CN112231886A - 一种预测元器件失效时间的方法 - Google Patents
一种预测元器件失效时间的方法 Download PDFInfo
- Publication number
- CN112231886A CN112231886A CN201911364500.2A CN201911364500A CN112231886A CN 112231886 A CN112231886 A CN 112231886A CN 201911364500 A CN201911364500 A CN 201911364500A CN 112231886 A CN112231886 A CN 112231886A
- Authority
- CN
- China
- Prior art keywords
- failure
- component
- value
- time
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000012360 testing method Methods 0.000 claims abstract description 40
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 230000035882 stress Effects 0.000 claims abstract description 24
- 238000005094 computer simulation Methods 0.000 claims abstract description 14
- 230000001133 acceleration Effects 0.000 claims abstract description 9
- 230000032683 aging Effects 0.000 claims abstract description 9
- 230000000007 visual effect Effects 0.000 claims abstract description 8
- 238000004422 calculation algorithm Methods 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 7
- 238000013481 data capture Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 238000011179 visual inspection Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 description 23
- 238000004458 analytical method Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000000846 Bartlett's test Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种预测元器件失效时间的方法,该方法的步骤如下:步骤S01:通过加速老化试验得到所述元器件的失效时间;步骤S02:计算在所述元器件的估计失效时间的统计学估值;步骤S03:构建加速失效模型;步骤S04:以步骤S01中的所述加速老化试验中的失效时间验证所述加速失效模型以得到实际加速失效模型;步骤S05:在恒定应力水平下,调用计算机仿真检测系统对元器件的可靠性进行分析,或调用视觉检测系统对元器件可靠性进行分析。
Description
技术领域
本发明涉及元器件寿命预测领域,具体为一种预测元器件失效时间的方法。
背景技术
由于科学、工业技术的快速提升,使机械行业朝着严密化、精密化实现快速发展,如果在较为精密的视觉检测系统中不具有较好的稳定性,将有一定的概率会在实验中或者工作中出现故障时会导致更多更大的经济损失和名誉上的影响,所以能够采用具有较高稳定性或可靠性的视觉检测系统将会对实际生产有不可缺少的作用。目前,国内大部分缺陷检测都还停留在人工检测的现状,所耗费的人力物力是极大的,如果能够让视觉检测系统稳定运行、正常工作,将能够给视觉检测带来更加强大的竞争力,也就能够为企业产生更多的效益。
发明内容
根据本发明的一个方面,一种预测元器件失效时间的方法,该方法的步骤如下:步骤S01:通过加速老化试验得到所述元器件的失效时间;步骤S02:计算在所述元器件的估计失效时间的统计学估值;步骤S03:构建加速失效模型;步骤S04:以步骤S01中的所述加速老化试验中的失效时间验证所述加速失效模型以得到实际加速失效模型;步骤S05:在恒定应力水平下,调用计算机仿真检测系统对元器件的可靠性进行分析,或调用视觉检测系统对元器件可靠性进行分析。
优选地,所述方法包括:理想情况1:在温度应力水平Si[i=0,1,2,3...k]下,元器件的失效数据服从于对数正态分布、贝叶斯分布;理想情况2:在温度应力水平Si[i=0,1,2,3...k]下,第一参数σk相等,即:σ0=σ1=...=σk≈σ;理想情况3:第二参数μi与温度应力水平Si满足如下的加速模型,即:μi=a+bψ(Si),(i=0,1,...,k);式中,第二参数μi为元器件失效值函数;ψ(Si)是温度应力水平函数;a、b是待估参数。
优选地,验证所述理想情况1的具体过程为:步骤S021:设定元器件温度值范围为40℃-100℃,选取间隔相同的六个温度值;步骤S022:在选取的所述六个温度值下通电使元器件正常工作;步骤S023:当元器件发生失效时工作停止并记录失效时间,其余正常工作的元器件继续工作并等待至1000小时截止,记录所述元器件的失效时间和失效元器件数量;步骤S024:以所述失效时间来计算相关值R,公式如下:
式中,xi为各温度值下的所述失效时间,m为试验中第m个发生失效的元器件,yi为元器件的失效时间的对数值,计算公式为yi=lnt,为对失效时间的对数值的均值,为所述失效时间的均值;步骤S025:判断|R|是否大于Ra,Ra为相关值临界值,若|R|大于Ra即验证所述理想情况1成立。
其中,为的方差系数,n为试验中的元器件数量,r是试验中第r个发生失效的元器件,r<n;k为皮尔逊检验法的自由度;步骤S033:判断B2/C的值,若即验证所述理想情况2成立,其中Xa 2为皮尔逊分布值。
优选地,所述最优线性无偏估计公式为:
优选地,所述验证理想情况3的具体过程为:步骤S041:利用所述失效时间进行阿伦尼斯模型验证,得到相关值r,所述相关值r的计算公式:
其中,z表示衡量线性相关的系数,lxx为失效时间的方差系数与lyy为元器件失效时间的对数值的方差系数,lxy为失效时间和元器件失效时间的对数值的协方差,k为试验次数。
步骤S042:判断|z|是否大于ra,若|z|大于ra即验证所述理想情况3成立。
优选地,所述理想情况3中的a,b数值的计算公式如下:
a=μi-bψ(Si)
式中,xi为元器件失效时间,yi为失效时顺序值,m为试验次数。
式中,R(t)为可靠度函数,即所述元器件不发生失效的概率;F(t)为累积失效概率函数,t为失效时间,u为均值估计值,σ为方差估计值;
通过失效率函数计算元器件失效率,公式为:
式中,λ(t)为失效率函数;f(t)为失效概率密度函数。
式中,R(t)为可靠度函数,即所述元器件不发生失效的概率;F(t)为累积失效概率函数,t为失效时间,u为均值估计值,σ为方差估计值;通过所述计算机仿真检测系统失效率算法计算元器件失效率,失效率算法为:
式中,λ(t)为失效率算法;f(t)为失效概率密度函数。
附图说明
图1是本发明实施例的整体流程示意图;
图2是本发明实施例中的恒定温度应力水平下的试验数据;
图3是本发明的最优线性无偏估计系数表;
图4是本发明实施例中的均值和方差随温度变化趋势图;
图5是本发明实施例中的各温度应力水平下的可靠度和失效率。
具体实施方式
现在将参照若干示例性实施例来论述本发明的内容。应当理解,论述了这些实施例仅是为了使得本领域普通技术人员能够更好地理解且因此实现本发明的内容,而不是暗示对本发明的范围的任何限制。
如本文中所使用的,术语“包括”及其变体要被解读为意味着“包括但不限于”的开放式术语。术语“基于”要被解读为“至少部分地基于”。术语“一个实施例”和“一种实施例”要被解读为“至少一个实施例”。术语“另一个实施例”要被解读为“至少一个其他实施例”。
根据本发明的一个实施例:基于正态分布下视觉检测元器件寿命预测方法所包括的步骤如下:
步骤1:以温度为加速应力进行加速老化试验,使元器件发生快速失效;设定元器件温度值范围为40℃-100℃,选取间隔相同的六个温度值;在选取的所述六个温度值下通电使元器件正常工作;当元器件发生失效时工作停止并记录失效时间,其余正常工作的元器件继续工作并等待至1000小时时截止,记录所述元器件的失效时间和失效元器件数量;
步骤2:能否利用加速老化试验进行元器件寿命评估的试验,必须得先满足加速老化试验的前提条件,即提出了3个基本理想情况:理想情况1:在温度应力水平Si[i=0,1,2,3...k]下,元器件的寿命服从于正态分布;理想情况2:在温度应力水平Si[i=0,1,2,3...k]下,形状参数σk相等,即:σ0=σ1=...=σk≈σ;理想情况3:第二参数μi与温度应力水平Si满足如下的加速模型,即:μi=a+bψ(Si),(i=0,1,...,k)。式中,分布参数μi为元器件寿命值函数;ψ(Si)是温度应力水平函数;a、b是待计算参数。
步骤3:以步骤1中的寿命试验为依据,寿命试验中所得到的数据包括:
通过相关值计算公式来计算相关值,判断相关值R的绝对值是否大于0.811,若大于0.811则验证理想情况1成立。如图2所示为本发明的实施例中六组数据计算出的R的值,均大于0.811。即验证理想情况1在本实施例的六次试验中是成立的。
n为试验中的元器件数量,r是试验中第r个发生失效的元器件,r<n,j是元器件失效时间的顺序量,即先发生失效的在前,后发生失效的在后。C、D为无偏系数,图3示出了本发明的实施例中,当温度为45℃时,六组试验中C、D的值,此数据通过查阅无偏系数表可知。
通过巴特列特检验公式验证在温度应力水平Si[i=0,1,2,3...k]下,形状参数σk是否相等,即:σ0=σ1=...=σk≈σ;巴特列特检验公式如下:
其中,为的方差系数;判断B2/C的值,若Xa 2(k-1),其中k为试验次数,Xa 2为皮尔逊分布值,即验证所述理想情况2成立。如图4所示为本发明的实施例中均值和方差随温度变化的趋势图。通过实验数据结合公式计算后可知,六组试验数据所计算出的B2/C的值均大于X0.05 2,即证明理想情况2成立,即6组试验在满足正态分布的理想情况1下形状参数相等。
步骤5:理想情况3中作出分布参数μi与温度应力水平Si符合一元线性方程。通过阿伦尼斯模型验证该理想情况是否合理,阿伦尼斯模型公式为:
其中,r表示衡量线性相关系数,lxx为失效时间的方差系数与lyy为元器件失效时间的对数值的方差系数,lxy为失效时间和元器件失效时间的对数值的协方差,k为试验次数。
通过查阅相关系数临界值表,可得到相关系数临界值ra。若r值满足|r|>ra,则证明试验数据中xi和yi之间呈现线性相关。在本发明的实施例中,六组试验的结果通过计算后均满足|r|>ra=0.811。即验证理想情况3成立,理想情况3中的a和b计算方式为:
a=μi-bψ(Si)
式中,xi为元器件失效时间,yi的为发生失效时的顺序量,k为试验次数。
步骤6:基于上述三个理想情况均成立,本发明中根据具体的6组温度应力水平下的36次试验计算得到具体的寿命加速模型为:
具体的加速模型,可用来评估该元器件在正常温度应力下的寿命预测,具体加速模型估计式为:
式中,θi为元器件的特征寿命;a、b为正常参数;S为温度应力值。
当S取30℃(303K)时,可以根据上述关系式计算出u0:
对上式取e的次方,可以得正常应力水平下平均寿命的估计值,即:
式中,R(t)为可靠度函数,即所述元器件不发生失效的概率;F(t)为累积失效概率函数,t为失效时间,u为失效时间均值估计值,σ为失效时间方差估计值;
式中,λ(t)为失效率函数,即在温度应力水平下发生失效的概率;f(t)为失效概率密度函数。
图5示出了本发明实施例中六个温度下,得到的六组失效时间均值估计值和失效时间方差估计值后,根据这六组数据通过可靠性分析公式和失效率函数计算得到的可靠性及失效率。
可靠性分析公式为:
式中,R(t)为可靠度函数,F(t)为累积失效概率函数,t为失效时间,u为均值,σ为标准差。
失效率函数为:
式中,λ(t)为失效率函数,f(t)为失效概率密度函数。
在本发明的实施例中,通过计算机仿真检测系统也可实现对元器件可靠性和失效率的分析:
得到的六组失效时间均值估计值和失效时间方差估计值后,将六组失效时间的均值估计值和方差估计值,输入至计算机仿真检测系统中的存储器内,计算机仿真检测系统通过数据抓取模块提取该数据并调用可靠性分析算法及失效率算法进行可靠性分析:
通过所述计算机仿真检测系统可靠性算法计算元器件可靠性,可靠性算法为:
通过所述计算机仿真检测系统失效率算法计算元器件失效率,失效率算法为:
应理解,本发明发明内容及实施例中各步骤的序号的大小并不绝对意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (9)
1.一种预测元器件失效时间的方法,其特征在于,包括:
步骤S01:通过加速老化试验得到所述元器件的失效时间;
步骤S02:计算在所述元器件的估计失效时间的统计学估值;
步骤S03:构建加速失效模型;
步骤S04:以步骤S01中的所述加速老化试验中的失效时间验证所述加速失效模型以得到实际加速失效模型;
步骤S05:在恒定应力水平下,调用计算机仿真检测系统对元器件的可靠性进行分析,或调用视觉检测系统对元器件可靠性进行分析。
2.根据权利要求1所述的方法,其特征在于,所述方法包括:
理想情况1:在温度应力水平Si[i=0,1,2,3...k]下,元器件的失效数据服从于对数正态分布、贝叶斯分布;
理想情况2:在温度应力水平Si[i=0,1,2,3...k]下,第一参数σk相等,即:
σ0=σ1=...=σk≈σ;
理想情况3:第二参数μi与温度应力水平Si满足如下的加速模型,即:
μi=a+bψ(Si),(i=0,1,...,k)
式中,第二参数μi为元器件失效值函数;ψ(Si)是温度应力水平函数;a、b是待估参数。
3.根据权利要求2所述的方法,其特征在于,验证所述理想情况1的具体过程为:
步骤S021:设定元器件温度值范围为40℃-100℃,选取间隔相同的六个温度值;
步骤S022:在选取的所述六个温度值下通电使元器件正常工作;
步骤S023:当元器件发生失效时工作停止并记录失效时间,其余正常工作的元器件继续工作并等待至1000小时截止,记录所述元器件的失效时间和失效元器件数量;
步骤S024:以所述失效时间来计算相关值R,公式如下:
步骤S025:判断|R|是否大于Ra,Ra为相关值临界值,若|R|大于Ra即验证所述理想情况1成立。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911364500.2A CN112231886B (zh) | 2019-12-26 | 2019-12-26 | 一种预测元器件失效时间的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911364500.2A CN112231886B (zh) | 2019-12-26 | 2019-12-26 | 一种预测元器件失效时间的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112231886A true CN112231886A (zh) | 2021-01-15 |
CN112231886B CN112231886B (zh) | 2023-08-25 |
Family
ID=74111660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911364500.2A Active CN112231886B (zh) | 2019-12-26 | 2019-12-26 | 一种预测元器件失效时间的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112231886B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116305667A (zh) * | 2023-05-18 | 2023-06-23 | 贵州大学 | 大直径薄板零件中心对称凸起面形的面形误差控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10203577A1 (de) * | 2002-01-30 | 2003-08-21 | Siemens Ag | Verfahren zum Prognostizieren der Lebensdauer von leistungselektronischen Bauelementen |
CN101038638A (zh) * | 2007-04-25 | 2007-09-19 | 上海发电设备成套设计研究院 | 一种发电机组自动控制系统电子元器件剩余寿命预测方法 |
CN102663201A (zh) * | 2012-04-24 | 2012-09-12 | 北京航空航天大学 | 一种考虑电气互连结构可靠性的电子产品可靠性预计方法 |
CN105203940A (zh) * | 2015-09-28 | 2015-12-30 | 中国科学院上海硅酸盐研究所 | 一种热电元件可靠性评价系统及方法 |
CN106021838A (zh) * | 2015-12-30 | 2016-10-12 | 西北工业大学 | 一种复杂电子系统剩余寿命预测方法 |
CN108388694A (zh) * | 2018-01-26 | 2018-08-10 | 北京航空航天大学 | 一种塑封光电耦合器贮存寿命预测方法 |
CN108446523A (zh) * | 2018-05-11 | 2018-08-24 | 北京航天自动控制研究所 | 一种电子整机贮存寿命评估与预测方法 |
-
2019
- 2019-12-26 CN CN201911364500.2A patent/CN112231886B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10203577A1 (de) * | 2002-01-30 | 2003-08-21 | Siemens Ag | Verfahren zum Prognostizieren der Lebensdauer von leistungselektronischen Bauelementen |
CN101038638A (zh) * | 2007-04-25 | 2007-09-19 | 上海发电设备成套设计研究院 | 一种发电机组自动控制系统电子元器件剩余寿命预测方法 |
CN102663201A (zh) * | 2012-04-24 | 2012-09-12 | 北京航空航天大学 | 一种考虑电气互连结构可靠性的电子产品可靠性预计方法 |
CN105203940A (zh) * | 2015-09-28 | 2015-12-30 | 中国科学院上海硅酸盐研究所 | 一种热电元件可靠性评价系统及方法 |
CN106021838A (zh) * | 2015-12-30 | 2016-10-12 | 西北工业大学 | 一种复杂电子系统剩余寿命预测方法 |
CN108388694A (zh) * | 2018-01-26 | 2018-08-10 | 北京航空航天大学 | 一种塑封光电耦合器贮存寿命预测方法 |
CN108446523A (zh) * | 2018-05-11 | 2018-08-24 | 北京航天自动控制研究所 | 一种电子整机贮存寿命评估与预测方法 |
Non-Patent Citations (10)
Title |
---|
GUODONG ZHANG等: "Life Prediction of High Temperature Welded Component by Skeletal Point Rupture Stress", 《ADVANCED MATERIALS RESEARCH》 * |
GUODONG ZHANG等: "Life Prediction of High Temperature Welded Component by Skeletal Point Rupture Stress", 《ADVANCED MATERIALS RESEARCH》, 30 June 2010 (2010-06-30), pages 156 - 160 * |
ZHONG LIANG MENG 等: "Optimization Analysis Based on the Articulated Structure of Cement Floor All-Terrain Vehicle", 《APPLIED MECHANICS AND MATERIALS 》 * |
ZHONG LIANG MENG 等: "Optimization Analysis Based on the Articulated Structure of Cement Floor All-Terrain Vehicle", 《APPLIED MECHANICS AND MATERIALS 》, 30 November 2012 (2012-11-30), pages 174 - 177 * |
贺福强 等: "基于遗传算法的颗粒态辣椒螺旋输送机优化设计", 《现代制造工程》 * |
贺福强 等: "基于遗传算法的颗粒态辣椒螺旋输送机优化设计", 《现代制造工程》, no. 6, 21 June 2019 (2019-06-21), pages 120 - 125 * |
郭祥辉: "电子封装结构超声显微检测与热疲劳损伤评估", 《中国博士学位论文全文数据库 (信息科技辑)》 * |
郭祥辉: "电子封装结构超声显微检测与热疲劳损伤评估", 《中国博士学位论文全文数据库 (信息科技辑)》, 15 July 2015 (2015-07-15), pages 135 - 1 * |
陈然 等: "加速退化试验改进的故障模式影响及危害性分析", 《西安电子科技大学学报》 * |
陈然 等: "加速退化试验改进的故障模式影响及危害性分析", 《西安电子科技大学学报》, 4 December 2016 (2016-12-04), pages 164 - 169 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116305667A (zh) * | 2023-05-18 | 2023-06-23 | 贵州大学 | 大直径薄板零件中心对称凸起面形的面形误差控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112231886B (zh) | 2023-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109657937B (zh) | 一种基于退化数据的产品可靠性评估与寿命预测方法 | |
CN108132914B (zh) | 有限数量产品性能失效率的高置信度统计推断和确认方法 | |
CN110414552B (zh) | 一种基于多源融合的备件可靠性贝叶斯评估方法及系统 | |
KR20150074034A (ko) | 확률론적 피로 균열 수명 추정을 위한 방법 및 시스템 | |
CN111859658A (zh) | 一种产品贮存寿命与可靠性评估方法 | |
KR20210047158A (ko) | 통계학적 분석을 통한 유한요소모델의 신뢰성 보정 및 검증 방법 | |
CN114334042A (zh) | 聚合物复合材料应力松弛模型构建方法 | |
CN111832151A (zh) | 基于指数时间函数的Wiener加速退化模型构建方法及系统 | |
CN111351697A (zh) | 一种键合金丝可靠性评价方法 | |
CN112231886A (zh) | 一种预测元器件失效时间的方法 | |
CN118010953B (zh) | 用于金属结构制造的智能测试方法及系统 | |
CN114839464B (zh) | 一种指数寿命型产品的快速检验方法、系统、设备及终端 | |
CN116776631B (zh) | 一种基于数据分析的连接器性能评估方法及系统 | |
CN107704691A (zh) | 一种加速应力可靠性鉴定试验优选方案设计方法 | |
CN109190279B (zh) | 一种温度振动加速耦合效应模型的构建方法 | |
Lu et al. | Consistency analysis of degradation mechanism in step-stress acc elerated degradation testing | |
CN113536490B (zh) | 一种抽油杆疲劳寿命预测方法及系统 | |
CN114971223A (zh) | 一种指数寿命型序贯试验方法、系统、设备、介质及终端 | |
Lioa et al. | Capability evaluation of a product family for processes of the larger-the-better type | |
CN116522674B (zh) | 一种基于多应力综合作用的加速退化建模评估方法 | |
Porter | Accelerated reliability qualification in automotive testing | |
CN115628998B (zh) | 节点疲劳试验的可靠性确定方法、装置及存储介质 | |
CN110928269A (zh) | 一种基于惯导平台的退化加速试验优化设计方法及系统 | |
CN115114775B (zh) | 威布尔型无失效数据转换成败型可靠性数据的方法和装置 | |
CN113449432B (zh) | 一种基于卸载弹性应变能密度的疲劳寿命预测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |