WO2022068970A1 - 烘干系统及包括该系统的衣物处理设备 - Google Patents

烘干系统及包括该系统的衣物处理设备 Download PDF

Info

Publication number
WO2022068970A1
WO2022068970A1 PCT/CN2021/131664 CN2021131664W WO2022068970A1 WO 2022068970 A1 WO2022068970 A1 WO 2022068970A1 CN 2021131664 W CN2021131664 W CN 2021131664W WO 2022068970 A1 WO2022068970 A1 WO 2022068970A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
outlet
inlet
condenser
drying system
Prior art date
Application number
PCT/CN2021/131664
Other languages
English (en)
French (fr)
Inventor
罗荣邦
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022068970A1 publication Critical patent/WO2022068970A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements

Definitions

  • the present invention relates to the technical field of laundry treatment, in particular to a drying system and a laundry treatment device including the system.
  • the present invention provides a drying system, the drying system includes: : a refrigerant circulation loop, which includes a compressor, a condenser, a throttling element, and an evaporator connected by a refrigerant pipe; an air circulation loop, which includes a drying chamber, a fan, the evaporator, and the evaporator.
  • a refrigerant circulation loop which includes a compressor, a condenser, a throttling element, and an evaporator connected by a refrigerant pipe
  • an air circulation loop which includes a drying chamber, a fan, the evaporator, and the evaporator.
  • the condenser, the drying chamber, the evaporator and the condenser are connected by an air duct, the drying chamber has a wet air outlet and a dry air inlet, and the wet air outlet is connected to the inlet of the evaporator
  • the outlet of the evaporator is communicated with the inlet of the condenser, and the outlet of the condenser is communicated with the dry air inlet; wherein, a water receiving tray is provided below the evaporator, and the water receiving tray
  • the refrigerant pipe between the condenser and the throttling element includes a first pipe section, and the first pipe section is coiled in the water receiving tray.
  • the refrigerant pipe between the condenser and the first pipe section further includes a second pipe section, the second pipe section is connected to the first pipe section and the second pipe section is suspended between the evaporator and the water receiving tray.
  • the first pipe section is arranged in the water receiving tray in the form of a U-shaped or S-shaped tray.
  • the second pipe section is arranged in a U-shaped or S-shaped disk between the evaporator and the water receiving tray.
  • the fan is arranged between the outlet of the condenser and the dry air inlet.
  • an overflow port is also provided on the side wall of the water receiving tray, and an overflow pipe is connected to the overflow port.
  • the bottom of the water receiving tray is further provided with a drain port, and the drain port is connected with a drain pipe.
  • the drying system further comprises a humidity sensor and a controller, the humidity sensor is arranged at the wet air outlet of the drying chamber, the controller and the humidity sensor connect.
  • the drying system further comprises a cascade heat exchanger, the cascade heat exchanger has a first inlet, a first outlet, a second inlet and a second outlet, the The air flow channel formed between the first inlet and the first outlet and the air flow channel formed between the second inlet and the second outlet can cross heat exchange, wherein the first inlet and the moist air The outlets are in communication, the first outlet is in communication with the inlet of the evaporator, the second inlet is in communication with the outlet of the evaporator, and the second outlet is in communication with the inlet of the condenser.
  • the present application also provides a clothes treatment device, the clothes treatment device comprising the drying system according to any one of the above preferred technical solutions.
  • the drying system includes: a refrigerant circulation loop, and the refrigerant circulation loop includes a compressor, a condenser, a throttling element and an evaporator connected by a refrigerant pipe; Circulation loop, the air circulation loop includes a drying chamber, a fan, an evaporator and a condenser. The drying chamber, the evaporator and the condenser are connected by an air duct.
  • the drying chamber has a humid air outlet and a dry air inlet, and the humid air outlet is connected with the evaporation
  • the inlet of the evaporator is communicated with the inlet of the condenser, and the outlet of the condenser is communicated with the dry air inlet; wherein, a water receiving tray is arranged below the evaporator, and the water receiving tray is used to collect condensed water, and the condenser is connected to the dry air inlet.
  • the refrigerant pipe between the throttling elements includes a first pipe section, and the first pipe section is coiled in the water receiving tray.
  • the present application can enhance the heat exchange effect of the evaporator, shorten the drying time, and reduce the drying energy consumption.
  • the compressor and the fan start to run, the compressor pushes the refrigerant to circulate along the refrigerant circulation loop, and the fan drives the air flow to circulate in the air circulation loop.
  • the humid air in the drying chamber is sucked into the humid air outlet, and the humid air first flows to the evaporator, where it exchanges heat with the refrigerant to achieve cooling. in the water tray.
  • the refrigerant first passes through the water receiving tray and exchanges heat with the condensed water in the water receiving tray after flowing out of the condenser.
  • the condensed water absorbs the heat of the refrigerant.
  • the present application can also use the condensate water to drop on the suspended refrigerant pipe to realize wet film heat exchange, and further improve the temperature drop of the refrigerant. Effect.
  • the condensed water can be fully utilized for heat exchange, and the cooling effect of the refrigerant can be enhanced.
  • the heat exchange effect of the wet film heat exchange can be improved.
  • the drying system can also improve the heat exchange efficiency of the evaporator and the condenser, and achieve higher dehumidification efficiency and lower energy consumption.
  • the first inlet of the cascade heat exchanger is communicated with the humid air outlet
  • the first outlet is communicated with the inlet of the evaporator
  • the second inlet is communicated with the outlet of the evaporator
  • the second outlet is communicated with the inlet of the condenser, such a
  • the humid air Before entering the evaporator for cooling, the humid air first exchanges heat with the low-temperature dry air flowing out of the evaporator through the cascade heat exchanger, and its temperature is greatly reduced, and the temperature of the low-temperature dry air is simultaneously increased (this process is Equivalent heat exchange), the humid air whose temperature has been lowered continues to flow forward to the evaporator for secondary cooling and reaches below the dew point temperature, and the moisture in the air is greatly precipitated, because the humid air is not directly sent to the
  • the moist air reaching the evaporator will be more The temperature of the humid air is much lower, which greatly reduces the burden on the evaporator and improves the dehumidification efficiency.
  • the temperature of the air entering the condenser is also higher than the temperature of the air entering the condenser without a cascade heat exchanger.
  • the temperature of the air that is discharged and re-entered into the drying chamber is also higher than that without the cascade heat exchanger. Therefore, the setting of the cascade heat exchanger also increases the temperature of the air entering the drying chamber, and accordingly speeds up the drying of the clothes. The drying speed further improves the drying efficiency and further reduces the energy consumption.
  • the heat exchange effect of the evaporator can be enhanced, the drying efficiency can be improved, and the drying energy consumption can be reduced.
  • Fig. 1 is the system diagram of the drying system in the first embodiment of the present invention
  • FIG. 2 is a system diagram of the drying system in the second embodiment of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication between two components.
  • FIG. 1 is a system diagram of the drying system in the first embodiment of the present invention.
  • the drying system of the present application includes a refrigerant circulation loop and an air circulation loop.
  • the refrigerant circulation circuit includes a compressor 11 , a condenser 12 , a throttle element 13 and an evaporator 14 , and the above components are connected in sequence through a refrigerant pipe 15 .
  • the air circulation loop includes a drying chamber 21, an evaporator 14 and a condenser 12 connected by an air duct 25.
  • the drying chamber 21 has a humid air outlet 211 and a dry air inlet 212, and the humid air outlet 211 communicates with the inlet of the evaporator 14.
  • the outlet of the evaporator 14 is communicated with the inlet of the condenser 12, the outlet of the condenser 12 is communicated with the dry air inlet 212, and a fan 24 is provided in the air circulation circuit.
  • a water receiving tray 31 is arranged below the evaporator 14, and the water receiving tray 31 is used to collect condensed water.
  • the refrigerant pipe 15 between the condenser 12 and the throttling element 13 includes a first pipe section 151, and the first pipe section 151 is arranged in the water receiving tray disk 31.
  • the compressor 11 and the fan 24 are started to run.
  • the refrigerant discharged from the discharge port of the compressor 11 passes through the condenser 12, the throttling element 13 and the evaporator 14 in sequence, and then returns to the compressor 11 from the suction port of the compressor 11 to complete the refrigerant cycle (the refrigerant circulation path in Fig. solid arrows).
  • the air flow in the drying chamber 21 is driven by the fan 24 to pass through the evaporator 14 and the condenser 12 in sequence and then return to the drying chamber 21 to complete the air circulation (the air circulation path is shown by the hollow arrow in FIG. 1 ).
  • the humid air in the drying chamber 21 is sucked into the humid air outlet 211, the humid air first enters the evaporator 14, and the evaporator 14 performs heat exchange with the low-temperature refrigerant in the refrigerant circulation to achieve cooling, and the air is cooled.
  • the temperature falls below the dew point temperature, moisture is precipitated, and the moisture becomes condensed water and drops into the drip tray 31 .
  • the cooled air becomes dry air and is discharged to the condenser 12 by the evaporator 14.
  • the high temperature refrigerant in the refrigerant circulation is exchanged for heat to realize the temperature rise.
  • the heated high temperature air enters the drying chamber through the dry air inlet 212.
  • the laundry is dried in the chamber 21 .
  • the refrigerant discharged from the refrigerant outlet of the condenser 12 exchanges heat with the condensed water in the water receiving tray 31 when passing through the first pipe section 151 , and then flows through the throttling element 13 and the evaporator 14 .
  • the present application can enhance the heat exchange effect of the evaporator 14, shorten the drying time, and reduce the drying energy consumption by arranging the first pipe section 151 of the refrigerant pipe 15 in the water receiving tray 31.
  • the compressor 11 and the fan 24 start running, the compressor 11 pushes the refrigerant to circulate along the refrigerant circulation loop, and the fan 24 drives the air flow to circulate in the air circulation loop.
  • the humid air in the drying chamber 21 is sucked into the humid air outlet 211, and the humid air first flows to the evaporator 14, where it exchanges heat with the refrigerant in the evaporator 14 to achieve cooling, and the temperature of the air drops below the dew point temperature to precipitate moisture,
  • the condensed water drops into the drip tray 31 .
  • the refrigerant first passes through the water receiving tray 31 and connects with the water receiving tray 31 after flowing out from the condenser 12 .
  • the condensed water is exchanged for heat, realizes the initial cooling of the refrigerant, increases the degree of subcooling, and then enters the throttling element 13 for secondary cooling, thereby reducing the temperature of the refrigerant entering the evaporator 14 and improving the heat exchange effect of the evaporator 14.
  • the condensed water absorbs the heat of the refrigerant, effectively utilizes the energy of the condensed water, reduces the loss of energy, improves the circulation efficiency of the system, and reduces the energy consumption.
  • the drying system is applied to an integrated washer-drying machine
  • the integrated washer-drying machine includes a box body (not shown in the figure), and an organic door is arranged on the box body, and the box A washing drum assembly is arranged in the body, the washing drum assembly includes an outer drum and an inner drum, the inner drum can accommodate the clothes to be washed, the outer drum is provided with the above-mentioned wet air outlet 211 and dry air inlet 212, and the humid air outlet 211 is provided with humidity
  • a sensor such as a humidity sensor is provided on the air duct 25 or the outer cylinder at the humid air outlet 211, and the humidity sensor is connected to the controller through a signal line, so that the controller controls the operation parameters of the drying system through the humidity obtained by the humidity sensor.
  • the evaporator 14, the condenser 12 and the fan 24 are each provided with a casing, and an inlet and an outlet connected to the air duct 25 are respectively formed on the casing.
  • the humid air outlet 211 is connected to the inlet of the evaporator 14 through the air duct 25
  • the outlet of the evaporator 14 is connected to the inlet of the condenser 12 through the air duct 25
  • the outlet of the condenser 12 is connected to the fan 24 through the air duct 25 .
  • the inlet of the fan 24 is communicated with the dry air inlet 212 through the air duct 25, so as to realize the communication of the air circulation circuit.
  • the discharge port of the compressor 11 is communicated with the refrigerant inlet of the condenser 12 through the refrigerant pipe 15, and the refrigerant outlet of the condenser 12 is communicated with one end of the throttling element 13 through the refrigerant pipe 15, and the other end of the throttling element 13 is connected.
  • One end is communicated with the refrigerant inlet of the evaporator 14 through the refrigerant pipe 15, the refrigerant outlet of the evaporator 14 is communicated with the inlet of the gas-liquid separator through the refrigerant pipe 15, and the outlet of the gas-liquid separator (not marked in the figure) is connected with the compressor 11.
  • the suction port is connected to realize the communication of the refrigerant circulation circuit.
  • the refrigerant pipe 15 between the refrigerant outlet of the condenser 12 and the first end of the throttle element 13 includes a first pipe section 151 , and the first pipe section 151 is arranged in the water receiving tray 31 .
  • the first pipe section 151 can be arranged in a U-shape or an S-shape along the bottom surface of the water-receiving pan 31, or can be arranged in multiple layers along the height direction of the water-receiving pan 31, and each layer is arranged in a U-shape or an S-shape, and the highest
  • the refrigerant pipe 15 of the floor is lower than the highest water level of the water receiving pan 31 .
  • the throttling element 13 is preferably an electronic expansion valve, of course, the throttling element 13 can also be a capillary tube or a thermal expansion valve or the like.
  • the side wall of the water receiving pan 31 is provided with an overflow port (not shown in the figure), and an overflow pipe 314 is connected to the overflow port.
  • the advantage of the above arrangement is that: by arranging the first pipe section 151 in a U-shape or an S-shape in the water receiving tray 31, or arranging the first pipe section 151 in layers, sufficient heat exchange between the condensed water and the first pipe section 151 can be achieved, enhancing the The cooling effect of the refrigerant shortens the drying time and reduces the drying energy consumption.
  • the controller can control the operation of the drying system based on the humidity detected by the humidity sensor, such as controlling the operating frequency of the compressor 11 and the opening of the throttling element 13 through the humidity, so as to improve the automation of the drying system degree.
  • FIG. 2 is a system diagram of the drying system in the second embodiment of the present invention.
  • the drying system further includes a cascade heat exchanger 22, and the cascade heat exchanger 22 has a first inlet 221, a first outlet 222, The second inlet 223 and the second outlet 224, an air flow channel is formed between the first inlet 221 and the first outlet 222, another air flow channel is formed between the second inlet 223 and the second outlet 224, two air flow channels They are arranged to cross each other, so that heat can be cross-exchanged.
  • the first inlet 221 communicates with the humid air outlet 211
  • the first outlet 222 communicates with the inlet of the evaporator 14
  • the second inlet 223 communicates with the outlet of the evaporator 14
  • the second outlet 224 communicates with the inlet of the condenser 12 .
  • the present application does not limit the specific structural form of the cascade heat exchanger 22 , and any heat exchanger that can satisfy the above conditions can be used as the cascade heat exchanger 22 in the present application.
  • a plate-fin heat exchanger or a rotary heat exchanger can be used as the cascade heat exchanger 22 of the present application, or the like.
  • the high-temperature humid air discharged from the humid air outlet 211 first flows into an air flow channel of the cascade heat exchanger 22 through the first inlet 221 of the cascade heat exchanger 22,
  • the low-temperature dry air flowing out of the evaporator 14 flows into another air flow channel of the cascade heat exchanger 22 through the second inlet 223 of the cascade heat exchanger 22, and the two air flows into the air for heat exchange, so that the high-temperature humid air
  • the temperature of the low temperature dry air is simultaneously raised (the process is an isothermal heat exchange). Then, the humid air whose temperature has been lowered continues to flow forward to the evaporator 14 for secondary temperature reduction, and at the same time, the dry air whose temperature has been raised continues to flow forward to the condenser 12 for secondary heating.
  • the drying system can simultaneously improve the heat exchange efficiency of the evaporator 14 and the condenser 12, thereby achieving higher dehumidification efficiency and lower energy consumption.
  • the humid air before entering the evaporator 14, the humid air first exchanges heat with the low-temperature dry air flowing out of the evaporator 14 through the cascade heat exchanger 22, and its temperature is greatly reduced, and the temperature of the low-temperature dry air is simultaneously increased (this The process is equal heat exchange), the humid air whose temperature has been lowered continues to flow forward to the evaporator 14 for secondary cooling and reaches below the dew point temperature, and the moisture in the air is greatly precipitated. It is sent to the evaporator 14 for heat exchange, but it first exchanges heat with the low-temperature dry air from the evaporator 14 through the cascade heat exchanger 22, and then enters the evaporator 14 for heat exchange.
  • the wet air reaching the evaporator 14 The temperature of the air will be much lower than that of the humid air directly sent to the evaporator 14, thus greatly reducing the burden on the evaporator 14 and improving the dehumidification efficiency.
  • the temperature of the air entering the condenser 12 is also higher than the temperature of the air entering the condenser 12 directly without the cascade heat exchanger 22.
  • the temperature of the air discharged through the condenser 12 and re-entering the drying chamber 21 is also higher than that when the cascade heat exchanger 22 is not provided. Therefore, the setting of the cascade heat exchanger 22 also improves the air entering the drying chamber 21.
  • the temperature increases the drying speed of the clothes accordingly, which further improves the drying efficiency and further reduces the energy consumption.
  • the refrigerant pipe 15 between the condenser 12 and the throttling element 13 further includes a second pipe section 152, the second pipe section 152 is connected to the first pipe section 151 and is arranged upstream of the first pipe section 151,
  • the second pipe section 152 is suspended between the evaporator 14 and the water receiving tray 31 .
  • the suspended parts can be arranged in a U-shape or an S-shape along the horizontal plane, or can be arranged in multiple layers along the height direction, and each layer is arranged in a U-shape or an S-shape.
  • the refrigerant discharged from the condenser 12 flows to the throttling element 13 after passing through the suspended second pipe section 152 and the first pipe section 151 coiled inside the water receiving tray 31 in sequence.
  • part of the condensed water generated by the evaporator 14 first drips onto the suspended second pipe section 152 during the falling process, and then flows into the water receiving tray 31 .
  • the present application can also utilize the condensed water to drop onto the suspended refrigerant pipe 15 to achieve wet film heat exchange, thereby further improving the temperature of the refrigerant. drop effect.
  • the second pipe section 152 in a U-shape or an S-shape, the heat exchange effect of the wet film heat exchange can be improved.
  • the arrangement of the evaporator 14, the condenser 12 and the fan 24 is not static.
  • those skilled in the art can configure the arrangement of the above-mentioned components. Changes are made that do not depart from the principles of the present application.
  • one or more of the evaporator 14 , the condenser 12 and the fan 24 may also be directly disposed inside the air duct 25 .
  • Embodiment 2 in another alternative implementation manner, those skilled in the art can selectively select the two improvements in Embodiment 2 so as to be suitable for specific application scenarios.
  • only the cascade heat exchanger 22 may be added, or only the second pipe section 152 may be provided.
  • the application also provides an integrated washing and drying machine
  • the integrated washing and drying machine includes a box body (not shown in the figure), the box body is provided with an organic door, and the box body is provided with a water inlet assembly, a driving device and a washing tub assembly
  • the washing tub assembly includes an outer tub and an inner tub, the inner tub can accommodate the clothes to be washed, the water inlet assembly can inject water into the outer tub, and the driving device can drive the inner tub to rotate to complete the washing of the clothes.
  • the washer-drying machine also includes the drying system described in the above-mentioned embodiments.
  • the outer cylinder is provided with a wet air outlet 211 and a dry air inlet 212.
  • the outer cylinder, the evaporator 14, the condenser 12 and the fan 24 pass through the air duct 25. Connect to form an air circulation loop.
  • the heat exchange effect of the evaporator 14 can be enhanced, the drying efficiency can be improved, and the drying energy consumption can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

一种烘干系统及包括该系统的衣物处理设备。旨在解决现有热泵式干衣机烘干时间长、浪费电力的问题。烘干系统包括:冷媒循环回路,包括压缩机(11)、冷凝器(12)、节流元件(13)和蒸发器(14);空气循环回路,包括干燥腔室(21)、气液换热器(23)、蒸发器(14)和冷凝器(12),干燥腔室(21)具有湿空气出口(211)和干空气进口(212),湿空气出口(211)与蒸发器(14)的进口连通,蒸发器(14)的出口与冷凝器(12)的进口连通,冷凝器(12)的出口与干空气进口(212)连通;蒸发器(14)的下方设置有接水盘(31),冷凝器(12)与节流元件(13)之间的冷媒管(15)包括第一管段(151),第一管段(151)盘设于接水盘(31)中。能够增强蒸发器(14)的换热效果,缩短烘干时间,降低烘干能耗。

Description

烘干系统及包括该系统的衣物处理设备 技术领域
本发明涉及衣物处理技术领域,具体涉及一种烘干系统及包括该系统的衣物处理设备。
背景技术
为了解决阴雨天或回南天衣物无法及时晒干的问题,现如今许多洗衣机都带有烘干功能。其中,热泵式烘干系统由于其节能高效,适用性广而受到广大用户的喜爱。
但是,现有的热泵式烘干系统中,随着干燥腔室内衣物的含水率逐渐降低,蒸发器的除湿能力也随之减弱,烘干变得越来越困难,这样就造成干燥衣物时间较长,浪费电力。
相应地,本领域需要一种新的烘干系统及包括该系统的衣物处理设备来解决上述问题。
发明内容
为了解决现有技术中的上述至少一个问题,即为了解决现有热泵式干衣机烘干时间长、浪费电力的问题,本发明提供了一种一种烘干系统,所述烘干系统包括:冷媒循环回路,所述冷媒循环回路包括通过冷媒管连接的压缩机、冷凝器、节流元件和蒸发器;空气循环回路,所述空气循环回路包括干燥腔室、风机所述蒸发器和所述冷凝器,所述干燥腔室、所述蒸发器与所述冷凝器通过风管连接,所述干燥腔室具有湿空气出口和干空气进口,所述湿空气出口与所述蒸发器的进口连通,所述蒸发器的出口与所述冷凝器的进口连通,所述冷凝器的出口与所述干空气进口连通;其中,所述蒸发器的下方设置有接水盘,所述接水盘用于收集冷凝水,所述冷凝器与所述节流元件之间的冷媒管包括第一管段,所述第一管段盘设于所述接水盘中。
在上述烘干系统的优选技术方案中,所述冷凝器与第一管段之间的冷媒管还包括第二管段,所述第二管段与所述第一管段连接且所述第二管段悬置于所述蒸发器与接水盘之间。
在上述烘干系统的优选技术方案中,所述第一管段呈U型或S型盘设于所述接水盘内。
在上述烘干系统的优选技术方案中,所述第二管段呈U型或S型盘设于所述蒸发器与所述接水盘之间。
在上述烘干系统的优选技术方案中,所述风机设置于所述冷凝器的出口与所述干空气进口之间。
在上述烘干系统的优选技术方案中,所述接水盘的侧壁上还设置有溢流口,所述溢流口连接有溢流管。
在上述烘干系统的优选技术方案中,所述接水盘的底部还设置有排水口,所述排水口连接有排水管。
在上述烘干系统的优选技术方案中,所述烘干系统还包括湿度传感器和控制器,所述湿度传感器设置于所述干燥腔室的湿空气出口处,所述控制器与所述湿度传感器连接。
在上述烘干系统的优选技术方案中,所述烘干系统还包括复叠换热器,所述复叠换热器具有第一进口、第一出口、第二进口和第二出口,所述第一进口与第一出口之间形成的空气流道与所述第二进口与所述第二出口之间形成的空气流道能够交叉换热,其中,所述第一进口与所述湿空气出口连通,所述第一出口与所述蒸发器的进口连通,所述第二进口与所述蒸发器的出口连通,所述第二出口与所述冷凝器的进口连通。
本申请还提供了一种衣物处理设备,所述衣物处理设备包括上述优选技术方案中任一项所述的烘干系统。
本领域技术人员能够理解的是,在本发明的优选技术方案中,烘干系统包括:冷媒循环回路,冷媒循环回路包括通过冷媒管连接的压缩机、冷凝器、节流元件和蒸发器;空气循环回路,空气循环回路包括干燥腔室、风机、蒸发器和冷凝器,干燥腔室、蒸发器与冷凝器通过风管连接,干燥腔室具有湿空气出口和干空气进口,湿空气出口与蒸发器的进口连通,蒸发器的出口与冷凝器的进口连通,冷凝器的出口与干空 气进口连通;其中,蒸发器的下方设置有接水盘,接水盘用于收集冷凝水,冷凝器与节流元件之间的冷媒管包括第一管段,第一管段盘设于接水盘中。
通过将冷媒管的第一管段设置于接水盘中,本申请能够增强蒸发器的换热效果,缩短烘干时间,降低烘干能耗。具体而言,在烘干系统工作时,压缩机、风机启动运行,压缩机推动冷媒沿冷媒循环回路循环,风机带动空气流在空气循环回路循环。干燥腔室内的湿空气被吸入湿空气出口,湿空气首先流动至蒸发器,在蒸发器中与冷媒进行热交换而实现降温,空气的温度降低至露点温度以下而析出水分,变为冷凝水滴入接水盘中。与此同时,通过将冷媒管的第一管段设置于接水盘中,使得在冷媒循环回路中,冷媒在从冷凝器流出后先经过接水盘并与接水盘中的冷凝水进行热交换,实现冷媒的初步降温,增大过冷度,然后再进入节流元件进行二次降温,从而降低了进入蒸发器冷媒温度,提高了蒸发器的换热效果,同时冷凝水吸收了冷媒的热量,有效利用了冷凝水的能量,减少了能量的损失,使系统循环效率提高,能耗降低。
进一步地,通过将第二管段悬置于蒸发器与接水盘之间,本申请还能够利用冷凝水下落时滴落到悬空的冷媒管上而实现湿膜换热,进一步提升冷媒的温降效果。
进一步地,通过在接水盘中以U型或S型布置第一管段,能够充分利用冷凝水进行换热,并增强冷媒的降温效果。
进一步地,通过第二管段呈U型或S型布置,能够提高湿膜换热的换热效果。
通过在烘干系统设置复叠换热器,还使得烘干系统能够同时提高蒸发器与冷凝器的换热效率,实现更高的除湿效率和更低的能耗。具体地,复叠换热器的第一进口与湿空气出口连通,第一出口与蒸发器的进口连通,第二进口与蒸发器的出口连通,第二出口与冷凝器的进口连通,这样一来,湿空气在进入蒸发器进行冷却前,首先通过复叠换热器与流出蒸发器的低温干空气进行热交换,其温度被大幅降低,低温干空气的温度同时被升高(该过程是等量热交换),温度被降低后的湿空气继续向前流动至蒸发器进行二次降温而达到露点温度以下,空气中的水分大幅析出,由于在此过程中湿空气不是直接送到蒸发器进行热交换, 而是先通过复叠换热器与来自蒸发器的低温干空气进行热交换,然后才进入蒸发器进行热交换,因此,到达蒸发器的湿空气将比直接送到蒸发器的湿空气的温度低很多,因而大幅度减轻了蒸发器的负担,提高了除湿效率。与此同时,由于蒸发器流出的低温干空气与湿空气进行了热交换,因此进入冷凝器的空气温度也比不设置复叠换热器而直接进如冷凝器的温度高,这样经过冷凝器排出再次进入干燥腔室的空气温度也要比不设置复叠换热器时要高,因此,复叠换热器的设置也提高了进入干燥腔室的空气的温度,相应地加快了衣物的烘干速度,使得干燥效率进一步提升,能耗进一步下降。
本申请的衣物处理设备,通过设置上述的烘干系统,能够增强蒸发器的换热效果,提升烘干效率,降低烘干能耗。
附图说明
下面参照附图并结合洗干一体机来描述本发明的烘干系统及包括该系统的衣物处理设备。附图中:
图1为本发明的第一种实施方式中烘干系统的系统图;
图2为本发明的第二种实施方式中烘干系统的系统图。
附图标记列表
11、压缩机;12、冷凝器;13、节流元件;14、蒸发器;15、冷媒管;151、第一管段;152、第二管段;21、干燥腔室;211、湿空气出口;212、干空气进口;22、复叠换热器;221、第一进口;222、第一出口;223、第二进口;224、第二出口;24、风机;25、风管;31、接水盘;314、溢流管。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施方式是结合洗干一体机进行介绍的,但是这并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员可以将本发明应用于其他衣物处理设备。例如,本申请的烘干系统还能够应用于干衣机、烘鞋机等。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
实施例1
首先参照图1,对本发明的烘干系统的第一种实施方式进行描述。其中,图1为本发明的第一种实施方式中烘干系统的系统图。
如图1所示,为了解决现有热泵式干衣机烘干时间长、浪费电力的问题,本申请的烘干系统包括冷媒循环回路和空气循环回路。冷媒循环回路包括压缩机11、冷凝器12、节流元件13和蒸发器14,上述部件通过冷媒管15依次顺序连接。空气循环回路包括通过风管25连接的干燥腔室21、蒸发器14和冷凝器12,干燥腔室21具有湿空气出口211和干空气进口212,湿空气出口211与蒸发器14的进口连通,蒸发器14的出口与冷凝器12的进口连通,冷凝器12的出口与干空气进口212连通,空气循环回路中设置有风机24。蒸发器14下方设置有接水盘31,接水盘31用于收集冷凝水,冷凝器12与节流元件13之间的冷媒管15包括第一管段151,第一管段151盘设于接水盘31中。
烘干系统工作时,压缩机11和风机24启动运行。压缩机11排气口排出的冷媒在依次经过冷凝器12、节流元件13和蒸发器14后从压缩机11的吸气口回到压缩机11,完成冷媒循环(冷媒循环路径图1中以实心箭头示出)。风机24带动干燥腔室21内的空气流依次经过蒸发器14、冷凝器12后回到干燥腔室21内,完成空气循环(空气循环路径图1中以空心箭头示出)。其中,空气循环中,干燥腔室21内的湿空 气被吸入湿空气出口211,湿空气首先进入蒸发器14,在蒸发器14中与冷媒循环中的低温冷媒进行热交换而实现降温,空气的温度降低至露点温度以下而析出水分,水分变为冷凝水滴入接水盘31中。降温后的空气变为干空气由蒸发器14排出至冷凝器12,在冷凝器12中于冷媒循环中的高温冷媒进行热交换而实现升温,升温后的高温空气通过干空气进口212进入干燥腔室21内对衣物进行烘干。冷媒循环中,从冷凝器12的冷媒出口排出的冷媒在经过第一管段151时与接水盘31中的冷凝水进行热交换,然后再流经节流元件13和蒸发器14。
通过上述描述可知,本申请通过将冷媒管15的第一管段151设置于接水盘31中,本申请能够增强蒸发器14的换热效果,缩短烘干时间,降低烘干能耗。具体而言,在烘干系统工作时,压缩机11、风机24启动运行,压缩机11推动冷媒沿冷媒循环回路循环,风机24带动空气流在空气循环回路循环。干燥腔室21内的湿空气被吸入湿空气出口211,湿空气首先流动至蒸发器14,在蒸发器14中与冷媒进行热交换而实现降温,空气的温度降低至露点温度以下而析出水分,变为冷凝水滴入接水盘31中。与此同时,通过将冷媒管15的第一管段151设置于接水盘31中,使得在冷媒循环回路中,冷媒在从冷凝器12流出后先经过接水盘31并与接水盘31中的冷凝水进行热交换,实现冷媒的初步降温,增大过冷度,然后再进入节流元件13进行二次降温,从而降低了进入蒸发器14冷媒温度,提高了蒸发器14的换热效果,同时冷凝水吸收了冷媒的热量,有效利用了冷凝水的能量,减少了能量的损失,使系统循环效率提高,能耗降低。
下面进一步参照图1,对本申请的烘干系统的第一种实施方式进行详细描述。
如图1所示,在一种可能的实施方式中,烘干系统应用于洗干一体机中,该洗干一体机包括箱体(图中未标出),箱体上设置有机门,箱体内设置有洗涤筒组件,洗涤筒组件包括外筒和内筒,内筒能够容纳待洗涤衣物,外筒上开设有上述的湿空气出口211和干空气进口212,湿空气出口211处设置有湿度传感器,如在湿空气出口211处的风管25或外筒上设置湿度传感器,并且湿度传感器通过信号线与控制器连接,以便控制器通过湿度传感器获取到的湿度控制烘干系统的运行参数。蒸 发器14、冷凝器12和风机24各自带有外壳,外壳上分别形成有与风管25连接的进口和出口。按照空气流动方向,湿空气出口211通过风管25与蒸发器14的进口连通,蒸发器14的出口通过风管25与冷凝器12的进口连接,冷凝器12的出口通过风管25与风机24的进口连通,风机24的出口通过风管25与干空气进口212连通,从而实现空气循环回路的连通。
按照冷媒流动方向,压缩机11的排气口通过冷媒管15与冷凝器12的冷媒进口连通,冷凝器12的冷媒出口通过冷媒管15与节流元件13的一端连通,节流元件13的另一端通过冷媒管15与蒸发器14的冷媒进口连通,蒸发器14的冷媒出口通过冷媒管15与气液分离器的进口连通,气液分离器(图中未标出)的出口与压缩机11的吸气口连通,从而实现冷媒循环回路的连通。其中,冷凝器12的冷媒出口与节流元件13的第一端之间的冷媒管15包括第一管段151,第一管段151盘设在接水盘31内。第一管段151可以沿接水盘31的底面呈U型或S型排布,也可以沿接水盘31的高度方向上排布多层,每层以U型或S型排布,并且最高层的冷媒管15低于接水盘31的最高水位。节流元件13优选的为电子膨胀阀,当然节流元件13还可以为毛细管或热力膨胀阀等。
接水盘31的侧壁上开设有溢流口(图中未标出),溢流口处连接有溢流管314,接水盘31的底部设置有排水口,排水口连接有排水管。当湿空气与蒸发器14中的低温冷媒进行热交换时,空气的温度降低至露点温度以下而析出水分,水分变为冷凝水全部落入接水盘31的第一部分中。
上述设置方式的优点在于:通过在接水盘31中以U型或S型布置第一管段151,或者分层布置第一管段151,能够实现冷凝水与第一管段151的充分换热,增强冷媒的降温效果,缩短烘干时间,降低烘干能耗。通过设置湿度传感器和控制器,使得控制器能够基于湿度传感器检测的湿度控制烘干系统运行,如通过湿度控制压缩机11的运行频率和节流元件13的开度等,提高烘干系统的自动化程度。
实施例2
下面参照图2,对本申请的烘干系统的第二种实施方式进行描述。其中,图2为本发明的第二种实施方式中烘干系统的系统图。
如图2所示,在保持实施例1中其他结构设置不变的前提下,烘干系统还包括复叠换热器22,复叠换热器22具有第一进口221、第一出口222、第二进口223和第二出口224,第一进口221与第一出口222之间形成一个空气流道,第二进口223与第二出口224之间形成另一个空气流道,两个空气流道彼此交叉设置,从而能够交叉换热。第一进口221与湿空气出口211连通,第一出口222与蒸发器14的进口连通,第二进口223与蒸发器14的出口连通,第二出口224与冷凝器12的进口连通。本申请对于复叠换热器22的具体结构形式不作限制,任何能够满足上述条件的换热器均可以作为复叠换热器22应用于本申请中。例如,可以采用板翅式热交换器或转轮式热交换器作为本申请的复叠换热器22使用等。
按照图2所示方位,由湿空气出口211排出的高温湿空气在进入蒸发器14前,首先通过复叠换热器22的第一进口221流入复叠换热器22的一个空气流道,流出蒸发器14的低温干空气通过复叠换热器22的第二进口223流入复叠换热器22的另一空气流道,两个空气流到内的空气进行热交换,从而高温湿空气的温度被降低,低温干空气的温度同时被升高(该过程是等量热交换)。然后,温度被降低后的湿空气继续向前流动到蒸发器14进行二次降温,与此同时,温度被升高后的干空气继续向前流动到冷凝器12进行二次升温。
可以看出,通过在烘干系统设置复叠换热器22,使得烘干系统能够同时提高蒸发器14与冷凝器12的换热效率,实现更高的除湿效率和更低的能耗。
具体地,湿空气在进入蒸发器14前,首先通过复叠换热器22与流出蒸发器14的低温干空气进行热交换,其温度被大幅降低,低温干空气的温度同时被升高(该过程是等量热交换),温度被降低后的湿空气继续向前依次流动到蒸发器14进行二次降温而达到露点温度以下,空气中的水分大幅析出,由于在此过程中湿空气不是直接送到蒸发器14进行热交换,而是先通过复叠换热器22与来自蒸发器14的低温干空气进行热交换,然后才进入蒸发器14进行热交换,因此,到达蒸发器14的湿空气将比直接送到蒸发器14的湿空气的温度低很多,因而大幅度减轻了蒸发器14的负担,提高了除湿效率。与此同时,由于蒸发器14流 出的低温干空气与湿空气进行了热交换,因此进入冷凝器12的空气温度也比不设置复叠换热器22而直接进如冷凝器12的温度高,这样经过冷凝器12排出再次进入干燥腔室21的空气温度也要比不设置复叠换热器22时要高,因此,复叠换热器22的设置也提高了进入干燥腔室21的空气的温度,相应地加快了衣物的烘干速度,使得干燥效率进一步提升,能耗进一步下降。
进一步地,在本实施例中,冷凝器12与节流元件13之间的冷媒管15还包括第二管段152,第二管段152与第一管段151连接并且设置于第一管段151的上游,第二管段152悬空设置在蒸发器14与接水盘31之间。其中,悬空部分可以沿水平面呈U型或S型排布,也可以沿高度方向排布多层,每层以U型或S型排布。
按照图2所示方位,冷凝器12排出的冷媒在依次经过悬空的第二管段152和盘设在接水盘31内部的第一管段151后流动至节流元件13。与此同时,蒸发器14产生的部分冷凝水在下落过程中首先滴落到悬空的第二管段152上,然后再流至接水盘31内。
通过将第二管段152悬置于蒸发器14与接水盘31之间,本申请还能够利用冷凝水下落时滴落到悬空的冷媒管15上而实现湿膜换热,进一步提升冷媒的温降效果。通过第二管段152呈U型或S型布置,能够提高湿膜换热的换热效果。
需要说明的是,上述优选的实施方式仅仅用于阐述本发明的原理,并非旨在于限制本发明的保护范围。在不偏离本发明原理的前提下,本领域技术人员可以对上述设置方式进行调整,以便本发明能够适用于更加具体的应用场景。
例如,在一种可替换的实施方式中,蒸发器14、冷凝器12和风机24的设置方式并非一成不变,在满足能够组成空气循环回路的前提下,本领域技术人员可以对上述部件的设置方式进行更改,这种更改并未偏离本申请的原理。比如,蒸发器14、冷凝器12和风机24中的一个或多个还可以直接设置在风管25内部。
再如,在另一种可替换的实施方式中,实施例2中的两个改进之处本领域技术人员可以有选择地选取,以便适用于具体的应用场景。 例如,可以在实施例1的基础上只选择增加复叠换热器22或者只设置第二管段152等。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
实施例3
本申请还提供了一种洗干一体机,该洗干一体机包括箱体(图中未标出),箱体上设置有机门,箱体内设置有进水组件、驱动装置和洗涤筒组件,洗涤筒组件包括外筒和内筒,内筒能够容纳待洗涤衣物,进水组件能够将水源注入外筒中,驱动装置能够驱动内筒转动从而完成对衣物的洗涤。该洗干一体机还包括上述实施例中所述的烘干系统,外筒上开设有湿空气出口211和干空气进口212,外筒、蒸发器14、冷凝器12和风机24通过风管25连接组成空气循环回路。
通过在洗干一体机中设置上述的烘干系统,能够增强蒸发器14的换热效果,提升烘干效率,降低烘干能耗。
本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种烘干系统,其特征在于,所述烘干系统包括:
    冷媒循环回路,所述冷媒循环回路包括通过冷媒管连接的压缩机、冷凝器、节流元件和蒸发器;
    空气循环回路,所述空气循环回路包括干燥腔室、风机、所述蒸发器和所述冷凝器,所述干燥腔室、所述蒸发器与所述冷凝器通过风管连接,所述干燥腔室具有湿空气出口和干空气进口,所述湿空气出口与所述蒸发器的进口连通,所述蒸发器的出口与所述冷凝器的进口连通,所述冷凝器的出口与所述干空气进口连通;
    其中,所述蒸发器的下方设置有接水盘,所述接水盘用于收集冷凝水,所述冷凝器与所述节流元件之间的冷媒管包括第一管段,所述第一管段盘设于所述接水盘中。
  2. 根据权利要求1所述的烘干系统,其特征在于,所述冷凝器与第一管段之间的冷媒管还包括第二管段,所述第二管段与所述第一管段连接且所述第二管段悬置于所述蒸发器与接水盘之间。
  3. 根据权利要求1所述的烘干系统,其特征在于,所述第一管段呈U型或S型盘设于所述接水盘内。
  4. 根据权利要求2所述的烘干系统,其特征在于,所述第二管段呈U型或S型盘设于所述蒸发器与所述接水盘之间。
  5. 根据权利要求1所述的烘干系统,其特征在于,所述风机设置于所述冷凝器的出口与所述干空气进口之间。
  6. 根据权利要求1所述的烘干系统,其特征在于,所述接水盘的侧壁上还设置有溢流口,所述溢流口连接有溢流管。
  7. 根据权利要求1所述的烘干系统,其特征在于,所述接水盘的底部还设置有排水口,所述排水口连接有排水管。
  8. 根据权利要求1所述的烘干系统,其特征在于,所述烘干系统还包括湿度传感器和控制器,所述湿度传感器设置于所述干燥腔室的湿空气出口处,所述控制器与所述湿度传感器连接。
  9. 根据权利要求1所述的烘干系统,其特征在于,所述烘干系统还包括复叠换热器,所述复叠换热器具有第一进口、第一出口、第二进口和第二出口,所述第一进口与第一出口之间形成的空气流道与所述第二进口与所述第二出口之间形成的空气流道能够交叉换热,
    其中,所述第一进口与所述湿空气出口连通,所述第一出口与所述蒸发器的进口连通,所述第二进口与所述蒸发器的出口连通,所述第二出口与所述冷凝器的进口连通。
  10. 一种衣物处理设备,其特征在于,所述衣物处理设备包括权利要求1至9中任一项所述的烘干系统。
PCT/CN2021/131664 2020-10-16 2021-11-19 烘干系统及包括该系统的衣物处理设备 WO2022068970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022310576.1 2020-10-16
CN202022310576.1U CN213772594U (zh) 2020-10-16 2020-10-16 烘干系统及包括该系统的衣物处理设备

Publications (1)

Publication Number Publication Date
WO2022068970A1 true WO2022068970A1 (zh) 2022-04-07

Family

ID=76909277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131664 WO2022068970A1 (zh) 2020-10-16 2021-11-19 烘干系统及包括该系统的衣物处理设备

Country Status (2)

Country Link
CN (1) CN213772594U (zh)
WO (1) WO2022068970A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114798369A (zh) * 2022-04-21 2022-07-29 苏州兆和环能科技有限公司 一种涂布机烘箱以及涂布机废气回收系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213772594U (zh) * 2020-10-16 2021-07-23 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备
CN112227043B (zh) * 2020-10-16 2023-04-18 青岛海尔空调器有限总公司 烘干系统的烘干控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201358383Y (zh) * 2009-02-15 2009-12-09 陈少东 干衣装置
WO2011080116A1 (en) * 2009-12-31 2011-07-07 Arcelik Anonim Sirketi Heat pump laundry dryer
CN105986446A (zh) * 2015-01-30 2016-10-05 杭州三花研究院有限公司 烘干系统及其使用方法
CN206683095U (zh) * 2017-04-28 2017-11-28 广东美的制冷设备有限公司 空调器
CN110284308A (zh) * 2019-06-19 2019-09-27 无锡小天鹅电器有限公司 衣物处理设备用冷却装置及衣物处理设备
CN112227043A (zh) * 2020-10-16 2021-01-15 青岛海尔空调器有限总公司 烘干系统的烘干控制方法
CN112323341A (zh) * 2020-10-16 2021-02-05 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备
CN213772594U (zh) * 2020-10-16 2021-07-23 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201358383Y (zh) * 2009-02-15 2009-12-09 陈少东 干衣装置
WO2011080116A1 (en) * 2009-12-31 2011-07-07 Arcelik Anonim Sirketi Heat pump laundry dryer
CN105986446A (zh) * 2015-01-30 2016-10-05 杭州三花研究院有限公司 烘干系统及其使用方法
CN206683095U (zh) * 2017-04-28 2017-11-28 广东美的制冷设备有限公司 空调器
CN110284308A (zh) * 2019-06-19 2019-09-27 无锡小天鹅电器有限公司 衣物处理设备用冷却装置及衣物处理设备
CN112227043A (zh) * 2020-10-16 2021-01-15 青岛海尔空调器有限总公司 烘干系统的烘干控制方法
CN112323341A (zh) * 2020-10-16 2021-02-05 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备
CN213772594U (zh) * 2020-10-16 2021-07-23 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114798369A (zh) * 2022-04-21 2022-07-29 苏州兆和环能科技有限公司 一种涂布机烘箱以及涂布机废气回收系统
CN114798369B (zh) * 2022-04-21 2024-06-04 苏州兆和环能科技有限公司 一种涂布机烘箱以及涂布机废气回收系统

Also Published As

Publication number Publication date
CN213772594U (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022068970A1 (zh) 烘干系统及包括该系统的衣物处理设备
CN102206916B (zh) 一种用于滚筒干衣的热泵烘干系统及控制方法
US9803313B2 (en) Clothes treating apparatus
KR101989522B1 (ko) 의류건조기
KR101235552B1 (ko) 의류 건조기
US8490437B2 (en) Drum type washing-drying machine
WO2022068973A1 (zh) 烘干系统的烘干控制方法
WO2022068972A1 (zh) 烘干系统及包括该系统的衣物处理设备
JP4550747B2 (ja) 衣類乾燥機
JP2008048810A (ja) 衣類乾燥装置
WO2022068971A1 (zh) 烘干系统及包括该系统的衣物处理设备
US10662575B2 (en) Clothes dryer and method for controlling same
KR20070032916A (ko) 의류 건조 장치
WO2020097831A1 (zh) 闭式热泵干衣机系统
CN101173440A (zh) 一种采用热泵作为热源的洗衣干燥机干燥方法
JP2009195364A (ja) 衣類乾燥装置
JP2007143712A (ja) 洗濯乾燥機
JP5121659B2 (ja) 洗濯乾燥機
JP2008048811A (ja) 衣類乾燥装置
CN106868775A (zh) 洗干一体机
JP4791881B2 (ja) 衣類乾燥機
CN107022866B (zh) 洗干一体机及其控制方法
KR20020028340A (ko) 건조 세탁기
JP2016123770A (ja) 洗濯乾燥機
JP2020014745A (ja) 洗濯乾燥機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874624

Country of ref document: EP

Kind code of ref document: A1