4镁离子电池正极材料

Publications (2)

Publication Number Publication Date
CN112242526A true CN112242526A (zh) 2021-01-19
CN112242526B CN112242526B (zh) 2022-04-05

Family

ID=74169196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011123676.1A Expired - Fee Related CN112242526B (zh) 2020-10-20 2020-10-20 一种Mo掺杂VS4镁离子电池正极材料

Country Status (2)

Country Link
CN (1) CN112242526B (zh)
NL (1) NL2028807B1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929138A (zh) * 2021-10-12 2022-01-14 青岛科技大学 一种Mo/O共掺杂VS4镁离子电池正极材料及其应用
CN113937285A (zh) * 2021-09-30 2022-01-14 青岛科技大学 一种pvp诱导vs4微结构调控的镁离子电池正极材料pvp-vs4及应用
CN113964321A (zh) * 2021-10-21 2022-01-21 青岛科技大学 一种k+预嵌入诱导多电子反应的镁离子电池正极材料kvs4/n-tg及应用
CN114039034A (zh) * 2021-11-29 2022-02-11 青岛科技大学 一种Mg2+预嵌入的镁离子电池正极材料MgVS4/N-TG及应用
CN114538512A (zh) * 2022-01-11 2022-05-27 太原理工大学 一种发光四硫化钒及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107871865A (zh) * 2017-11-02 2018-04-03 华中科技大学 一种掺杂改性磷酸钒钠的钠离子电池正极材料的制备方法
CN109939699A (zh) * 2019-04-16 2019-06-28 湘潭大学 一种钼掺杂二硫化钒微米花材料及其制备方法和应用
CN110078121A (zh) * 2019-05-21 2019-08-02 上海交通大学 一种镁离子电池五氧化二钒正极材料的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107871865A (zh) * 2017-11-02 2018-04-03 华中科技大学 一种掺杂改性磷酸钒钠的钠离子电池正极材料的制备方法
CN109939699A (zh) * 2019-04-16 2019-06-28 湘潭大学 一种钼掺杂二硫化钒微米花材料及其制备方法和应用
CN110078121A (zh) * 2019-05-21 2019-08-02 上海交通大学 一种镁离子电池五氧化二钒正极材料的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENGJIANG LI 等: "Morphology-dependent electrochemical performance of VS4 for rechargeable magnesium battery and its magnesiation/demagnesiation mechanism", 《JOURNAL OF POWER SOURCES》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937285A (zh) * 2021-09-30 2022-01-14 青岛科技大学 一种pvp诱导vs4微结构调控的镁离子电池正极材料pvp-vs4及应用
CN113937285B (zh) * 2021-09-30 2023-02-28 青岛科技大学 一种pvp诱导vs4微结构调控的镁离子电池正极材料pvp-vs4
CN113929138A (zh) * 2021-10-12 2022-01-14 青岛科技大学 一种Mo/O共掺杂VS4镁离子电池正极材料及其应用
CN113964321A (zh) * 2021-10-21 2022-01-21 青岛科技大学 一种k+预嵌入诱导多电子反应的镁离子电池正极材料kvs4/n-tg及应用
CN113964321B (zh) * 2021-10-21 2023-10-13 青岛科技大学 一种k+预嵌入诱导多电子反应的镁离子电池正极材料kvs4/n-tg
CN114039034A (zh) * 2021-11-29 2022-02-11 青岛科技大学 一种Mg2+预嵌入的镁离子电池正极材料MgVS4/N-TG及应用
CN114039034B (zh) * 2021-11-29 2023-10-10 青岛科技大学 一种Mg2+预嵌入的镁离子电池正极材料MgVS4/N-TG及应用
CN114538512A (zh) * 2022-01-11 2022-05-27 太原理工大学 一种发光四硫化钒及其制备方法和应用
CN114538512B (zh) * 2022-01-11 2023-07-18 太原理工大学 一种发光四硫化钒及其制备方法和应用

Also Published As

Publication number Publication date
NL2028807A (en) 2021-09-16
CN112242526B (zh) 2022-04-05
NL2028807B1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
CN112242526B (zh) 一种Mo掺杂VS4镁离子电池正极材料
CN107369825B (zh) 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
Wang et al. Micro/nanostructured TiNb 2 O 7-related electrode materials for high-performance electrochemical energy storage: recent advances and future prospects
US9281516B2 (en) Cathode material of lithium ion secondary battery and method for manufacturing the same
CN110474044A (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
CN111952579A (zh) 一种高能量密度钠离子电池铁锰基正极材料及其制备方法
CN111180709B (zh) 碳纳米管、金属铜共掺杂草酸亚铁锂电池复合负极材料及其制备方法
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
KR20160043110A (ko) 텅스텐계 물질, 슈퍼전지 및 슈퍼커패시터
CN111029560A (zh) 钠离子梯度掺杂的尖晶石结构正极活性材料及其制备方法
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN103606672A (zh) 棒状纳米氧化铁电极材料及其制备方法和应用
Gao et al. Enhanced rate performance of nanosized RGO-LiNi 0.5 Mn 1.5 O 4 composites as cathode material by a solid-state assembly method
CN105374997A (zh) 一种复合材料包覆镍锰酸锂的制备方法
CN110790248B (zh) 具有花状结构的铁掺杂磷化钴微米球电极材料及其制备方法和应用
Wang et al. Research Progress and Modification Measures of Anode and Cathode Materials for Sodium‐Ion Batteries
CN114655983A (zh) 一种预嵌Ni/Zn双阳离子层状钒氧化物的制备方法及其应用
CN109004233B (zh) 一种负载层状双金属氢氧化物的金属锂负极复合铜箔集流体的制备方法及应用
CN108217725B (zh) 一种水合碱式焦钒酸锌(Zn3V2O7(OH)2·2H2O)材料的制备方法及应用
CN114122389A (zh) 一种水系锌离子电池用硒化锌锰固溶体正极材料及制备方法
CN114094063B (zh) 一种利用空腔前驱体与zif衍生物相结合制备电池负极材料的方法
CN113346087B (zh) 一种杂化磷酸盐开放框架材料复合高镍正极材料及其制备方法
CN112242525B (zh) 一种氮掺杂碳包覆磷酸钒锰钠复合材料及其制备方法和应用
CN115092962A (zh) 一种二氧化钼/碳复合电极材料及其制备方法与应用
CN115101707A (zh) 一种钠离子电池正极材料的制备方法及材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220405