CN112227043A - 烘干系统的烘干控制方法 - Google Patents

烘干系统的烘干控制方法 Download PDF

Info

Publication number
CN112227043A
CN112227043A CN202011111012.3A CN202011111012A CN112227043A CN 112227043 A CN112227043 A CN 112227043A CN 202011111012 A CN202011111012 A CN 202011111012A CN 112227043 A CN112227043 A CN 112227043A
Authority
CN
China
Prior art keywords
drying
inlet
air
outlet
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011111012.3A
Other languages
English (en)
Other versions
CN112227043B (zh
Inventor
罗荣邦
王飞
崔灿
侯永顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Qingdao Haier Air Conditioning Electric Co Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Qingdao Haier Air Conditioning Electric Co Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd, Qingdao Haier Air Conditioning Electric Co Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN202011111012.3A priority Critical patent/CN112227043B/zh
Publication of CN112227043A publication Critical patent/CN112227043A/zh
Priority to PCT/CN2021/131667 priority patent/WO2022068973A1/zh
Application granted granted Critical
Publication of CN112227043B publication Critical patent/CN112227043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/34Humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/26Heat pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

本发明涉及衣物处理技术领域,具体涉及一种烘干系统的烘干控制方法。本发明旨在解决现有的烘干控制方法存在的干燥时间长、能耗高的问题。为此目的,本发明的烘干控制方法包括:在风机运行过程中,获取干燥腔室的实际湿度Rh;基于实际湿度Rh所在的湿度区间,确定压缩机的运行频率f;控制压缩机以运行频率f运行;其中,实际湿度Rh与运行频率f之间成正比关系。本申请的烘干系统的烘干控制方法能够提高烘干效率的同时,兼顾烘干能耗。

Description

烘干系统的烘干控制方法
技术领域
本发明涉及衣物处理技术领域,具体涉及一种烘干系统的烘干控制方法。
背景技术
为实现衣物的快速干燥,现有的洗衣机配置有热泵式烘干系统。热泵式烘干系统主要包括冷媒循环和湿空气循环。其中,冷媒循环主要包括压缩机、冷凝器、节流装置和蒸发器,湿空气循环包括风道和风机,风道的两端分别与洗衣机的洗涤筒连通,冷媒循环中的冷凝器和蒸发器设置在风道中。运行过程中,洗涤筒内的湿空气在风机的带动下由风道的一端进入,并在依次流过蒸发器和冷凝器后由风道的另一端返回洗涤筒。当湿空气经过蒸发器时与蒸发器发生热交换,湿空气中的水分冷凝为水滴析出而含湿量下降,含湿量下降的空气再经过冷凝器时,与冷凝器发生热交换而温度上升,温度上升后的空气回到洗涤筒内对衣物进行烘干,如此往复。
但是,现有的热泵式烘干系统控制较为简单,随着洗涤筒内衣物的含水率逐渐降低,洗涤筒内的相对湿度也越来越小,经过冷凝器加热后的空气在洗涤筒中温度降低幅度也减小,进入蒸发器和冷凝器的空气温度不断升高,导致蒸发器的除湿能力逐渐减弱,除湿效果越来越差,这样就造成烘干衣物时间加长,系统功耗也不断增大。
相应地,本领域需要一种新的烘干系统的烘干控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述至少一个问题,即为了解决现有的烘干控制方法存在的干燥时间长、能耗高的问题,本发明提供了一种烘干系统的烘干控制方法,所述烘干系统包括:冷媒循环回路,所述冷媒循环回路包括通过冷媒管连接的压缩机、冷凝器、节流元件和蒸发器,所述蒸发器下方设置有接水盘;空气循环回路,所述空气循环回路包括通过风管连接的干燥腔室、所述蒸发器和所述冷凝器,所述干燥腔室具有湿空气出口和干空气进口,所述湿空气出口与所述蒸发器的进口连通,所述蒸发器的出口与所述冷凝器的进口连通,所述冷凝器的出口与所述干空气进口连通,所述空气循环回路配置有风机;
所述烘干控制方法包括:
在所述风机运行过程中,获取所述干燥腔室的实际湿度Rh;
基于所述实际湿度Rh所在的湿度区间,确定所述压缩机的运行频率f;
控制所述压缩机以所述运行频率f运行;
其中,所述实际湿度Rh与所述运行频率f之间成正比关系。
在上述烘干系统的烘干控制方法的优选技术方案中,所述湿度区间基于所述干燥腔室的目标湿度Rhm确定。
在上述烘干系统的烘干控制方法的优选技术方案中,“基于所述实际湿度所在的湿度区间,确定所述压缩机的运行频率”的步骤进一步包括:
当Rh≥a×Rhm时,确定所述运行频率f=a×F+k1
当b×Rhm≤Rh<a×Rhm时,确定所述运行频率f=(a+b)/2×F+k2
当Rhm≤Rh<b×Rhm时,确定所述运行频率f=(a+b)/2×F+k3
其中,F为所述压缩机的额定频率,a、b为倍率系数,k1、k2、k3为常数,且a>b>1,k1>k2>k3
在上述烘干系统的烘干控制方法的优选技术方案中,所述烘干控制方法还包括:
当Rh<Rhm时,控制所述烘干系统停止工作。
在上述烘干系统的烘干控制方法的优选技术方案中,所述空气循环回路还包括:气液换热器,所述气液换热器具有进气口、出气口、进液口和出液口,所述进气口与所述湿空气出口连通,所述出气口与所述蒸发器的进口连通;冷却循环回路,所述冷却循环回路包括通过液管连通的所述接水盘、水泵和所述气液换热器,所述接水盘设置于所述蒸发器的下方,用于收集冷凝水,所述进液口和所述出液口分别与所述接水盘连通,所述水泵设置于所述进液口/所述出液口与所述接水盘之间;
所述烘干控制方法还包括:
控制所述水泵启动运行。
在上述烘干系统的烘干控制方法的优选技术方案中,“控制所述水泵启动运行”的步骤进一步包括:
当Rh<Rh1时,控制所述水泵启动运行;
其中,Rh1为第一湿度阈值。
在上述烘干系统的烘干控制方法的优选技术方案中,所述进液口/所述出液口与所述接水盘之间的液管上还设置有流量调节阀,所述烘干控制方法还包括:
当Rh<Rh1时,基于所述实际湿度Rh,确定所述流量调节阀的目标开度P;
控制所述流量调节阀调整至所述目标开度P。
在上述烘干系统的烘干控制方法的优选技术方案中,所述接水盘还设置有挡板,所述挡板将所述接水盘分隔为第一部分和第二部分,所述进液口与所述第一部分连通,所述出液口与所述第二部分连通,所述冷凝器与所述节流元件之间设置有并联的第一管段和第二管段,所述第一管段上设置有第一电控阀,所述第二管段上设置有第二电控阀,且所述第二管段部分盘设于所述第二部分中,
所述烘干控制方法还包括:
比较所述实际湿度Rh与第二湿度阈值Rh2的大小;
基于比较结果,控制所述第一电控阀和所述第二电控阀的开闭。
在上述烘干系统的烘干控制方法的优选技术方案中,“基于所述实际湿度Rh,控制所述第一电控阀和所述第二电控阀的开闭”的步骤进一步包括:
当Rh>Rh2时,控制所述第一电控阀打开;
当Rh≤Rh2时,控制所述第一电控阀关闭、所述第二电控阀打开。
在上述烘干系统的烘干控制方法的优选技术方案中,所述烘干系统还包括复叠换热器,所述复叠换热器具有第一进口、第一出口、第二进口和第二出口,所述第一进口与第一出口之间形成的空气流道与所述第二进口与所述第二出口之间形成的空气流道能够交叉换热,其中,所述第一进口与所述湿空气出口连通,所述第一出口与所述蒸发器的进口连通,所述第二进口与所述蒸发器的出口连通,所述第二出口与所述冷凝器的进口连通。
本领域技术人员能够理解的是,在本发明的优选技术方案中,烘干系统包括:冷媒循环回路,冷媒循环回路包括通过冷媒管连接的压缩机、冷凝器、节流元件和蒸发器,蒸发器下方设置有接水盘;空气循环回路,空气循环回路包括通过风管连接的干燥腔室、蒸发器和冷凝器,干燥腔室具有湿空气出口和干空气进口,湿空气出口与蒸发器的进口连通,蒸发器的出口与冷凝器的进口连通,冷凝器的出口与干空气进口连通,空气循环回路配置有风机;烘干控制方法包括:在风机运行过程中,获取干燥腔室的实际湿度Rh;基于实际湿度Rh所在的湿度区间,确定压缩机的运行频率f;控制压缩机以运行频率f运行;其中,实际湿度Rh与运行频率f之间成正比关系。
通过上述控制方式,本申请的烘干系统的烘干控制方法能够提高烘干效率的同时,兼顾烘干能耗。具体而言,通过基于干燥腔室内的实际湿度所处的湿度区间来确定压缩机的运行频率,并且实际湿度与压运行频率之间成正比关系,使得在实际干燥过程中,当干燥腔室内的湿度大时,压缩机的运行频率相应的也较高,此时冷媒循环回路的制冷量大,冷媒流动速度快,经过冷凝器的烘干气流温度提升快,高温空气大量带走烘干腔室内的水汽,蒸发器中的冷媒快速地与含湿量高的空气完成热交换,使空气中的水分迅速冷凝析出。当干燥腔室内的湿度小时,压缩机的运行频率相应的也较小,此时冷媒循环回路的制冷量小,但冷媒流动速度也相应地减慢,经过冷凝器的烘干气流温度提升慢,减缓了进入蒸发器的空气流的温升速度,同时蒸发器中的冷媒与空气流完成充分的热交换,保证蒸发器的除湿效果。同时随着压缩机的运行频率降低,系统的功耗也不断降低。
进一步地,通过基于干燥腔室的目标湿度划分湿度区间,并在实际湿度处于不同湿度区间时确定压缩机的运行频率,本申请的烘干控制方法能够针对不同的目标湿度调整压缩机的运行频率,提升控制方法的适用性。
进一步地,通过在空气循环回路中设置气液换热器,并增加冷却循环回路,本申请的烘干控制方法还能够进一步提升烘干效果,保证蒸发器的除湿能力,缩短烘干时间,降低烘干能耗。
具体而言,气液换热器的进气口和出气口分别与湿空气出口和蒸发器的进口连通,进液口和出液口分别与接水盘连通,在烘干系统工作时,压缩机、风机和水泵启动运行,压缩机推动冷媒沿冷媒循环回路循环,水泵带动接水盘中的冷凝水沿冷却循环回路循环,风机带动空气流在空气循环回路循环。干燥腔室内的湿空气被吸入湿空气出口,湿空气首先通过进气口进入气液换热器,在气液换热器内与冷却循环回路中的冷凝水进行热交换而温度降低,实现初步冷却,相应的冷凝水的温度被升高,实现冷凝水中冷量的回收利用,减少能源的浪费。温度被初步降低后的湿空气由出气口排出气液换热器并继续向前流动至蒸发器,在蒸发器中与冷媒进行热交换而实现二次降温,空气的温度降低至露点温度以下而析出水分,变为冷凝水滴入接水盘中。由于在此过程中湿空气不是直接被送到蒸发器进行热交换,而是先通过气液换热器的与里面的低温冷凝水进行热交换,因此到达蒸发器的湿空气将比直接送到蒸发器的湿空气的温度更低,也即减轻了蒸发器的显热负担,提高了烘干系统的除湿效率,同时冷凝水吸收湿空气的热量,系统回收了冷凝水的潜热,避免了低温的冷凝水没有被有效利用,减少了能量的损失,使系统循环效率提高,能耗降低。
进一步地,通过在Rh<Rh1时,才控制所述水泵启动运行,本申请的控制方法在干燥腔室的湿度下降到一定程度、即冷凝水量充足时才开启水泵,避免由于水量不足而导致的水泵故障。同时,在干燥腔室的湿度下降到一定程度时才开启水泵运行,也能够适时的提升烘干效果,保证衣物含水率降低时蒸发器的除湿能力。
进一步地,通过在液管上设置流量调节阀,并基于实际湿度确定流量调节阀的目标开度,本申请还能够在水泵开启时实现与压缩机频率控制的联动,使得冷凝水的流量与当前的空气湿度相适应,避免出现空气流中的水分提前在气液换热器中冷凝而导致的气液换热器出现积水的情况。
进一步地,通过使用挡板将接水盘分隔为第一部分和第二部分,并将冷凝器与节流元件之间并联设置第一管段和第二管段,第一管段设置第一电控阀,第二管段设置第二电控阀,以及第二管段部分盘设在第二部分中,并基于实际湿度与第二湿度阈值的大小来控制第一电控阀和第二电控阀的开闭,本申请的控制方法还使得冷媒能够通过第二管段与第二部分中的冷凝水进行热交换,从而实现冷媒的初步降温,增大过冷度,然后再进入节流元件进行二次降温,降低了进入蒸发器冷媒温度,提高了蒸发器的换热效率,提高烘干能效。而将接水盘分隔为第一部分和第二部分,并将进液口与第一部分连通,出液口与第二部分连通,使得冷凝水先与经过气液换热器的湿空气进行热交换,优先保证湿空气的降温,然后再与冷媒进行热交换,提升蒸发器的换热效果的提升,二者组合共同实现对冷凝水阶次利用,使得冷凝水的冷量回收达到极致。
进一步地,通过在烘干系统设置复叠换热器,还使得烘干系统能够同时提高蒸发器与冷凝器的换热效率,实现更高的除湿效率和更低的能耗。
具体地,复叠换热器的第一进口与湿空气出口连通,第一出口与蒸发器的进气口连通,第二进口与蒸发器的出口连通,第二出口与冷凝器的进口连通,这样一来,湿空气在进入蒸发器进行冷却前,首先通过复叠换热器与流出蒸发器的低温干空气进行热交换,其温度被大幅降低,低温干空气的温度同时被升高(该过程是等量热交换),温度被降低后的湿空气继续向前流动到蒸发器进行二次降温而达到露点温度以下,空气中的水分大幅析出,由于在此过程中湿空气不是直接送到蒸发器进行热交换,而是先通过复叠换热器与来自蒸发器的低温干空气进行热交换,然后才进入蒸发器进行热交换,因此,到达蒸发器的湿空气将比直接送到蒸发器的湿空气的温度低很多,因而大幅度减轻了蒸发器的负担,提高了除湿效率。
与此同时,由于蒸发器流出的低温干空气与湿空气进行了热交换,因此进入冷凝器的空气温度也比不设置复叠换热器而直接进如冷凝器的温度高,这样经过冷凝器排出再次进入干燥腔室的空气温度也要比不设置复叠换热器时要高,因此,复叠换热器的设置也提高了进入干燥腔室的空气的温度,相应地加快了衣物的烘干速度,使得干燥效率进一步提升,能耗进一步下降。
附图说明
下面参照附图并结合洗干一体机来描述本发明的烘干系统的烘干控制方法。附图中:
图1为本发明的第一种实施方式中烘干系统的系统图;
图2为本发明的第一种实施方式中烘干控制方法的主流程图;
图3为本发明的第一种实施方式中烘干控制方法的一种可能的实施方式的流程图;
图4为本发明的第二种实施方式中烘干系统的系统图;
图5为本发明的第二种实施方式中水泵和流量调节阀的控制流程图;
图6为本发明的第三种实施方式中烘干系统的系统图;
图7为本发明的第三种实施方式中第一电控阀和第二电控阀的控制流程图;
图8为本发明的第四种实施方式中烘干系统的系统图;
图9为本发明的气液换热器的一种具体实施方式的结构图;
图10为本发明的烘干控制方法的一种可能的实施方式的逻辑图。
附图标记列表
11、压缩机;12、冷凝器;13、节流元件;14、蒸发器;15、冷媒管;151、第一管段;152、第二管段;16、第一电控阀;17、第二电控阀;21、干燥腔室;211、湿空气出口;212、干空气进口;22、复叠换热器;221、第一进口;222、第一出口;223、第二进口;224、第二出口;23、气液换热器;231、壳体;2311、进气口;2312、出气口;2313、进液口;2314、出液口;232、换热管;233、折流板;234、隔板;235、分液板;236、分腔板;237、进液腔;238、出液腔;24、风机;25、风管;31、接水盘;311、挡板;312、第一部分;313、第二部分;314、排水管;32、水泵;33、液管;34、流量调节阀。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施方式是结合洗干一体机进行介绍的,但是这并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员可以将本发明的烘干控制方法应用于其他衣物处理设备。例如,本申请的烘干控制方法还能够应用于干衣机、烘鞋机等。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
实施例1
首先参照图1-3,对本发明的烘干控制方法的第一种实施方式进行描述。其中,图1为本发明的第一种实施方式中烘干系统的系统图;图2为本发明的第一种实施方式中烘干控制方法的主流程图;图3为本发明的第一种实施方式中烘干控制方法的一种可能的实施方式的流程图。
如背景技术中所述,现有的烘干系统中,随着干燥腔室内衣物的含水率逐渐降低,干燥腔室内的相对湿度也越来越小,经过冷凝器加热后的空气在干燥腔室中温度降低幅度也减小,进入蒸发器和冷凝器的空气温度不断升高,导致蒸发器的除湿能力逐渐减弱,除湿效果越来越差,这样就造成干烘干衣物时间加长,系统功耗也不断增大。
如图1所示,为了解决上述问题,本申请的烘干系统包括冷媒循环回路和空气循环回路。冷媒循环回路包括压缩机11、冷凝器12、节流元件13和蒸发器14,上述部件通过冷媒管15依次顺序连接,蒸发器14下方设置有接水盘31。空气循环回路包括通过风管25连接的干燥腔室21、蒸发器14和冷凝器12,干燥腔室21具有湿空气出口211和干空气进口212,湿空气出口211与蒸发器14的进口连通,蒸发器14的出口与冷凝器12的进口连通,冷凝器12的出口与干空气进口212连通,空气循环回路中设置有风机24。
继续参照图1,在一种可能的实施方式中,烘干系统应用于洗干一体机中,该洗干一体机包括箱体(图中未标出),箱体上设置有机门,箱体内设置有洗涤筒组件,洗涤筒组件包括外筒和内筒,内筒能够容纳待洗涤衣物,外筒上开设有上述的湿空气出口211和干空气进口212。蒸发器14、冷凝器12和风机24各自带有外壳,外壳上分别形成有与风管25连接的进口和出口。按照空气流动方向,湿空气出口211通过风管25与蒸发器14的进口连通,蒸发器14的出口通过风管25与冷凝器12的进口连通,冷凝器12的出口通过风管25与风机24的进口连通,风机24的出口通过风管25与干空气进口212连通,从而实现空气循环回路的连通。
按照冷媒流动方向,压缩机11的排气口通过冷媒管15与冷凝器12的冷媒进口连通,冷凝器12的冷媒出口通过冷媒管15与节流元件13的一端连通,节流元件13的另一端通过冷媒管15与蒸发器14的冷媒进口连通,蒸发器14的冷媒出口通过冷媒管15与气液分离器(图中未标出)的进口连通,气液分离器的出口与压缩机11的吸气口连通,从而实现冷媒循环回路的连通。其中,节流元件13优选的为电子膨胀阀,当然节流元件13还可以为毛细管或热力膨胀阀等。
参照图1,烘干系统工作时,压缩机11、风机24启动运行。压缩机11排气口排出的冷媒在依次经过冷凝器12、节流元件13和蒸发器14后从压缩机11的吸气口回到压缩机11,完成冷媒循环(冷媒循环路径图1中以实心箭头示出)。风机24带动干燥腔室21内的空气流依次经过蒸发器14、冷凝器12后回到干燥腔室21内,完成空气循环(空气循环路径图1中以空心箭头示出)。其中,空气循环中,干燥腔室21内的湿空气被吸入湿空气出口211,湿空气首先流动至蒸发器14,在蒸发器14中与冷媒循环中的低温冷媒进行热交换而实现降温,空气的温度降低至露点温度以下而析出水分,水分变为冷凝水滴入接水盘31中。降温后的空气变为干空气由蒸发器14排出至冷凝器12,在冷凝器12中于冷媒循环中的高温冷媒进行热交换而实现升温,升温后的高温空气通过干空气进口212进入干燥腔室21内对衣物进行烘干。
如图2所示,为了提高烘干效率的同时,兼顾烘干能耗,本申请的控制方法包括:
S101、在风机运行过程中,获取干燥腔室的实际湿度Rh;例如,在洗干一体机执行烘干程序的过程中,风机处于运行状态,此时通过设置在湿空气出口处的外筒上或风管上的湿度传感器来获取干燥腔室的实际湿度Rh。
S103、基于实际湿度Rh所在的湿度区间,确定压缩机的运行频率f;例如,在获取到实际湿度Rh后,通过判断Rh所在的湿度区间,来通过湿度-频率对照表或湿度-频率计算公式来确定压缩机的运行频率;优选的,实际湿度Rh与运行频率f之间成正比关系,也就是说,实际湿度Rh的值越大,则压缩机的运行频率f越高。
S105、控制压缩机以运行频率f运行;例如,在确定出压缩机的运行频率之后,控制压缩机调整至该运行频率f运行。
通过上述控制方式,本申请的烘干系统的烘干控制方法能够提高烘干效率的同时,兼顾烘干能耗。具体而言,通过基于干燥腔室21内的实际湿度所处的湿度区间来确定压缩机11的运行频率,并且实际湿度与压运行频率之间成正比关系,使得在实际干燥过程中,当干燥腔室21内的湿度大时,压缩机11的运行频率相应的也较高,此时冷媒循环回路的制冷量大,冷媒流动速度快,经过冷凝器12的烘干气流温度提升快,高温空气大量带走烘干腔室内的水汽,蒸发器14中的冷媒快速地与含湿量高的空气完成热交换,使空气中的水分迅速冷凝析出。当干燥腔室21内的湿度小时,压缩机11的运行频率相应的也较小,此时冷媒循环回路的制冷量小,但冷媒流动速度也相应地减慢,经过冷凝器12的烘干气流温度提升慢,减缓了进入蒸发器14的空气流的温升速度,同时蒸发器14中的冷媒与空气流完成充分的热交换,保证蒸发器14的除湿效果。同时随着压缩机11的运行频率降低,系统的功耗也不断降低。
下面参照图3,对本申请的烘干控制方法一种可能的实施方式进行描述。
如图3所示,在一种可能的实施方式中,烘干控制方法包括如下步骤:
首先执行步骤S201,获取干燥腔室的实际湿度Rh和目标湿度Rhm;例如,通过湿度传感器获取干燥腔室内的实际湿度Rh,通过烘干程序确定目标湿度Rhm。本领域技术人员能够理解的是,对于不同的衣物材质、不同的洗涤程序来说,烘干程序也会有所区别,相应的目标温度Rhm(即衣物的目标含水率)也不尽相同,该目标湿度Rhm可以是洗干一体机基于烘干程序提前设定好的,也可以是用户自行设定的,本申请对此不作限制。
接下来执行步骤S203,判断实际湿度Rh小于目标湿度Rhm是否成立,即Rh<Rhm是否成立;如果Rh<Rhm成立,则证明衣物已干燥,此时执行步骤S217,控制烘干系统停止工作,烘干结束;否则,如果Rh<Rhm不成立,则证明衣物的仍然具备一定的含水量,此时执行步骤S205,进一步基于实际湿度Rh所处的湿度区间进行相应的烘干操作。
较为优选地,湿度区间基于目标湿度Rhm确定。本申请中,基于目标湿度Rhm划分为三个湿度区间,即(Rhm,bRhm)、(bRhm,aRhm)和(aRhm,1)。其中,a、b为倍率系数,且a>b>1。举例而言,a=3、b=2、且Rhm=5%时,湿度区间对应的为(5%,10%)、(10%,15%)和(15%,100%)。当然,上述a、b和Rhm的具体数值并非仅限于此,本领域技术人员可以对其进行调整。同样地,上述湿度区间的划分方式仅仅为示例性的,在不偏离本申请原理的前提下,本领域技术人员可以对其进行调整。例如还可以基于目标湿度Rhm将湿度区间划分为两个、四个或更多等。
当执行步骤S205时,判断Rh≥a×Rhm是否成立,即实际湿度Rh是否处于(aRhm,1)区间。如果Rh≥a×Rhm成立,则证明衣物的含水率较高,此时执行步骤S207,确定压缩机的频率f=a×F+k1;否则,如果Rh≥a×Rhm不成立,则执行步骤S209,进一步判断b×Rhm≤Rh<a×Rhm是否成立,即实际湿度Rh是否处于(bRhm,aRhm)区间。
当执行步骤S209时,如果b×Rhm≤Rh<a×Rhm成立,则证明衣物的含水率已经下降至较低的范围,此时执行步骤S211,确定压缩机的频率f=(a+b)/2×F+k2;否则,如果b×Rhm≤Rh<a×Rhm成立,则证明此时衣物的含水率已经接近目标含水率,此时执行步骤S213,确定压缩机的频率f=(a+b)/2×F+k3;其中,上述公式中,F为压缩机的额定频率,k1、k2、k3为常数,且k1>k2>k3
当确定出压缩机的运行频率f后,执行步骤S215,控制压缩机以运行频率f运行。
通过基于干燥腔室21的目标湿度Rhm划分湿度区间,并在实际湿度Rh处于不同湿度区间时确定压缩机11的运行频率,本申请的烘干控制方法能够针对不同的目标湿度调整压缩机11的运行频率,提升控制方法的适用性。
需要说明的是,虽然上述实施方式是结合通过计算公式确定运行频率f进行说明的,但这并非旨在于限制本申请的保护范围,本领域技术人员还可以对确定运行频率f的方式进行调整,只要该调整方式满足实际湿度Rh与运行频率f之间成正比关系即可。比如,本领域技术人员还可以基于湿度-频率对照表来确定压缩机11的运行频率f。
实施例2
下面参照图4-5、9,对本申请的烘干控制方法的第二种实施方式进行描述。其中,图4为本发明的第二种实施方式中烘干系统的系统图;图5为本发明的第二种实施方式中水泵和流量调节阀的控制流程图;图9为本发明的气液换热器的一种具体实施方式的结构图。
如图4和图9所示,本申请的第二种实施方式中,在实施例1的基础上,烘干系统还包括气液换热器23和冷却循环回路。气液换热器23具有进气口2311、出气口2312、进液口2313和出液口2314,进气口2311与湿空气出口211连通,出气口2312与蒸发器14的进口连通。冷却循环回路包括通过液管33连通的接水盘31、水泵32和气液换热器23,接水盘31设置于蒸发器14的下方,用于收集冷凝水,进液口2313和出液口2314分别与接水盘31连通,水泵32设置于进液口2313/出液口2314与接水盘31之间,进液口2313/出液口2314与接水盘31之间的液管33上还设置有流量调节阀34。
具体地,按照空气流动方向,湿空气出口211通过风管25与气液换热器23的进气口2311连通,气液换热器23的出气口2312通过风管25与蒸发器14的进口连通,蒸发器14的出口通过风管25与冷凝器12的进口连接,冷凝器12的出口通过风管25与风机24的进口连通,风机24的出口通过风管25与干空气进口212连通,从而实现空气循环回路的连通。按照冷凝水流动方向,接水盘31通过一端为自由端的液管33与水泵32的吸水口连通,水泵32的排水口通过液管33与气液换热器23的进液口2313连通,气液换热器23的出液口2314通过液管33与流量调节阀34的一端连通,流量调节阀34的另一端通过液管33与接水盘31的侧壁上开设的回液口连通,从而实现冷却循环回路的连通。其中,与水泵32的吸水口连接的液管33的自由端伸入接水盘31内,流量调节阀34可以为电子膨胀阀或开度可调的电磁阀等。
参照图9,在一种较为优选的实施方式中,气液换热器23采用管壳式换热器,其包括大致成圆筒状的壳体231和设置于壳体231内的多根换热管232。壳体231沿竖直方向布置,其内部设置有隔板234,隔板234沿壳体231的长度方向由下部向上延伸固定,固定好后,壳体231被分隔成截面为倒U型的流道。换热管232为U型管,每个换热管232沿倒U型的流道延伸设置。壳体231内还设置有多个折流板233,每个折流板233上开设有多个允许换热管232穿过的通孔,折流板233通过多个通孔套设在换热管232上,并分别与壳体231内壁或隔板234固定连接。多个折流板233间隔设置,从而使得U型流道的每一直线段又被分隔为S型的折流通道。
继续参照图9,按照壳体231的布置方向,进气口2311和出气口2312分别开设在壳体231的周侧下部,且进气口2311和出气口2312以相背离的方向设置于U型的流道的两端,其中进气口2311靠近U型的流道的上游端开设,出气口2312靠近U型的流道的下游端开设。壳体231内还设置有分液板235,分液板235与壳体231的下端部之间通过分腔板236分隔为进液腔237和出液腔238,进液口2313和出液口2314分别设置于壳体231的下端部对应于进液腔237和出液腔238的位置,并且进液口2313位于靠近空气流动的下游段的一侧(即图9中所示的右侧),出液口2314位于靠近空气流动的上游端的一侧(即图9中所示的左侧)。开设好后,进气口2311的面积大于进液口2313和出液口2314的面积,出气口2312的面积也大于进液口2313和出液口2314的面积。分液板235上对应进液腔237和出液腔238还分别设置有多个通孔,每根U型换热管232的两端分别插设于分液板235对应于进液腔237和出液腔238的通孔上,从而实现换热管232的固定,以及进液口2313和出液口2314与换热管232两端的连通。
按照图9方位,在水泵32的带动下,冷凝水通过进液口2313进入进液腔237内并分流为多路分别进入一根U型管,在流经U型管后通过U型管的另一端汇流至出液腔238,最终通过出液口2314流回接水盘31(冷凝水循环路径图9中以空心箭头示出)。与此同时,在风机24的带动下,湿空气通过进气口2311进入壳体231,在折流板233和隔板234的阻隔下,沿S型的折流通道往复流动,在流动过程中,与U型管充分接触实现与冷凝水之间的热交换而温度下降,热交换后的空气通过出气口2312流出壳体231(空气循环路径图9中以实心箭头示出)。
参照图5,与该烘干系统对应地,本申请的烘干控制方法在实施例1的基础上还包括如下步骤:
首先执行步骤S301,获取干燥腔室的实际湿度Rh,例如,通过湿度传感器获取干燥腔室内的实际湿度Rh。
然后执行步骤S303,判断实际湿度小于第一湿度阈值是否成立,即Rh<Rh1是否成立;如果Rh<Rh1成立,则证明此时衣物的含水率已经下降至一定程度,接水盘中的冷凝水相应的也积攒到足够的量,此时执行步骤S305,进一步确定流量调节阀的开度P;否则,如果Rh<Rh1不成立,则证明此时衣物的含水率较高,接水盘中的冷凝水积攒量不足以支撑冷却循环回路的运行,此时执行步骤S309,保持水泵停止。
当执行步骤S305时,基于实际湿度Rh来确定流量调节阀的开度P。具体地,通过P=m/Rh+k4来确定流量调节阀的开度P,其中m为开度系数,k4为常数。由上述公式可以看出,实际湿度Rh与流量调节阀的开度P之间成反比关系,也即实际湿度Rh越低,相应的流量调节阀的开度P越大。
在确定出流量调节阀的开度P后,执行步骤S307,控制水泵启动并调节流量调节阀的开度至P。
上述设置方式的优点在于:通过在空气循环回路中设置气液换热器23,并增加冷却循环回路,本申请的烘干控制方法还能够进一步提升烘干效果,保证蒸发器14的除湿能力,缩短烘干时间,降低烘干能耗。
具体而言,气液换热器23的进气口2311和出气口2312分别与湿空气出口211和蒸发器14的进口连通,进液口2313和出液口2314分别与接水盘31连通,在烘干系统工作时,压缩机11、风机24和水泵32启动运行,压缩机11推动冷媒沿冷媒循环回路循环,水泵32带动接水盘31中的冷凝水沿冷却循环回路循环,风机24带动空气流在空气循环回路循环。干燥腔室21内的湿空气被吸入湿空气出口211,湿空气首先通过进气口2311进入气液换热器23,在气液换热器23内与冷却循环回路中的冷凝水进行热交换而温度降低,实现初步冷却,相应的冷凝水的温度被升高,实现冷凝水中冷量的回收利用,减少能源的浪费。温度被初步降低后的湿空气由出气口2312排出气液换热器23并继续向前流动至蒸发器14,在蒸发器14中与冷媒进行热交换而实现二次降温,空气的温度降低至露点温度以下而析出水分,变为冷凝水滴入接水盘31中。由于在此过程中湿空气不是直接被送到蒸发器14进行热交换,而是先通过气液换热器23的与里面的低温冷凝水进行热交换,因此到达蒸发器14的湿空气将比直接送到蒸发器14的湿空气的温度更低,也即减轻了蒸发器14的显热负担,提高了烘干系统的除湿效率,同时冷凝水吸收湿空气的热量,系统回收了冷凝水的潜热,避免了低温的冷凝水没有被有效利用,减少了能量的损失,使系统循环效率提高,能耗降低。
进一步地,通过在Rh<Rh1时,才控制所述水泵32启动运行,本申请的控制方法在干燥腔室21的湿度下降到一定程度、即冷凝水量充足时才开启水泵32,避免由于水量不足而导致的水泵32故障。同时,在干燥腔室21的湿度下降到一定程度时才开启水泵32运行,也能够适时的提升烘干效果,保证衣物含水率降低时蒸发器14的除湿能力。
进一步地,通过在液管33上设置流量调节阀34,并基于实际湿度确定流量调节阀34的目标开度,本申请还能够在水泵32开启时实现与压缩机11频率控制的联动,使得冷凝水的流量与当前的空气湿度相适应,避免出现空气流中的水分提前在气液换热器23中冷凝而导致的气液换热器23出现积水的情况。
通过采用管壳式换热器,使得本申请的气液换热器23具有传热系数高、换热速度快、占用空间小、寿命长等优点。通过在管壳式换热器内设置隔板234和折流板233,使得壳体231内部形成S型的折流通道,使得空气与换热管232充分接触,显著增加空气与换热管232的换热面积,从而大幅提高换热效果,进而降低蒸发器14的负担,提高系统的除湿效率。通过将进气口2311和出气口2312设置在壳体231的周侧且分别对应U型流道的一端,以及将进液口2313和出液口2314均设置于壳体231靠近U型管的自由端的端面上,使得空气在进入管壳式换热器后能够与换热管232最大程度的进行热交换,提高换热效果。通过将进气口2311开设于靠近U型的流道的上游端的壳体231上,出气口2312开设于靠近U型的流道的下游端的壳体231上,进液口2313开设于靠近U型管下游端的壳体231上,出液口2314开设于靠近U型管上游端的壳体231上,使得空气的流向与冷凝水的流向相反,实现空气与冷凝水之间的逆流换热,换热效果较佳。由于冷凝水为液体,压降较小,空气为气体,压降较大,因此将进气口2311的面积大于进液口2313和出液口2314的面积,出气口2312的面积大于进液口2313和出液口2314的面积,能够减小空气的压降,实现较好的流动换热效果。
当然,本领域技术人员可以理解的是,上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,或者省略部分步骤,这些简单的变化都在本发明的保护范围之内。例如,流量调节阀34可以不设置,此时可以省略确定流量调节阀开度的步骤。再如,在冷凝水量充足的前提下,也可以省略实际湿度与第一湿度阈值的判断步骤,而是直接在烘干程序启动时就控制水泵启动运行。
实施例3
下面参照图6-7,对本申请的烘干控制方法的第三种实施方式进行描述。其中,图3为本发明的第二种实施方式中烘干系统的系统图。其中,图6为本发明的第三种实施方式中烘干系统的系统图;图7为本发明的第三种实施方式中第一电控阀和第二电控阀的控制流程图。
如图6所示,本申请的第三种实施方式中,在实施例2的基础上,接水盘31还设置有挡板311,挡板311将接水盘31分隔为第一部分312和第二部分313,进液口2313与第一部分312连通,出液口2314与第二部分313连通,冷凝器12与节流元件13之间设置有并联的第一管段151和第二管段152,第一管段151上设置有第一电控阀16,第二管段152上设置有第二电控阀17,且第二管段152部分盘设于第二部分313中。其中,盘设在第二部分313中的冷媒管15可以沿接水盘31的底面呈U型或S型排布,也可以沿接水盘31的高度方向上排布多层,每层以U型或S型排布,并且最高层的冷媒管15低于接水盘31的最高水位。此外,接水盘31对应第二部分313的侧壁上开设有溢流口(图中未标出),溢流口处连接有排水管314。
参照图7,与该烘干系统对应地,本申请的烘干控制方法在实施例1的基础上还包括如下步骤:
首先执行步骤S401,获取干燥腔室的实际湿度Rh,例如,通过湿度传感器获取干燥腔室内的实际湿度Rh。
然后执行步骤S403,判断实际湿度小于第二湿度阈值是否成立,即Rh<Rh2是否成立;如果Rh<Rh2不成立,则证明此时衣物的含水率较高,烘干系统的烘干效率能够保证,此时执行步骤S405,控制第一电控阀打开;否则,如果Rh<Rh2成立,则证明此时衣物的含水率已经下降至一定程度,烘干系统的烘干效率有所下降,此时执行步骤S407,控制第一电控阀关闭、第二电控阀打开,使得全部冷媒先经过接水盘的第二部分后再进入节流元件。
通过使用挡板311将接水盘31分隔为第一部分312和第二部分313,并将冷凝器12与节流元件13之间并联设置第一管段151和第二管段152,第一管段151设置第一电控阀16,第二管段152设置第二电控阀17,以及第二管段152部分盘设在第二部分313中,并基于实际湿度与第二湿度阈值的大小来控制第一电控阀16和第二电控阀17的开闭,本申请的控制方法还使得冷媒能够通过第二管段152与第二部分313中的冷凝水进行热交换,从而实现冷媒的初步降温,增大过冷度,然后再进入节流元件13进行二次降温,降低了进入蒸发器14冷媒温度,提高了蒸发器14的换热效率,提高烘干能效。而将接水盘31分隔为第一部分312和第二部分313,并将进液口2313与第一部分312连通,出液口2314与第二部分313连通,使得冷凝水先与经过气液换热器23的湿空气进行热交换,优先保证湿空气的降温,然后再与冷媒进行热交换,提升蒸发器14的换热效果的提升,二者组合共同实现对冷凝水阶次利用,使得冷凝水的冷量回收达到极致。
实施例4
下面参照图8,对本申请的烘干控制方法的第四种实施方式进行描述。其中,图8为本发明的第四种实施方式中烘干系统的系统图。
为描述方便,以下借助在实施例1的烘干系统的基础上实施改进进行描述。本领域技术人员可以理解的是,在实施例2-3的基础上也可以实施相同或相似的改进,其取得的技术效果也相应的相同或相似。
如图8所示,在保持实施例1中的其他结构设置不变的前提下,烘干系统还包括复叠换热器22,复叠换热器22具有第一进口221、第一出口222、第二进口223和第二出口224,第一进口221与第一出口222之间形成一个空气流道,第二进口223与第二出口224之间形成另一个空气流道,两个空气流道彼此交叉设置,从而能够交叉换热。第一进口221与湿空气出口211连通,第一出口222与气蒸发器14的进口连通,第二进口223与蒸发器14的出口连通,第二出口224与冷凝器12的进口连通。本申请对于复叠换热器22的具体结构形式不作限制,任何能够满足上述条件的换热器均可以作为复叠换热器22应用于本申请中。例如,可以采用板翅式热交换器或转轮式热交换器作为本申请的复叠换热器22使用等。
按照图8所示方位,由湿空气出口211排出的高温湿空气在进入蒸发器14冷却前,首先通过复叠换热器22的第一进口221流入复叠换热器22的一个空气流道,流出蒸发器14的低温干空气通过复叠换热器22的第二进口223流入复叠换热器22的另一空气流道,两个空气流到内的空气进行热交换,从而高温湿空气的温度被降低,低温干空气的温度同时被升高(该过程是等量热交换)。然后,温度被降低后的湿空气继续向前流动到蒸发器14进行二次降温,与此同时,温度被升高后的干空气继续向前流动到冷凝器12进行二次升温。
可以看出,通过在烘干系统设置复叠换热器22,使得烘干系统能够同时提高蒸发器14与冷凝器12的换热效率,实现更高的除湿效率和更低的能耗。
具体地,湿空气在进入蒸发器14进行冷却前,首先通过复叠换热器22与流出蒸发器14的低温干空气进行热交换,其温度被大幅降低,低温干空气的温度同时被升高(该过程是等量热交换),温度被降低后的湿空气继续向前流动到蒸发器14进行二次降温而达到露点温度以下,空气中的水分大幅析出,由于在此过程中湿空气不是直接送到蒸发器14进行热交换,而是先通过复叠换热器22与来自蒸发器14的低温干空气进行热交换,然后才进入蒸发器14进行热交换,因此,到达蒸发器14的湿空气将比直接送到蒸发器14的湿空气的温度低很多,因而大幅度减轻了蒸发器14的负担,提高了除湿效率。
与此同时,由于蒸发器14流出的低温干空气与湿空气进行了热交换,因此进入冷凝器12的空气温度也比不设置复叠换热器22而直接进如冷凝器12的温度高,这样经过冷凝器12排出再次进入干燥腔室21的空气温度也要比不设置复叠换热器22时要高,因此,复叠换热器22的设置也提高了进入干燥腔室21的空气的温度,相应地加快了衣物的烘干速度,使得干燥效率进一步提升,能耗进一步下降。
需要说明的是,上述优选的实施方式仅仅用于阐述本发明的原理,并非旨在于限制本发明的保护范围。在不偏离本发明原理的前提下,本领域技术人员可以对上述设置方式进行调整,以便本发明能够适用于更加具体的应用场景。
例如,在一种可替换的实施方式中,管壳式换热器的具体设置方式并非仅限于上述方式,本领域技术人员可以对其进行调整,只要其设置方式能够实现冷凝水与空气之间的热交换即可。比如,进气口2311、出气口2312、进液口2313和出液口2314的设置位置可基于实际产品进行调整,如进气口2311和出气口2312可以分别设置在侧壁的上部和下部,可以相背离设置也可以沿壳体231长度方向共线设置;换热管232的具体形式和数量可以进行调整,如还可以为直管或S型管等;折流板233和隔板234中的一个或全部都可以选择性地省略等。
再如,在另一种可替换的实施方式中,蒸发器14、冷凝器12和风机24的设置方式并非一成不变,在满足能够组成空气循环回路的前提下,本领域技术人员可以对上述部件的设置方式进行更改,这种更改并未偏离本申请的原理。比如,蒸发器14、冷凝器12和风机24中的一个或多个还可以直接设置在风管25内部。
再如,在另一种可替换的实施方式中,虽然上述实施方式中是以管壳式换热器进行阐述的,但是气液换热器23的实施方式不只限于此,本领域技术人员可以基于实际应用场景进行选择,即时其效果较管壳式换热器并不显著。比如,气液换热器23还可以板式换热器或套管换热器等,当使用套管换热器时,可以设置为空气走外管,冷凝水走内管,以兼顾流动换热效果。
再如,在另一种可替换的实施方式中,接水盘31的第一部分312和第二部分313可以均设置在蒸发器14的下方,并且第二管段152还可以先部分悬空设置在蒸发器14与第二部分313之间,然后再盘设于接水盘31的第二部分313内部。其中,悬空部分可以沿水平面呈U型或S型排布,也可以沿高度方向排布多层,每层以U型或S型排布。这样一来,蒸发器14产生的部分冷凝水在下落过程中首先滴落到悬空的第二管段152上,然后再流至第二部分313内。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
下面参照图10,对本申请的烘干控制方法的一种可能的控制流程进行描述。其中,图10为本发明的烘干控制方法的一种可能的实施方式的逻辑图。
如图10所示,在一种可能的控制过程中,洗干一体机执行完洗涤程序后执行烘干程序。
(1)首先执行步骤S501,获取干燥腔室的实际湿度Rh和目标湿度Rhm,本实施方式中,Rhm=5%。
(2)然后执行步骤S503,判断Rh<5%是否成立;如果Rh<5%成立,则衣物烘干完毕,程序结束;否则,如果Rh<5%不成立,则进一步执行步骤S505,判断Rh≥30%是否成立。
(3)执行步骤S505时,如果Rh≥30%成立,则执行步骤S507,控制压缩机以运行频率f=1.5×80-10=110Hz运行,并且控制第一电控阀打开,第二电控阀关闭;否则,如果Rh≥30%不成立,则进一步执行步骤S509,判断15%≤Rh<30%是否成立。
(4)执行步骤S509时,如果15%≤Rh<30%成立,则执行步骤S511,控制压缩机以运行频率f=(1.5+1.1)/2×80-15=89Hz运行,并且控制第一电控阀打开,第二电控阀打开;否则,如果15%≤Rh<30%不成立,则进一步执行步骤S513,控制压缩机以运行频率f=(1.5+1.1)/2×80-40=64Hz运行,控制流量调节阀的开度为P=2100/Rh-20,并且控制第一电控阀关闭,第二电控阀打开。
本领域技术人员能够理解的是,上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。
本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
此外,需要说明的是,尽管上文详细描述了本发明方法的详细步骤,但是,在不偏离本发明的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本发明的基本构思,因此也落入本发明的保护范围之内。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

1.一种烘干系统的烘干控制方法,其特征在于,所述烘干系统包括:
冷媒循环回路,所述冷媒循环回路包括通过冷媒管连接的压缩机、冷凝器、节流元件和蒸发器,所述蒸发器下方设置有接水盘;
空气循环回路,所述空气循环回路包括通过风管连接的干燥腔室、所述蒸发器和所述冷凝器,所述干燥腔室具有湿空气出口和干空气进口,所述湿空气出口与所述蒸发器的进口连通,所述蒸发器的出口与所述冷凝器的进口连通,所述冷凝器的出口与所述干空气进口连通,所述空气循环回路配置有风机;
所述烘干控制方法包括:
在所述风机运行过程中,获取所述干燥腔室的实际湿度Rh;
基于所述实际湿度Rh所在的湿度区间,确定所述压缩机的运行频率f;
控制所述压缩机以所述运行频率f运行;
其中,所述实际湿度Rh与所述运行频率f之间成正比关系。
2.根据权利要求1所述的烘干系统的烘干控制方法,其特征在于,所述湿度区间基于所述干燥腔室的目标湿度Rhm确定。
3.根据权利要求2所述的烘干系统的烘干控制方法,其特征在于,“基于所述实际湿度所在的湿度区间,确定所述压缩机的运行频率”的步骤进一步包括:
当Rh≥a×Rhm时,确定所述运行频率f=a×F+k1
当b×Rhm≤Rh<a×Rhm时,确定所述运行频率f=(a+b)/2×F+k2
当Rhm≤Rh<b×Rhm时,确定所述运行频率f=(a+b)/2×F+k3
其中,F为所述压缩机的额定频率,a、b为倍率系数,k1、k2、k3为常数,且a>b>1,k1>k2>k3
4.根据权利要求2所述的烘干系统的烘干控制方法,其特征在于,所述烘干控制方法还包括:
当Rh<Rhm时,控制所述烘干系统停止工作。
5.根据权利要求1所述的烘干系统的烘干控制方法,其特征在于,所述空气循环回路还包括:
气液换热器,所述气液换热器具有进气口、出气口、进液口和出液口,所述进气口与所述湿空气出口连通,所述出气口与所述蒸发器的进口连通;
冷却循环回路,所述冷却循环回路包括通过液管连通的所述接水盘、水泵和所述气液换热器,所述接水盘设置于所述蒸发器的下方,用于收集冷凝水,所述进液口和所述出液口分别与所述接水盘连通,所述水泵设置于所述进液口/所述出液口与所述接水盘之间;
所述烘干控制方法还包括:
控制所述水泵启动运行。
6.根据权利要求5所述的烘干系统的烘干控制方法,其特征在于,“控制所述水泵启动运行”的步骤进一步包括:
当Rh<Rh1时,控制所述水泵启动运行;
其中,Rh1为第一湿度阈值。
7.根据权利要求6所述的烘干系统的烘干控制方法,其特征在于,所述进液口/所述出液口与所述接水盘之间的液管上还设置有流量调节阀,所述烘干控制方法还包括:
当Rh<Rh1时,基于所述实际湿度Rh,确定所述流量调节阀的目标开度P;
控制所述流量调节阀调整至所述目标开度P。
8.根据权利要求5所述的烘干系统的烘干控制方法,其特征在于,所述接水盘还设置有挡板,所述挡板将所述接水盘分隔为第一部分和第二部分,所述进液口与所述第一部分连通,所述出液口与所述第二部分连通,所述冷凝器与所述节流元件之间设置有并联的第一管段和第二管段,所述第一管段上设置有第一电控阀,所述第二管段上设置有第二电控阀,且所述第二管段部分盘设于所述第二部分中,
所述烘干控制方法还包括:
比较所述实际湿度Rh与第二湿度阈值Rh2的大小;
基于比较结果,控制所述第一电控阀和所述第二电控阀的开闭。
9.根据权利要求8所述的烘干系统的烘干控制方法,其特征在于,“基于所述实际湿度Rh,控制所述第一电控阀和所述第二电控阀的开闭”的步骤进一步包括:
当Rh>Rh2时,控制所述第一电控阀打开;
当Rh≤Rh2时,控制所述第一电控阀关闭、所述第二电控阀打开。
10.根据权利要求1所述的烘干系统的烘干控制方法,其特征在于,所述烘干系统还包括复叠换热器,所述复叠换热器具有第一进口、第一出口、第二进口和第二出口,所述第一进口与第一出口之间形成的空气流道与所述第二进口与所述第二出口之间形成的空气流道能够交叉换热,
其中,所述第一进口与所述湿空气出口连通,所述第一出口与所述蒸发器的进口连通,所述第二进口与所述蒸发器的出口连通,所述第二出口与所述冷凝器的进口连通。
CN202011111012.3A 2020-10-16 2020-10-16 烘干系统的烘干控制方法 Active CN112227043B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011111012.3A CN112227043B (zh) 2020-10-16 2020-10-16 烘干系统的烘干控制方法
PCT/CN2021/131667 WO2022068973A1 (zh) 2020-10-16 2021-11-19 烘干系统的烘干控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011111012.3A CN112227043B (zh) 2020-10-16 2020-10-16 烘干系统的烘干控制方法

Publications (2)

Publication Number Publication Date
CN112227043A true CN112227043A (zh) 2021-01-15
CN112227043B CN112227043B (zh) 2023-04-18

Family

ID=74117724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011111012.3A Active CN112227043B (zh) 2020-10-16 2020-10-16 烘干系统的烘干控制方法

Country Status (2)

Country Link
CN (1) CN112227043B (zh)
WO (1) WO2022068973A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022068972A1 (zh) * 2020-10-16 2022-04-07 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备
WO2022068970A1 (zh) * 2020-10-16 2022-04-07 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备
WO2022068973A1 (zh) * 2020-10-16 2022-04-07 青岛海尔空调器有限总公司 烘干系统的烘干控制方法
CN114481578A (zh) * 2022-01-24 2022-05-13 珠海格力电器股份有限公司 热泵干衣机控制方法、装置及热泵干衣机
CN115523749A (zh) * 2022-08-09 2022-12-27 青岛海尔空调器有限总公司 热泵烘干机、热泵烘干机控制方法、装置和可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517857A (zh) * 2011-11-08 2012-06-27 海尔集团公司 一种具有余热回收功能的干衣冷凝用热交换系统及干衣机
CN105002711A (zh) * 2015-08-11 2015-10-28 珠海格力电器股份有限公司 热泵干衣机的预冷却装置、干衣机及控制方法
CN105986446A (zh) * 2015-01-30 2016-10-05 杭州三花研究院有限公司 烘干系统及其使用方法
WO2018173120A1 (ja) * 2017-03-21 2018-09-27 三菱電機株式会社 除湿機
CN111076570A (zh) * 2019-12-26 2020-04-28 谌军军 一种干式壳管式蒸发器
CN213772594U (zh) * 2020-10-16 2021-07-23 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201358383Y (zh) * 2009-02-15 2009-12-09 陈少东 干衣装置
EP2519686B1 (en) * 2009-12-31 2016-08-10 Arçelik Anonim Sirketi Heat pump laundry dryer
CN206683095U (zh) * 2017-04-28 2017-11-28 广东美的制冷设备有限公司 空调器
CN110284308B (zh) * 2019-06-19 2020-08-11 无锡小天鹅电器有限公司 衣物处理设备用冷却装置及衣物处理设备
CN112227043B (zh) * 2020-10-16 2023-04-18 青岛海尔空调器有限总公司 烘干系统的烘干控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517857A (zh) * 2011-11-08 2012-06-27 海尔集团公司 一种具有余热回收功能的干衣冷凝用热交换系统及干衣机
CN105986446A (zh) * 2015-01-30 2016-10-05 杭州三花研究院有限公司 烘干系统及其使用方法
CN105002711A (zh) * 2015-08-11 2015-10-28 珠海格力电器股份有限公司 热泵干衣机的预冷却装置、干衣机及控制方法
WO2018173120A1 (ja) * 2017-03-21 2018-09-27 三菱電機株式会社 除湿機
CN111076570A (zh) * 2019-12-26 2020-04-28 谌军军 一种干式壳管式蒸发器
CN213772594U (zh) * 2020-10-16 2021-07-23 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022068972A1 (zh) * 2020-10-16 2022-04-07 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备
WO2022068970A1 (zh) * 2020-10-16 2022-04-07 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备
WO2022068973A1 (zh) * 2020-10-16 2022-04-07 青岛海尔空调器有限总公司 烘干系统的烘干控制方法
CN114481578A (zh) * 2022-01-24 2022-05-13 珠海格力电器股份有限公司 热泵干衣机控制方法、装置及热泵干衣机
CN115523749A (zh) * 2022-08-09 2022-12-27 青岛海尔空调器有限总公司 热泵烘干机、热泵烘干机控制方法、装置和可读存储介质
CN115523749B (zh) * 2022-08-09 2024-01-16 青岛海尔空调器有限总公司 热泵烘干机、热泵烘干机控制方法、装置和可读存储介质

Also Published As

Publication number Publication date
WO2022068973A1 (zh) 2022-04-07
CN112227043B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN112227043B (zh) 烘干系统的烘干控制方法
EP3040470B1 (en) Clothes treating apparatus
US6804975B2 (en) Air conditioning apparatus
EP3312334A1 (en) Clothes-handling apparatus having drying function
WO2022068972A1 (zh) 烘干系统及包括该系统的衣物处理设备
KR100208144B1 (ko) 공기흐름전환식 냉난방겸용 공기조화기
WO2022068971A1 (zh) 烘干系统及包括该系统的衣物处理设备
WO2020097831A1 (zh) 闭式热泵干衣机系统
WO2022068970A1 (zh) 烘干系统及包括该系统的衣物处理设备
CN107687676B (zh) 室内机
CN215412256U (zh) 一种吊顶式除湿机
KR200453902Y1 (ko) 냉. 온풍 교차건조기
WO2021258819A1 (zh) 冰箱
CN107543251B (zh) 室内机
CN208998433U (zh) 一种整体式带热管热回收的除湿热泵烘干设备
CN214009607U (zh) 热交换设备
CN217504180U (zh) 一种热泵烘干设备及热泵烤房
CN220103680U (zh) 一种顶置式开式热泵烘干机组及烘干房
CN107576023B (zh) 一种柜式空调器的控制方法
CN216132010U (zh) 除湿机
CN220572168U (zh) 一种气路循环机构以及洗碗机
CN216522004U (zh) 空调室内机
CN217504179U (zh) 一种热泵烘干设备及热泵烤房
CN213681404U (zh) 一种干衣机用空气控制机构及干衣机
CN212869980U (zh) 加湿装置以及空调系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant