WO2022068973A1 - 烘干系统的烘干控制方法 - Google Patents

烘干系统的烘干控制方法 Download PDF

Info

Publication number
WO2022068973A1
WO2022068973A1 PCT/CN2021/131667 CN2021131667W WO2022068973A1 WO 2022068973 A1 WO2022068973 A1 WO 2022068973A1 CN 2021131667 W CN2021131667 W CN 2021131667W WO 2022068973 A1 WO2022068973 A1 WO 2022068973A1
Authority
WO
WIPO (PCT)
Prior art keywords
drying
air
inlet
outlet
evaporator
Prior art date
Application number
PCT/CN2021/131667
Other languages
English (en)
French (fr)
Inventor
罗荣邦
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022068973A1 publication Critical patent/WO2022068973A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/34Humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/26Heat pumps

Definitions

  • the invention relates to the technical field of laundry treatment, and in particular to a drying control method of a drying system.
  • the heat pump drying system mainly includes refrigerant circulation and humid air circulation.
  • the refrigerant cycle mainly includes a compressor, a condenser, a throttling device and an evaporator
  • the wet air cycle includes an air duct and a fan. The two ends of the air duct are respectively connected to the washing drum of the washing machine. set in the air duct.
  • the wet air in the washing tub enters from one end of the air duct driven by the fan, and returns to the washing tub from the other end of the air duct after flowing through the evaporator and the condenser in sequence.
  • the control of the existing heat pump drying system is relatively simple. As the moisture content of the clothes in the washing tub gradually decreases, the relative humidity in the washing tub becomes smaller and smaller, and the temperature of the air heated by the condenser decreases in the washing tub. The amplitude also decreases, and the temperature of the air entering the evaporator and the condenser continues to rise, resulting in a gradual weakening of the dehumidification capacity of the evaporator, and the dehumidification effect is getting worse and worse. .
  • the present invention provides a drying control method for a drying system.
  • the drying system includes: a refrigerant circulation loop, which includes a compressor, a condenser, a throttling element and an evaporator connected by a refrigerant pipe, and a water receiving tray is arranged below the evaporator; an air circulation loop, so
  • the air circulation loop includes a drying chamber, the evaporator and the condenser connected by an air duct, the drying chamber has a wet air outlet and a dry air inlet, the wet air outlet and the inlet of the evaporator communication, the outlet of the evaporator is communicated with the inlet of the condenser, the outlet of the condenser is communicated with the dry air inlet, and the air circulation circuit is configured with a fan;
  • the drying control method includes:
  • the humidity interval is determined based on the target humidity Rhm of the drying chamber.
  • the step of "determining the operating frequency of the compressor based on the humidity interval where the actual humidity is located" further includes:
  • F is the rated frequency of the compressor
  • a and b are magnification coefficients
  • k 1 , k 2 , and k 3 are constants, and a>b>1, k 1 >k 2 >k 3 .
  • the drying control method further includes:
  • the air circulation loop further includes: a gas-liquid heat exchanger, and the gas-liquid heat exchanger has an air inlet, an air outlet, a liquid inlet and an outlet.
  • a liquid port the air inlet is communicated with the wet air outlet, and the air outlet is communicated with the inlet of the evaporator;
  • a cooling circulation circuit the cooling circulation circuit includes the water receiving tray, a water pump and the gas-liquid heat exchanger, the water receiving tray is arranged below the evaporator for collecting condensed water, the liquid inlet and the liquid outlet are respectively communicated with the water receiving tray,
  • the water pump is arranged between the liquid inlet/the liquid outlet and the water receiving tray;
  • the drying control method also includes:
  • the step of "controlling the water pump to start running” further comprises:
  • Rh 1 is the first humidity threshold.
  • a flow regulating valve is also provided on the liquid pipe between the liquid inlet/the liquid outlet and the water receiving tray, and the drying Control methods also include:
  • Rh ⁇ Rh 1 based on the actual humidity Rh, determine the target opening degree P of the flow regulating valve
  • the flow regulating valve is controlled to be adjusted to the target opening degree P.
  • the water receiving tray is further provided with a baffle, and the baffle divides the water receiving tray into a first part and a second part, and the liquid inlet
  • the outlet is in communication with the first part
  • the liquid outlet is in communication with the second part
  • a first pipe section and a second pipe section in parallel are arranged between the condenser and the throttling element
  • the first pipe section A first electric control valve is arranged on the second pipe section
  • a second electric control valve is arranged on the second pipe section
  • the second pipe section is partially arranged in the second section
  • the drying control method also includes:
  • the step of "controlling the opening and closing of the first electric control valve and the second electric control valve based on the actual humidity Rh" further includes:
  • the drying system further includes a cascade heat exchanger, and the cascade heat exchanger has a first inlet, a first outlet, a second inlet and a third Two outlets, the air flow channel formed between the first inlet and the first outlet and the air flow channel formed between the second inlet and the second outlet can cross heat exchange, wherein the first inlet In communication with the moist air outlet, the first outlet is in communication with the inlet of the evaporator, the second inlet is in communication with the outlet of the evaporator, and the second outlet is in communication with the inlet of the condenser.
  • the drying system includes: a refrigerant circulation loop, and the refrigerant circulation loop includes a compressor, a condenser, a throttling element and an evaporator connected by a refrigerant pipe, and the evaporation There is a water receiving tray under the evaporator; an air circulation loop, the air circulation loop includes a drying chamber, an evaporator and a condenser connected by an air duct, the drying chamber has a wet air outlet and a dry air inlet, and the wet air outlet and the evaporator are connected.
  • the inlet is connected, the outlet of the evaporator is connected with the inlet of the condenser, the outlet of the condenser is connected with the dry air inlet, and the air circulation loop is equipped with a fan;
  • the drying control method includes: during the operation of the fan, obtaining the actual humidity of the drying chamber Rh; determine the operating frequency f of the compressor based on the humidity interval in which the actual humidity Rh is located; control the compressor to operate at the operating frequency f; wherein, the actual humidity Rh is proportional to the operating frequency f.
  • the drying control method of the drying system of the present application can improve the drying efficiency while taking into account the drying energy consumption.
  • the operating frequency of the compressor is determined based on the humidity interval in which the actual humidity in the drying chamber is located, and the actual humidity is proportional to the operating frequency of the compressor, so that during the actual drying process, when the When the humidity is high, the operating frequency of the compressor is correspondingly high.
  • the cooling capacity of the refrigerant circulation circuit is large, the refrigerant flow speed is fast, the temperature of the drying airflow passing through the condenser rises rapidly, and a large amount of high-temperature air is taken away from the drying chamber.
  • the water vapor in the evaporator quickly completes the heat exchange with the air with high moisture content, so that the moisture in the air is quickly condensed and precipitated.
  • the operating frequency of the compressor is correspondingly small.
  • the cooling capacity of the refrigerant circulation circuit is small, but the flow speed of the refrigerant is correspondingly slowed down, and the temperature of the drying airflow passing through the condenser is increased slowly.
  • the temperature rise rate of the air flow entering the evaporator is slowed down, and at the same time, the refrigerant in the evaporator and the air flow complete sufficient heat exchange to ensure the dehumidification effect of the evaporator.
  • the power consumption of the system also decreases.
  • the drying control method of the present application can adjust the operating frequency of the compressor for different target humidity. , to improve the applicability of the control method.
  • the drying control method of the present application can further improve the drying effect, ensure the dehumidification capacity of the evaporator, shorten the drying time, and reduce the drying time. Drying energy consumption.
  • the air inlet and air outlet of the gas-liquid heat exchanger are respectively connected with the wet air outlet and the inlet of the evaporator, and the liquid inlet and the liquid outlet are respectively connected with the water receiving tray.
  • the compressor, the fan and the water pump start running, the compressor drives the refrigerant to circulate along the refrigerant circulation loop, the water pump drives the condensed water in the water tray to circulate along the cooling circulation loop, and the fan drives the air flow to circulate in the air circulation loop.
  • the humid air in the drying chamber is sucked into the humid air outlet, and the humid air first enters the gas-liquid heat exchanger through the air inlet, and exchanges heat with the condensed water in the cooling circulation circuit in the gas-liquid heat exchanger to reduce the temperature, thereby realizing the preliminary Cooling, the temperature of the corresponding condensed water is increased, the recycling of the cold energy in the condensed water is realized, and the waste of energy is reduced.
  • the wet air whose temperature has been initially lowered is discharged from the gas-liquid heat exchanger from the air outlet and continues to flow forward to the evaporator, where it exchanges heat with the refrigerant to achieve secondary cooling, and the temperature of the air drops below the dew point temperature.
  • the humid air is not directly sent to the evaporator for heat exchange, but first passes through the gas-liquid heat exchanger for heat exchange with the low-temperature condensed water inside, so the humid air reaching the evaporator will be more
  • the temperature of the humid air of the evaporator is lower, that is, the sensible heat load of the evaporator is reduced, and the dehumidification efficiency of the drying system is improved.
  • the condensed water absorbs the heat of the humid air, and the system recovers the latent heat of the condensed water, avoiding low temperature.
  • the condensed water is not effectively used, which reduces the loss of energy, improves the circulation efficiency of the system, and reduces the energy consumption.
  • the control method of the present application only turns on the water pump when the humidity of the drying chamber drops to a certain degree, that is, when the amount of condensed water is sufficient, to avoid water shortages. water pump failure.
  • the water pump is turned on when the humidity of the drying chamber drops to a certain level, which can also improve the drying effect in a timely manner and ensure the dehumidification ability of the evaporator when the moisture content of the clothes is reduced.
  • the present application can also realize the linkage with the frequency control of the compressor when the water pump is turned on, so that the flow rate of the condensed water is the same as the current one. It is suitable for the air humidity of the air flow to avoid the occurrence of water accumulation in the gas-liquid heat exchanger caused by the moisture in the air flow condensing in the gas-liquid heat exchanger in advance.
  • the water receiving tray is divided into a first part and a second part by using a baffle plate, a first pipe section and a second pipe section are arranged in parallel between the condenser and the throttling element, and a first electric control valve is arranged in the first pipe section,
  • the second pipe section is provided with a second electric control valve, and the second pipe section is partially arranged in the second section, and the opening and closing of the first electric control valve and the second electric control valve are controlled based on the actual humidity and the second humidity threshold.
  • the control method of the present application also enables the refrigerant to conduct heat exchange with the condensed water in the second part through the second pipe section, so as to realize the preliminary cooling of the refrigerant, increase the degree of subcooling, and then enter the throttling element for secondary cooling,
  • the temperature of the refrigerant entering the evaporator is reduced, the heat exchange efficiency of the evaporator is improved, and the drying energy efficiency is improved.
  • the water receiving tray is divided into a first part and a second part, and the liquid inlet is connected to the first part, and the liquid outlet is connected to the second part, so that the condensed water first exchanges heat with the humid air passing through the gas-liquid heat exchanger, The cooling of the humid air is given priority, and then the heat exchange with the refrigerant is carried out to improve the heat exchange effect of the evaporator.
  • the combination of the two realizes the order utilization of the condensed water, so that the cold energy recovery of the condensed water is maximized.
  • the drying system can also improve the heat exchange efficiency of the evaporator and the condenser, and achieve higher dehumidification efficiency and lower energy consumption.
  • the first inlet of the cascade heat exchanger is communicated with the humid air outlet, the first outlet is communicated with the air inlet of the evaporator, the second inlet is communicated with the outlet of the evaporator, and the second outlet is communicated with the inlet of the condenser,
  • the humid air before the humid air enters the evaporator for cooling, it first exchanges heat with the low-temperature dry air flowing out of the evaporator through the cascade heat exchanger, and its temperature is greatly reduced, and the temperature of the low-temperature dry air is simultaneously increased (this The process is equal heat exchange), the humid air whose temperature has been lowered continues to flow forward to the evaporator for secondary cooling and reaches below the dew point temperature, and the moisture in the air is greatly separated, because the humid air is not directly sent to the
  • the evaporator conducts heat exchange, but firstly conducts heat exchange with low-temperature dry air from the evaporator through the cascade heat exchanger, and then enters the evaporator for
  • the temperature of the air entering the condenser is also higher than the temperature of the air entering the condenser without a cascade heat exchanger.
  • the temperature of the air that is discharged and re-entered into the drying chamber is also higher than that without the cascade heat exchanger. Therefore, the setting of the cascade heat exchanger also increases the temperature of the air entering the drying chamber, and accordingly speeds up the drying of the clothes. The drying speed further improves the drying efficiency and further reduces the energy consumption.
  • Fig. 1 is the system diagram of the drying system in the first embodiment of the present invention
  • Fig. 2 is the main flow chart of the drying control method in the first embodiment of the present invention
  • FIG. 3 is a flowchart of a possible implementation of the drying control method in the first embodiment of the present invention.
  • FIG. 4 is a system diagram of the drying system in the second embodiment of the present invention.
  • Fig. 5 is the control flow chart of the water pump and the flow regulating valve in the second embodiment of the present invention.
  • FIG. 6 is a system diagram of a drying system in a third embodiment of the present invention.
  • Fig. 7 is the control flow chart of the first electric control valve and the second electric control valve in the third embodiment of the present invention.
  • FIG. 8 is a system diagram of a drying system in a fourth embodiment of the present invention.
  • FIG. 9 is a structural diagram of a specific embodiment of the gas-liquid heat exchanger of the present invention.
  • FIG. 10 is a logic diagram of a possible implementation of the drying control method of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication between two components.
  • FIG. 1 is a system diagram of the drying system in the first embodiment of the present invention
  • FIG. 2 is the main flow chart of the drying control method in the first embodiment of the present invention
  • FIG. 3 is the first embodiment of the present invention.
  • the relative humidity in the drying chamber also decreases, and the air heated by the condenser is placed in the drying chamber.
  • the reduction of the medium temperature also decreases, and the temperature of the air entering the evaporator and the condenser continues to rise, resulting in a gradual weakening of the dehumidification capacity of the evaporator, and the dehumidification effect is getting worse and worse. also growing.
  • the drying system of the present application includes a refrigerant circulation loop and an air circulation loop.
  • the refrigerant circulation loop includes a compressor 11 , a condenser 12 , a throttling element 13 and an evaporator 14 .
  • the above components are connected in sequence through a refrigerant pipe 15 , and a water receiving tray 31 is provided below the evaporator 14 .
  • the air circulation loop includes a drying chamber 21, an evaporator 14 and a condenser 12 connected by an air duct 25.
  • the drying chamber 21 has a humid air outlet 211 and a dry air inlet 212, and the humid air outlet 211 communicates with the inlet of the evaporator 14.
  • the outlet of the evaporator 14 is communicated with the inlet of the condenser 12, the outlet of the condenser 12 is communicated with the dry air inlet 212, and a fan 24 is provided in the air circulation circuit.
  • the drying system is applied to an integrated washer-drying machine, which includes a box body (not shown in the figure), and a door is provided on the box body, and inside the box A washing tub assembly is provided, the washing tub assembly includes an outer tub and an inner tub, the inner tub can accommodate the laundry to be washed, and the above-mentioned wet air outlet 211 and dry air inlet 212 are opened on the outer tub.
  • the evaporator 14 , the condenser 12 and the fan 24 are each provided with a casing, and an inlet and an outlet connected to the air duct 25 are respectively formed on the casing.
  • the humid air outlet 211 communicates with the inlet of the evaporator 14 through the air duct 25
  • the outlet of the evaporator 14 communicates with the inlet of the condenser 12 through the air duct 25
  • the outlet of the condenser 12 communicates with the fan 24 through the air duct 25 .
  • the inlet of the fan 24 is communicated with the dry air inlet 212 through the air duct 25, so as to realize the communication of the air circulation circuit.
  • the discharge port of the compressor 11 is communicated with the refrigerant inlet of the condenser 12 through the refrigerant pipe 15, and the refrigerant outlet of the condenser 12 is communicated with one end of the throttling element 13 through the refrigerant pipe 15, and the other end of the throttling element 13 is connected.
  • One end is communicated with the refrigerant inlet of the evaporator 14 through the refrigerant pipe 15, the refrigerant outlet of the evaporator 14 is communicated with the inlet of the gas-liquid separator (not shown in the figure) through the refrigerant pipe 15, and the outlet of the gas-liquid separator is connected with the compressor 11.
  • the suction port is connected to realize the communication of the refrigerant circulation circuit.
  • the throttling element 13 is preferably an electronic expansion valve. Of course, the throttling element 13 can also be a capillary tube or a thermal expansion valve.
  • the compressor 11 and the fan 24 are activated.
  • the refrigerant discharged from the discharge port of the compressor 11 passes through the condenser 12, the throttling element 13 and the evaporator 14 in sequence, and then returns to the compressor 11 from the suction port of the compressor 11 to complete the refrigerant cycle (the refrigerant circulation path in Fig. solid arrows).
  • the air flow in the drying chamber 21 is driven by the fan 24 to pass through the evaporator 14 and the condenser 12 in sequence and then return to the drying chamber 21 to complete the air circulation (the air circulation path is shown by the hollow arrow in FIG. 1 ).
  • the humid air in the drying chamber 21 is sucked into the humid air outlet 211, the humid air first flows to the evaporator 14, and the evaporator 14 performs heat exchange with the low-temperature refrigerant in the refrigerant circulation to achieve cooling, and the air The temperature drops below the dew point temperature to precipitate moisture, and the moisture becomes condensed water and drips into the drip tray 31 .
  • the cooled air becomes dry air and is discharged from the evaporator 14 to the condenser 12.
  • the high temperature refrigerant in the refrigerant circulation is exchanged for heat to achieve temperature rise, and the heated high temperature air enters the drying chamber through the dry air inlet 212.
  • the laundry is dried in the chamber 21 .
  • control method of the present application includes:
  • the drying control method of the drying system of the present application can improve the drying efficiency while taking into account the drying energy consumption.
  • the operating frequency of the compressor 11 is determined based on the humidity interval in which the actual humidity in the drying chamber 21 is located, and the actual humidity is proportional to the operating frequency of the compressor, so that in the actual drying process, when the drying When the humidity in the chamber 21 is high, the operating frequency of the compressor 11 is correspondingly high.
  • the cooling capacity of the refrigerant circulation circuit is large, the refrigerant flow speed is fast, and the temperature of the drying airflow passing through the condenser 12 increases rapidly, and the high temperature air A large amount of water vapor in the drying chamber is taken away, and the refrigerant in the evaporator 14 quickly completes heat exchange with the air with high moisture content, so that the moisture in the air is quickly condensed and precipitated.
  • the operating frequency of the compressor 11 When the humidity in the drying chamber 21 is small, the operating frequency of the compressor 11 is correspondingly small, and the cooling capacity of the refrigerant circulation circuit is small at this time, but the flow rate of the refrigerant is correspondingly slowed down, and the drying airflow passing through the condenser 12 The temperature rises slowly, which slows down the temperature rise rate of the air flow entering the evaporator 14 , and at the same time, the refrigerant in the evaporator 14 completes sufficient heat exchange with the air flow to ensure the dehumidification effect of the evaporator 14 . At the same time, as the operating frequency of the compressor 11 decreases, the power consumption of the system also decreases continuously.
  • the drying control method includes the following steps:
  • step S201 is performed to obtain the actual humidity Rh and the target humidity Rhm of the drying chamber; for example, the actual humidity Rh in the drying chamber is obtained through a humidity sensor, and the target humidity Rhm is determined through a drying program.
  • the drying procedures will be different, and the corresponding target temperature Rhm (that is, the target moisture content of the clothing) will also be different.
  • the target humidity Rhm may be set in advance by the washer-dryer based on the drying program, or may be set by the user, which is not limited in this application.
  • step S203 is performed to determine whether the actual humidity Rh is less than the target humidity Rhm, that is, whether Rh ⁇ Rhm is established; if Rh ⁇ Rhm is established, it proves that the clothes have been dried.
  • step S217 is executed to control the drying system to stop working, and the drying Drying ends; otherwise, if Rh ⁇ Rhm does not hold, it proves that the clothes still have a certain moisture content.
  • step S205 is performed, and a corresponding drying operation is further performed based on the humidity interval in which the actual humidity Rh is located.
  • the humidity interval is determined based on the target humidity Rhm.
  • based on the target humidity Rhm is divided into three humidity intervals, namely (Rhm, bRhm), (bRhm, aRhm) and (aRhm, 1).
  • a and b are magnification coefficients, and a>b>1.
  • the corresponding humidity intervals are (5%, 10%), (10%, 15%) and (15%, 100%).
  • the specific numerical values of a, b and Rhm above are not limited thereto, and those skilled in the art can adjust them.
  • the above-mentioned division manner of the humidity interval is only exemplary, and those skilled in the art can adjust it without departing from the principles of the present application.
  • the humidity interval may also be divided into two, four or more, etc. based on the target humidity Rhm.
  • step S215 is executed to control the compressor to operate at the operating frequency f.
  • the drying control method of the present application can adjust the operation frequency of the compressor 11 for different target humidity.
  • the operating frequency improves the applicability of the control method.
  • Fig. 4 is a system diagram of the drying system in the second embodiment of the present invention
  • Fig. 5 is a control flow chart of a water pump and a flow regulating valve in the second embodiment of the present invention
  • Fig. 9 is a gas pump of the present invention
  • the drying system further includes a gas-liquid heat exchanger 23 and a cooling circulation loop.
  • the gas-liquid heat exchanger 23 has an air inlet 2311 , an air outlet 2312 , a liquid inlet 2313 and a liquid outlet 2314 .
  • the cooling circulation loop includes a water receiving pan 31, a water pump 32 and a gas-liquid heat exchanger 23 communicated through a liquid pipe 33.
  • the water receiving pan 31 is arranged below the evaporator 14 for collecting condensed water, a liquid inlet 2313 and a liquid outlet 2314 are respectively communicated with the water receiving tray 31, the water pump 32 is arranged between the liquid inlet 2313/liquid outlet 2314 and the water receiving tray 31, and the liquid pipe 33 between the liquid inlet 2313/liquid outlet 2314 and the water receiving tray 31 A flow regulating valve 34 is also provided on the top.
  • the wet air outlet 211 communicates with the air inlet 2311 of the gas-liquid heat exchanger 23 through the air duct 25
  • the air outlet 2312 of the gas-liquid heat exchanger 23 communicates with the inlet of the evaporator 14 through the air duct 25
  • the outlet of the evaporator 14 is connected with the inlet of the condenser 12 through the duct 25, the outlet of the condenser 12 is communicated with the inlet of the fan 24 through the duct 25, and the outlet of the fan 24 is communicated with the dry air inlet 212 through the duct 25, Thereby, the communication of the air circulation circuit is realized.
  • the water receiving pan 31 communicates with the suction port of the water pump 32 through the liquid pipe 33 with one end being a free end, and the drain port of the water pump 32 communicates with the liquid inlet 2313 of the gas-liquid heat exchanger 23 through the liquid pipe 33.
  • the liquid outlet 2314 of the liquid heat exchanger 23 is communicated with one end of the flow regulating valve 34 through the liquid pipe 33, and the other end of the flow regulating valve 34 is communicated with the liquid return port opened on the side wall of the water receiving plate 31 through the liquid pipe 33, In this way, the communication of the cooling circulation circuit is realized.
  • the free end of the liquid pipe 33 connected to the suction port of the water pump 32 extends into the water receiving tray 31, and the flow regulating valve 34 may be an electronic expansion valve or a solenoid valve with adjustable opening.
  • the gas-liquid heat exchanger 23 adopts a shell-and-tube heat exchanger, which includes a substantially cylindrical shell 231 and a plurality of heat exchangers disposed in the shell 231 .
  • Heat pipe 232 .
  • the casing 231 is arranged in the vertical direction, and a partition 234 is arranged inside.
  • the partition 234 is extended and fixed upward from the lower part along the length direction of the casing 231. After fixing, the casing 231 is divided into an inverted U-shaped flow. road.
  • the heat exchange tubes 232 are U-shaped tubes, and each heat exchange tube 232 extends along the inverted U-shaped flow channel.
  • the casing 231 is also provided with a plurality of baffles 233, each baffle 233 is provided with a plurality of through holes for allowing the heat exchange tubes 232 to pass through, and the baffles 233 are sleeved on the heat exchange through the plurality of through holes.
  • the tube 232 is fixedly connected to the inner wall of the housing 231 or the partition plate 234 respectively.
  • a plurality of baffles 233 are arranged at intervals, so that each straight section of the U-shaped flow channel is divided into S-shaped baffle channels.
  • the air inlet 2311 and the air outlet 2312 are respectively opened in the lower part of the peripheral side of the housing 231, and the air inlet 2311 and the air outlet 2312 are arranged in the U-shaped in a direction away from each other.
  • the air inlet 2311 is opened near the upstream end of the U-shaped flow channel
  • the air outlet 2312 is opened near the downstream end of the U-shaped flow channel.
  • the casing 231 is also provided with a liquid separation plate 235.
  • the liquid separation plate 235 and the lower end of the casing 231 are separated into a liquid inlet cavity 237 and a liquid outlet cavity 238 by a cavity separation plate 236, and a liquid inlet 2313 and a liquid outlet.
  • the liquid inlet 2313 is located on the side close to the downstream section of the air flow (ie, the right side shown in FIG. 9 )
  • the liquid outlet 2314 is located on the side near the upstream end of the air flow (ie, the left side shown in FIG. 9 ).
  • the area of the air inlet 2311 is larger than that of the liquid inlet 2313 and the liquid outlet 2314
  • the area of the air outlet 2312 is also larger than that of the liquid inlet 2313 and the liquid outlet 2314 .
  • the liquid separator 235 is also provided with a plurality of through holes corresponding to the liquid inlet chamber 237 and the liquid outlet chamber 238, respectively, and the two ends of each U-shaped heat exchange tube 232 are respectively inserted into the liquid separator 235 corresponding to the liquid inlet chamber 237 and the liquid outlet chamber 237.
  • the through holes of the liquid outlet cavity 238 are connected to realize the fixing of the heat exchange tube 232 and the communication between the liquid inlet 2313 and the liquid outlet 2314 and the two ends of the heat exchange tube 232 .
  • the condensed water enters the liquid inlet cavity 237 through the liquid inlet 2313 and is divided into multiple paths into a U-shaped pipe, and after flowing through the U-shaped pipe, it passes through the U-shaped pipe.
  • the other end converges to the liquid outlet chamber 238, and finally flows back to the water receiving tray 31 through the liquid outlet 2314 (the condensed water circulation path is shown by the hollow arrow in FIG. 9).
  • the moist air enters the casing 231 through the air inlet 2311, and flows back and forth along the S-shaped baffle channel under the barrier of the baffle plate 233 and the baffle plate 234.
  • the drying control method of the present application further includes the following steps on the basis of Embodiment 1:
  • step S301 is performed to obtain the actual humidity Rh of the drying chamber, for example, the actual humidity Rh in the drying chamber is obtained through a humidity sensor.
  • step S303 is executed to determine whether the actual humidity is less than the first humidity threshold, that is, whether Rh ⁇ Rh 1 holds; if Rh ⁇ Rh 1 holds, it proves that the moisture content of the clothes has dropped to a certain degree at this time, and the Correspondingly, a sufficient amount of condensed water is also accumulated.
  • step S305 is performed to further determine the opening degree P of the flow regulating valve; otherwise, if Rh ⁇ Rh 1 does not hold, it proves that the moisture content of the clothes is high at this time, and the water receiving tray If the accumulated amount of condensed water in the cooling circuit is not enough to support the operation of the cooling circuit, step S309 is performed at this time to keep the water pump stopped.
  • step S307 is executed to control the water pump to start and adjust the opening degree of the flow regulating valve to P.
  • the drying control method of the present application can further improve the drying effect and ensure the dehumidification capacity of the evaporator 14, Shorten drying time and reduce drying energy consumption.
  • the air inlet 2311 and the air outlet 2312 of the gas-liquid heat exchanger 23 are respectively communicated with the humid air outlet 211 and the inlet of the evaporator 14, and the liquid inlet 2313 and the liquid outlet 2314 are respectively communicated with the water receiving tray 31,
  • the compressor 11, the fan 24 and the water pump 32 start to run.
  • the compressor 11 pushes the refrigerant to circulate along the refrigerant circulation loop.
  • the water pump 32 drives the condensed water in the water receiving tray 31 to circulate along the cooling circulation loop.
  • the air flow circulates in the air circulation loop.
  • the humid air in the drying chamber 21 is sucked into the humid air outlet 211, and the humid air first enters the gas-liquid heat exchanger 23 through the air inlet 2311, and exchanges heat with the condensed water in the cooling circuit in the gas-liquid heat exchanger 23.
  • the temperature is lowered, preliminary cooling is realized, and the temperature of the corresponding condensed water is increased, so as to realize the recycling and utilization of the cold energy in the condensed water, and reduce the waste of energy.
  • the humid air whose temperature has been initially lowered is discharged from the gas-liquid heat exchanger 23 through the air outlet 2312 and continues to flow forward to the evaporator 14, where it exchanges heat with the refrigerant to achieve secondary cooling, and the temperature of the air is reduced to Below the dew point temperature, moisture is precipitated, and drops into the drain pan 31 as condensed water.
  • the humid air is not directly sent to the evaporator 14 for heat exchange, but firstly passes through the gas-liquid heat exchanger 23 for heat exchange with the low-temperature condensed water inside, so the humid air reaching the evaporator 14 will be more
  • the temperature of the humid air directly sent to the evaporator 14 is lower, that is, the sensible heat burden of the evaporator 14 is reduced, and the dehumidification efficiency of the drying system is improved.
  • the latent heat prevents the low-temperature condensed water from not being effectively used, reduces the loss of energy, improves the circulation efficiency of the system, and reduces the energy consumption.
  • the control method of the present application only starts the water pump 32 when the humidity of the drying chamber 21 drops to a certain level, that is, when the amount of condensed water is sufficient, to avoid the problem of water loss due to the amount of water. Water pump 32 failure caused by insufficient. At the same time, the water pump 32 is turned on when the humidity of the drying chamber 21 drops to a certain level, which can also improve the drying effect in a timely manner and ensure the dehumidification capability of the evaporator 14 when the moisture content of the clothes decreases.
  • the present application can also realize the linkage with the frequency control of the compressor 11 when the water pump 32 is turned on, so that condensation can be achieved.
  • the flow rate of water is adapted to the current air humidity, so as to avoid water accumulation in the gas-liquid heat exchanger 23 caused by the moisture in the air flow condensing in the gas-liquid heat exchanger 23 in advance.
  • the gas-liquid heat exchanger 23 of the present application has the advantages of high heat transfer coefficient, fast heat exchange rate, small occupied space, and long service life.
  • an S-shaped baffle channel is formed inside the shell 231, so that the air and the heat exchange tube 232 are fully contacted, and the air and the heat exchange tube 232 are significantly increased. Therefore, the heat exchange effect is greatly improved, the burden on the evaporator 14 is reduced, and the dehumidification efficiency of the system is improved.
  • the liquid outlet 2314 is opened on the casing 231 near the upstream end of the U-shaped pipe, so that the flow direction of the air is opposite to that of the condensed water, and the countercurrent heat exchange between the air and the condensed water is realized.
  • the effect is better. Since the condensed water is liquid, the pressure drop is small, and the air is gas, and the pressure drop is large. Therefore, the area of the air inlet 2311 is larger than that of the liquid inlet 2313 and the liquid outlet 2314, and the area of the air outlet 2312 is larger than that of the liquid inlet.
  • the area of 2313 and the liquid outlet 2314 can reduce the pressure drop of the air and achieve better flow heat exchange effect.
  • the steps in the above embodiments are described in the above order, those skilled in the art can understand that in order to achieve the effect of this embodiment, the steps between different steps It is not necessary to perform in this order, it may be performed simultaneously (in parallel) or in reverse order, or some steps may be omitted, and these simple variations are all within the scope of the present invention.
  • the flow regulating valve 34 may not be provided, and in this case, the step of determining the opening degree of the flow regulating valve may be omitted.
  • the step of judging the actual humidity and the first humidity threshold can also be omitted, and the water pump is directly controlled to start running when the drying program starts.
  • FIG. 3 is a system diagram of the drying system in the second embodiment of the present invention.
  • 6 is a system diagram of the drying system in the third embodiment of the present invention;
  • FIG. 7 is a control flow chart of the first electric control valve and the second electric control valve in the third embodiment of the present invention.
  • the water receiving tray 31 is further provided with a baffle 311 , and the baffle 311 divides the water receiving tray 31 into a first part 312 and a second part 312 .
  • the baffle 311 divides the water receiving tray 31 into a first part 312 and a second part 312 .
  • a first electric control valve 16 is provided on a pipe section 151
  • a second electric control valve 17 is provided on the second pipe section 152
  • a part of the second pipe section 152 is arranged in the second part 313 .
  • the refrigerant pipes 15 arranged in the second part 313 can be arranged in a U-shape or S-shape along the bottom surface of the water-receiving pan 31, or can be arranged in multiple layers along the height direction of the water-receiving pan 31. U-shaped or S-shaped arrangement, and the refrigerant pipe 15 of the highest layer is lower than the highest water level of the water receiving tray 31 .
  • an overflow port (not shown in the figure) is opened on the side wall of the water receiving tray 31 corresponding to the second portion 313 , and a drain pipe 314 is connected to the overflow port.
  • the drying control method of the present application further includes the following steps on the basis of Embodiment 1:
  • step S401 is performed to obtain the actual humidity Rh of the drying chamber.
  • the actual humidity Rh in the drying chamber is obtained through a humidity sensor.
  • step S403 is executed to determine whether the actual humidity is less than the second humidity threshold, that is, whether Rh ⁇ Rh 2 holds; if Rh ⁇ Rh 2 does not hold, it proves that the moisture content of the clothes is high at this time, and the drying efficiency of the drying system can be Ensure that step S405 is performed at this time to control the opening of the first electronically controlled valve; otherwise, if Rh ⁇ Rh 2 is established, it proves that the moisture content of the clothes has dropped to a certain extent at this time, and the drying efficiency of the drying system has decreased.
  • step S407 is performed to control the first electric control valve to be closed and the second electric control valve to be opened, so that all the refrigerant first passes through the second part of the water receiving tray and then enters the throttling element.
  • the baffle 311 By using the baffle 311 to divide the water receiving tray 31 into the first part 312 and the second part 313, and between the condenser 12 and the throttling element 13, the first pipe section 151 and the second pipe section 152 are arranged in parallel, and the first pipe section 151 is arranged The first electric control valve 16, the second electric control valve 17 in the second pipe section 152, and the second electric control valve 17 in the second pipe section 152 are arranged in the second section 313, and the first electric control valve is controlled based on the actual humidity and the second humidity threshold.
  • control method of the present application also enables the refrigerant to exchange heat with the condensed water in the second part 313 through the second pipe section 152, so as to realize the preliminary cooling of the refrigerant and increase the Subcooling degree, and then enter the throttling element 13 for secondary cooling, which reduces the temperature of the refrigerant entering the evaporator 14, improves the heat exchange efficiency of the evaporator 14, and improves the drying energy efficiency.
  • the water receiving tray 31 is divided into a first part 312 and a second part 313, the liquid inlet 2313 is communicated with the first part 312, and the liquid outlet 2314 is communicated with the second part 313, so that the condensed water first passes through the gas-liquid heat exchanger.
  • the humid air of 23 conducts heat exchange to ensure the cooling of the humid air first, and then exchanges heat with the refrigerant to improve the heat exchange effect of the evaporator 14.
  • the combination of the two realizes the order utilization of the condensed water, so that the Cold energy recovery to the extreme.
  • FIG. 8 is a system diagram of the drying system in the fourth embodiment of the present invention.
  • the drying system further includes a cascade heat exchanger 22 , and the cascade heat exchanger 22 has a first inlet 221 and a first outlet 222 , the second inlet 223 and the second outlet 224, an air flow channel is formed between the first inlet 221 and the first outlet 222, another air flow channel is formed between the second inlet 223 and the second outlet 224, and the two air flows
  • the channels are arranged to cross each other, so that the heat can be cross-exchanged.
  • the first inlet 221 communicates with the humid air outlet 211
  • the first outlet 222 communicates with the inlet of the vapor evaporator 14
  • the second inlet 223 communicates with the outlet of the evaporator 14
  • the second outlet 224 communicates with the inlet of the condenser 12 .
  • the present application does not limit the specific structural form of the cascade heat exchanger 22 , and any heat exchanger that can satisfy the above conditions can be used as the cascade heat exchanger 22 in the present application.
  • a plate-fin heat exchanger or a rotary heat exchanger can be used as the cascade heat exchanger 22 of the present application, or the like.
  • the high-temperature humid air discharged from the humid air outlet 211 first flows into an air flow channel of the cascade heat exchanger 22 through the first inlet 221 of the cascade heat exchanger 22 , the low-temperature dry air flowing out of the evaporator 14 flows into another air flow channel of the cascade heat exchanger 22 through the second inlet 223 of the cascade heat exchanger 22, and the two air flows into the air for heat exchange, so that the high temperature and humidity
  • the temperature of the air is lowered and the temperature of the low-temperature dry air is raised at the same time (the process is isothermal heat exchange).
  • the humid air whose temperature has been lowered continues to flow forward to the evaporator 14 for secondary temperature reduction, and at the same time, the dry air whose temperature has been raised continues to flow forward to the condenser 12 for secondary heating.
  • the drying system can simultaneously improve the heat exchange efficiency of the evaporator 14 and the condenser 12, thereby achieving higher dehumidification efficiency and lower energy consumption.
  • the humid air before entering the evaporator 14 for cooling, the humid air first exchanges heat with the low-temperature dry air flowing out of the evaporator 14 through the cascade heat exchanger 22, and its temperature is greatly reduced, and the temperature of the low-temperature dry air is simultaneously increased (This process is an equal amount of heat exchange), the humid air whose temperature has been lowered continues to flow forward to the evaporator 14 for secondary cooling and reaches below the dew point temperature, and the moisture in the air is greatly precipitated. It is directly sent to the evaporator 14 for heat exchange, but first passes through the cascade heat exchanger 22 for heat exchange with the low-temperature dry air from the evaporator 14, and then enters the evaporator 14 for heat exchange. The temperature of the humid air will be much lower than that of the humid air directly sent to the evaporator 14 , thus greatly reducing the burden on the evaporator 14 and improving the dehumidification efficiency.
  • the temperature of the air entering the condenser 12 is also higher than the temperature of the air entering the condenser 12 directly without the cascade heat exchanger 22.
  • the temperature of the air discharged through the condenser 12 and re-entering the drying chamber 21 is also higher than that when the cascade heat exchanger 22 is not provided. Therefore, the setting of the cascade heat exchanger 22 also improves the air entering the drying chamber 21. The temperature increases the drying speed of the clothes accordingly, which further improves the drying efficiency and further reduces the energy consumption.
  • the specific arrangement of the shell-and-tube heat exchanger is not limited to the above-mentioned manner, and those skilled in the art can adjust it as long as the arrangement can realize the connection between the condensed water and the air. heat exchange can be done.
  • the setting positions of the air inlet 2311, the air outlet 2312, the liquid inlet 2313 and the liquid outlet 2314 can be adjusted based on the actual product. They can be arranged away from each other or collinearly arranged along the length direction of the shell 231; the specific form and quantity of the heat exchange tubes 232 can be adjusted, such as straight tubes or S-shaped tubes, etc.; One or all of them can be optionally omitted, etc.
  • the arrangement of the evaporator 14, the condenser 12 and the fan 24 is not static.
  • the air circulation loop can be formed, those skilled in the art can adjust the arrangement of the above components.
  • the arrangement is changed without departing from the principles of the present application.
  • one or more of the evaporator 14 , the condenser 12 and the fan 24 may also be directly disposed inside the air duct 25 .
  • the embodiment of the gas-liquid heat exchanger 23 is not limited to this, and those skilled in the art can The selection is based on the actual application scenario, and the effect is not significant compared to the shell and tube heat exchanger.
  • the gas-liquid heat exchanger 23 can also be a plate heat exchanger or a casing heat exchanger, etc. When a casing heat exchanger is used, it can be set so that the air goes through the outer tube and the condensed water goes through the inner tube, so as to take into account the flow heat exchange Effect.
  • the first part 312 and the second part 313 of the water receiving tray 31 may both be disposed below the evaporator 14, and the second pipe section 152 may also be partially suspended and disposed at the evaporator between the water collector 14 and the second part 313 , and then coiled inside the second part 313 of the water receiving tray 31 .
  • the suspended parts can be arranged in a U-shape or an S-shape along the horizontal plane, or can be arranged in multiple layers along the height direction, and each layer is arranged in a U-shape or an S-shape. In this way, part of the condensed water generated by the evaporator 14 first drops onto the suspended second pipe section 152 during the falling process, and then flows into the second part 313 .
  • 10 is a logic diagram of a possible implementation manner of the drying control method of the present invention.
  • the washer-drying machine performs the drying program after the washing program is performed.
  • Step S501 is first performed to obtain the actual humidity Rh and the target humidity Rhm of the drying chamber.
  • Rhm 5%.
  • Step S503 is then executed to determine whether Rh ⁇ 5% is established; if Rh ⁇ 5% is established, the clothes are dried and the program ends; otherwise, if Rh ⁇ 5% is not established, step S505 is further executed to determine Rh ⁇ 30% is established.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种烘干系统的烘干控制方法。旨在解决现有的烘干控制方法存在的干燥时间长、能耗高的问题。为此目的,烘干控制方法包括:在风机(24)运行过程中,获取干燥腔室(21)的实际湿度Rh;基于实际湿度Rh所在的湿度区间,确定压缩机(11)的运行频率f;控制压缩机(11)以运行频率f运行;其中,实际湿度Rh与运行频率f之间成正比关系。烘干系统的烘干控制方法能够提高烘干效率的同时,兼顾烘干能耗。

Description

烘干系统的烘干控制方法 技术领域
本发明涉及衣物处理技术领域,具体涉及一种烘干系统的烘干控制方法。
背景技术
为实现衣物的快速干燥,现有的洗衣机配置有热泵式烘干系统。热泵式烘干系统主要包括冷媒循环和湿空气循环。其中,冷媒循环主要包括压缩机、冷凝器、节流装置和蒸发器,湿空气循环包括风道和风机,风道的两端分别与洗衣机的洗涤筒连通,冷媒循环中的冷凝器和蒸发器设置在风道中。运行过程中,洗涤筒内的湿空气在风机的带动下由风道的一端进入,并在依次流过蒸发器和冷凝器后由风道的另一端返回洗涤筒。当湿空气经过蒸发器时与蒸发器发生热交换,湿空气中的水分冷凝为水滴析出而含湿量下降,含湿量下降的空气再经过冷凝器时,与冷凝器发生热交换而温度上升,温度上升后的空气回到洗涤筒内对衣物进行烘干,如此往复。
但是,现有的热泵式烘干系统控制较为简单,随着洗涤筒内衣物的含水率逐渐降低,洗涤筒内的相对湿度也越来越小,经过冷凝器加热后的空气在洗涤筒中温度降低幅度也减小,进入蒸发器和冷凝器的空气温度不断升高,导致蒸发器的除湿能力逐渐减弱,除湿效果越来越差,这样就造成烘干衣物时间加长,系统功耗也不断增大。
相应地,本领域需要一种新的烘干系统的烘干控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述至少一个问题,即为了解决现有的烘干控制方法存在的干燥时间长、能耗高的问题,本发明提供了一种烘干系统的烘干控制方法,所述烘干系统包括:冷媒循环回路,所述冷媒循环回路包括通过冷媒管连接的压缩机、冷凝器、节流元件和蒸发器,所述蒸发器下方设置有接水盘;空气循环回路,所述空气循环回路包括通过风管连接的干燥腔室、所述蒸发器和所述冷凝器,所述干燥腔室具有湿空气出口和干空气进口,所述湿空气出口与所述蒸发器的进口连通,所述蒸发器的出口与所述冷凝器的进口连通,所述冷凝器的出口与所述干空气进口连通,所述空气循环回路配置有风机;
所述烘干控制方法包括:
在所述风机运行过程中,获取所述干燥腔室的实际湿度Rh;
基于所述实际湿度Rh所在的湿度区间,确定所述压缩机的运行频率f;
控制所述压缩机以所述运行频率f运行;
其中,所述实际湿度Rh与所述运行频率f之间成正比关系。
在上述烘干系统的烘干控制方法的优选技术方案中,所述湿度区间基于所述干燥腔室的目标湿度Rhm确定。
在上述烘干系统的烘干控制方法的优选技术方案中,“基于所述实际湿度所在的湿度区间,确定所述压缩机的运行频率”的步骤进一步包括:
当Rh≥a×Rhm时,确定所述运行频率f=a×F+k 1
当b×Rhm≤Rh<a×Rhm时,确定所述运行频率f=(a+b)/2×F+k 2
当Rhm≤Rh<b×Rhm时,确定所述运行频率f=(a+b)/2×F+k 3
其中,F为所述压缩机的额定频率,a、b为倍率系数,k 1、k 2、k 3为常数,且a>b>1,k 1>k 2>k 3
在上述烘干系统的烘干控制方法的优选技术方案中,所述烘干控制方法还包括:
当Rh<Rhm时,控制所述烘干系统停止工作。
在上述烘干系统的烘干控制方法的优选技术方案中,所述空气循环回路还包括:气液换热器,所述气液换热器具有进气口、出气口、进液口和出液口,所述进气口与所述湿空气出口连通,所述出气口与所述蒸发器的进口连通;冷却循环回路,所述冷却循环回路包括通过液管连通的所述接水盘、水泵和所述气液换热器,所述接水盘设置于所述蒸发器的下方,用于收集冷凝水,所述进液口和所述出液口分别与所述接水盘连通,所述水泵设置于所述进液口/所述出液口与所述接水盘之间;
所述烘干控制方法还包括:
控制所述水泵启动运行。
在上述烘干系统的烘干控制方法的优选技术方案中,“控制所述水泵启动运行”的步骤进一步包括:
当Rh<Rh 1时,控制所述水泵启动运行;
其中,Rh 1为第一湿度阈值。
在上述烘干系统的烘干控制方法的优选技术方案中,所述进液口/所述出液口与所述接水盘之间的液管上还设置有流量调节阀,所述烘干控制方法还包括:
当Rh<Rh 1时,基于所述实际湿度Rh,确定所述流量调节阀的目标开度P;
控制所述流量调节阀调整至所述目标开度P。
在上述烘干系统的烘干控制方法的优选技术方案中,所述接水盘还设置有挡板,所述挡板将所述接水盘分隔为第一部分和第二部分,所述进液口与所述第一部分连通,所述出液口与所述第二部分连通,所述冷凝器与所述节流元件之间设置有并联的第一管段和第二管段,所述第一管段上设置有第一电控阀,所述第二管段上设置有第二电控阀,且所述第二管段部分盘设于所述第二部分中,
所述烘干控制方法还包括:
比较所述实际湿度Rh与第二湿度阈值Rh 2的大小;
基于比较结果,控制所述第一电控阀和所述第二电控阀的开闭。
在上述烘干系统的烘干控制方法的优选技术方案中,“基于所述实际湿度Rh,控制所述第一电控阀和所述第二电控阀的开闭”的步骤进一步包括:
当Rh>Rh 2时,控制所述第一电控阀打开;
当Rh≤Rh 2时,控制所述第一电控阀关闭、所述第二电控阀打开。
在上述烘干系统的烘干控制方法的优选技术方案中,所述烘干系统还包括复叠换热器,所述复叠换热器具有第一进口、第一出口、第二进口和第二出口,所述第一进口与第一出口之间形成的空气流道与所述第二进口与所述第二出口之间形成的空气流道能够交叉换热,其中,所述第一进口与所述湿空气出口连通,所述第一出口与所述蒸发器的进口连通,所述第二进口与所述蒸发器的出口连通,所述第二出口与所述冷凝器的进口连通。
本领域技术人员能够理解的是,在本发明的优选技术方案中,烘干系统包括:冷媒循环回路,冷媒循环回路包括通过冷媒管连接的压缩机、冷凝器、节流元件和蒸发器,蒸发器下方设置有接水盘;空气循环回路,空气循环回路包括通过风管连接的干燥腔室、蒸发器和冷凝器,干燥腔室具有湿空气出口和干空气进口,湿空气出口与蒸发器的进口连通,蒸发器的出口与冷凝器的进口连通,冷凝器的出口与干空气进口连通,空气循环回路配置有风机;烘干控制方法包括:在风机运行过程中,获取干燥腔室的实际湿度Rh;基于实际湿度Rh所在的湿度区间,确定压缩机的运行频率f;控制压缩机以运行频率f运行;其中,实际湿度Rh与运行频率f之间成正比关系。
通过上述控制方式,本申请的烘干系统的烘干控制方法能够提高烘干效率的同时,兼顾烘干能耗。具体而言,通过基于干燥腔室内的实际湿度所处的湿度区间来确定压缩机的运行频率,并且实际湿度与压运行频率之间成正比关系,使得在实际干燥过程中,当干燥腔室内的湿度大时,压缩机的运行频率相应的也较高, 此时冷媒循环回路的制冷量大,冷媒流动速度快,经过冷凝器的烘干气流温度提升快,高温空气大量带走烘干腔室内的水汽,蒸发器中的冷媒快速地与含湿量高的空气完成热交换,使空气中的水分迅速冷凝析出。当干燥腔室内的湿度小时,压缩机的运行频率相应的也较小,此时冷媒循环回路的制冷量小,但冷媒流动速度也相应地减慢,经过冷凝器的烘干气流温度提升慢,减缓了进入蒸发器的空气流的温升速度,同时蒸发器中的冷媒与空气流完成充分的热交换,保证蒸发器的除湿效果。同时随着压缩机的运行频率降低,系统的功耗也不断降低。
进一步地,通过基于干燥腔室的目标湿度划分湿度区间,并在实际湿度处于不同湿度区间时确定压缩机的运行频率,本申请的烘干控制方法能够针对不同的目标湿度调整压缩机的运行频率,提升控制方法的适用性。
进一步地,通过在空气循环回路中设置气液换热器,并增加冷却循环回路,本申请的烘干控制方法还能够进一步提升烘干效果,保证蒸发器的除湿能力,缩短烘干时间,降低烘干能耗。
具体而言,气液换热器的进气口和出气口分别与湿空气出口和蒸发器的进口连通,进液口和出液口分别与接水盘连通,在烘干系统工作时,压缩机、风机和水泵启动运行,压缩机推动冷媒沿冷媒循环回路循环,水泵带动接水盘中的冷凝水沿冷却循环回路循环,风机带动空气流在空气循环回路循环。干燥腔室内的湿空气被吸入湿空气出口,湿空气首先通过进气口进入气液换热器,在气液换热器内与冷却循环回路中的冷凝水进行热交换而温度降低,实现初步冷却,相应的冷凝水的温度被升高,实现冷凝水中冷量的回收利用,减少能源的浪费。温度被初步降低后的湿空气由出气口排出气液换热器并继续向前流动至蒸发器,在蒸发器中与冷媒进行热交换而实现二次降温,空气的温度降低至露点温度以下而析出水分,变为冷凝水滴入接水盘中。由于在此过程中湿空气不是直接被送到蒸发器进行热交换,而是先通过气液换热器的与里面的低温冷凝水进行热交换,因此到达蒸发器的湿空气将比直接送到蒸发器的湿空气的温度更低,也即减轻了蒸发器的显热负担,提高了烘干系统的除湿效率,同时冷凝水吸收湿空气的热量,系统回收了冷凝水的潜热,避免了低温的冷凝水没有被有效利用,减少了能量的损失,使系统循环效率提高,能耗降低。
进一步地,通过在Rh<Rh 1时,才控制所述水泵启动运行,本申请的控制方法在干燥腔室的湿度下降到一定程度、即冷凝水量充足时才开启水泵,避免由于水量不足而导致的水泵故障。同时,在干燥腔室的湿度下降到一定程度时才开启水泵运行,也能够适时的提升烘干效果,保证衣物含水率降低时蒸发器的除湿能力。
进一步地,通过在液管上设置流量调节阀,并基于实际湿度确定流量调节阀的目标开度,本申请还能够在水泵开启时实现与压缩机频率控制的联动,使得冷凝水的流量与当前的空气湿度相适应,避免出现空气流中的水分提前在气液换热器中冷凝而导致的气液换热器出现积水的情况。
进一步地,通过使用挡板将接水盘分隔为第一部分和第二部分,并将冷凝器与节流元件之间并联设置第一管段和第二管段,第一管段设置第一电控阀,第二管段设置第二电控阀,以及第二管段部分盘设在第二部分中,并基于实际湿度与第二湿度阈值的大小来控制第一电控阀和第二电控阀的开闭,本申请的控制方法还使得冷媒能够通过第二管段与第二部分中的冷凝水进行热交换,从而实现冷媒的初步降温,增大过冷度,然后再进入节流元件进行二次降温,降低了进入蒸发器冷媒温度,提高了蒸发器的换热效率,提高烘干能效。而将接水盘分隔为第一部分和第二部分,并将进液口与第一部分连通,出液口与第二部分连通,使得冷凝水先与经过气液换热器的湿空气进行热交换,优先保证湿空气的降温,然后再与冷媒进行热交换,提升蒸发器的换热效果的提升,二者组合共同实现对冷凝水阶次利用,使得冷凝水的冷量回收达到极致。
进一步地,通过在烘干系统设置复叠换热器,还使得烘干系统能够同时提高蒸发器与冷凝器的换热效率,实现更高的除湿效率和更低的能耗。
具体地,复叠换热器的第一进口与湿空气出口连通,第一出口与蒸发器的进气口连通,第二进口与蒸发器的出口连通,第二出口与冷凝器的进口连通,这样一来,湿空气在进入蒸发器进行冷却前,首先通过复叠换热器与流出蒸发器的低温干空气进行热交换,其温度被大幅降低,低温干空气的温度同时被升高(该过程是等量热交换),温度被降低后的湿空气继续向前流动到蒸发器进行二次降温而达到露点温度以下,空气中的水分大幅析出,由于在此过程中湿空气不是直接送到蒸发器进行热交换,而是先通过复叠换热器与来自蒸发器的低温干空气进行热交换,然后才进入蒸发器进行热交换,因此,到达蒸发器的湿空气将比直接送到蒸发器的湿空气的温度低很多,因而大幅度减轻了蒸发器的负担,提高了除湿效率。
与此同时,由于蒸发器流出的低温干空气与湿空气进行了热交换,因此进入冷凝器的空气温度也比不设置复叠换热器而直接进如冷凝器的温度高,这样经过冷凝器排出再次进入干燥腔室的空气温度也要比不设置复叠换热器时要高,因此,复叠换热器的设置也提高了进入干燥腔室的空气的温度,相应地加快了衣物的烘干速度,使得干燥效率进一步提升,能耗进一步下降。
附图说明
下面参照附图并结合洗干一体机来描述本发明的烘干系统的烘干控制方法。附图中:
图1为本发明的第一种实施方式中烘干系统的系统图;
图2为本发明的第一种实施方式中烘干控制方法的主流程图;
图3为本发明的第一种实施方式中烘干控制方法的一种可能的实施方式的流程图;
图4为本发明的第二种实施方式中烘干系统的系统图;
图5为本发明的第二种实施方式中水泵和流量调节阀的控制流程图;
图6为本发明的第三种实施方式中烘干系统的系统图;
图7为本发明的第三种实施方式中第一电控阀和第二电控阀的控制流程图;
图8为本发明的第四种实施方式中烘干系统的系统图;
图9为本发明的气液换热器的一种具体实施方式的结构图;
图10为本发明的烘干控制方法的一种可能的实施方式的逻辑图。
附图标记列表
11、压缩机;12、冷凝器;13、节流元件;14、蒸发器;15、冷媒管;151、第一管段;152、第二管段;16、第一电控阀;17、第二电控阀;21、干燥腔室;211、湿空气出口;212、干空气进口;22、复叠换热器;221、第一进口;222、第一出口;223、第二进口;224、第二出口;23、气液换热器;231、壳体;2311、进气口;2312、出气口;2313、进液口;2314、出液口;232、换热管;233、折流板;234、隔板;235、分液板;236、分腔板;237、进液腔;238、出液腔;24、风机;25、风管;31、接水盘;311、挡板;312、第一部分;313、第二部分;314、排水管;32、水泵;33、液管;34、流量调节阀。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施方式是结合洗干一体机进行介绍的,但是这并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员可以将本发明的烘干控制方法应用于其他衣物处理设备。例如,本申请的烘干控制方法还能够应用于干衣机、烘鞋机等。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向 或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
实施例1
首先参照图1-3,对本发明的烘干控制方法的第一种实施方式进行描述。其中,图1为本发明的第一种实施方式中烘干系统的系统图;图2为本发明的第一种实施方式中烘干控制方法的主流程图;图3为本发明的第一种实施方式中烘干控制方法的一种可能的实施方式的流程图。
如背景技术中所述,现有的烘干系统中,随着干燥腔室内衣物的含水率逐渐降低,干燥腔室内的相对湿度也越来越小,经过冷凝器加热后的空气在干燥腔室中温度降低幅度也减小,进入蒸发器和冷凝器的空气温度不断升高,导致蒸发器的除湿能力逐渐减弱,除湿效果越来越差,这样就造成干烘干衣物时间加长,系统功耗也不断增大。
如图1所示,为了解决上述问题,本申请的烘干系统包括冷媒循环回路和空气循环回路。冷媒循环回路包括压缩机11、冷凝器12、节流元件13和蒸发器14,上述部件通过冷媒管15依次顺序连接,蒸发器14下方设置有接水盘31。空气循环回路包括通过风管25连接的干燥腔室21、蒸发器14和冷凝器12,干燥腔室21具有湿空气出口211和干空气进口212,湿空气出口211与蒸发器14的进口连通,蒸发器14的出口与冷凝器12的进口连通,冷凝器12的出口与干空气进口212连通,空气循环回路中设置有风机24。
继续参照图1,在一种可能的实施方式中,烘干系统应用于洗干一体机中,该洗干一体机包括箱体(图中未标出),箱体上设置有机门,箱体内设置有洗涤筒组件,洗涤筒组件包括外筒和内筒,内筒能够容纳待洗涤衣物,外筒上开设有上述的湿空气出口211和干空气进口212。蒸发器14、冷凝器12和风机24各自带有外壳,外壳上分别形成有与风管25连接的进口和出口。按照空气流动方向,湿空气出口211通过风管25与蒸发器14的进口连通,蒸发器14的出口通过风管25与冷凝器12的进口连通,冷凝器12的出口通过风管25与风机24的进口连通,风机24的出口通过风管25与干空气进口212连通,从而实现空气循环回路的连通。
按照冷媒流动方向,压缩机11的排气口通过冷媒管15与冷凝器12的冷媒进口连通,冷凝器12的冷媒出口通过冷媒管15与节流元件13的一端连通,节流元件13的另一端通过冷媒管15与蒸发器14的冷媒进口连通,蒸发器14的冷媒出口通过冷媒管15与气液分离器(图中未标出)的进口连通,气液分离器的出口与压缩机11的吸气口连通,从而实现冷媒循环回路的连通。其中,节流元件13优选的为电子膨胀阀,当然节流元件13还可以为毛细管或热力膨胀阀等。
参照图1,烘干系统工作时,压缩机11、风机24启动运行。压缩机11排气口排出的冷媒在依次经过冷凝器12、节流元件13和蒸发器14后从压缩机11的吸气口回到压缩机11,完成冷媒循环(冷媒循环路径图1中以实心箭头示出)。风机24带动干燥腔室21内的空气流依次经过蒸发器14、冷凝器12后回到干燥腔室21内,完成空气循环(空气循环路径图1中以空心箭头示出)。其中,空气循环中,干燥腔室21内的湿空气被吸入湿空气出口211,湿空气首先流动至蒸发器14,在蒸发器14中与冷媒循环中的低温冷媒进行热交换而实现降温,空气的温度降低至露点温度以下而析出水分,水分变为冷凝水滴入接水盘31中。降温后的空气变为干空气由蒸发器14排出至冷凝器12,在冷凝器12中于冷媒循环中的高温冷媒进行热交换 而实现升温,升温后的高温空气通过干空气进口212进入干燥腔室21内对衣物进行烘干。
如图2所示,为了提高烘干效率的同时,兼顾烘干能耗,本申请的控制方法包括:
S101、在风机运行过程中,获取干燥腔室的实际湿度Rh;例如,在洗干一体机执行烘干程序的过程中,风机处于运行状态,此时通过设置在湿空气出口处的外筒上或风管上的湿度传感器来获取干燥腔室的实际湿度Rh。
S103、基于实际湿度Rh所在的湿度区间,确定压缩机的运行频率f;例如,在获取到实际湿度Rh后,通过判断Rh所在的湿度区间,来通过湿度-频率对照表或湿度-频率计算公式来确定压缩机的运行频率;优选的,实际湿度Rh与运行频率f之间成正比关系,也就是说,实际湿度Rh的值越大,则压缩机的运行频率f越高。
S105、控制压缩机以运行频率f运行;例如,在确定出压缩机的运行频率之后,控制压缩机调整至该运行频率f运行。
通过上述控制方式,本申请的烘干系统的烘干控制方法能够提高烘干效率的同时,兼顾烘干能耗。具体而言,通过基于干燥腔室21内的实际湿度所处的湿度区间来确定压缩机11的运行频率,并且实际湿度与压运行频率之间成正比关系,使得在实际干燥过程中,当干燥腔室21内的湿度大时,压缩机11的运行频率相应的也较高,此时冷媒循环回路的制冷量大,冷媒流动速度快,经过冷凝器12的烘干气流温度提升快,高温空气大量带走烘干腔室内的水汽,蒸发器14中的冷媒快速地与含湿量高的空气完成热交换,使空气中的水分迅速冷凝析出。当干燥腔室21内的湿度小时,压缩机11的运行频率相应的也较小,此时冷媒循环回路的制冷量小,但冷媒流动速度也相应地减慢,经过冷凝器12的烘干气流温度提升慢,减缓了进入蒸发器14的空气流的温升速度,同时蒸发器14中的冷媒与空气流完成充分的热交换,保证蒸发器14的除湿效果。同时随着压缩机11的运行频率降低,系统的功耗也不断降低。
下面参照图3,对本申请的烘干控制方法一种可能的实施方式进行描述。
如图3所示,在一种可能的实施方式中,烘干控制方法包括如下步骤:
首先执行步骤S201,获取干燥腔室的实际湿度Rh和目标湿度Rhm;例如,通过湿度传感器获取干燥腔室内的实际湿度Rh,通过烘干程序确定目标湿度Rhm。本领域技术人员能够理解的是,对于不同的衣物材质、不同的洗涤程序来说,烘干程序也会有所区别,相应的目标温度Rhm(即衣物的目标含水率)也不尽相同,该目标湿度Rhm可以是洗干一体机基于烘干程序提前设定好的,也可以是用户自行设定的,本申请对此不作限制。
接下来执行步骤S203,判断实际湿度Rh小于目标湿度Rhm是否成立,即Rh<Rhm是否成立;如果Rh<Rhm成立,则证明衣物已干燥,此时执行步骤S217,控制烘干系统停止工作,烘干结束;否则,如果Rh<Rhm不成立,则证明衣物的仍然具备一定的含水量,此时执行步骤S205,进一步基于实际湿度Rh所处的湿度区间进行相应的烘干操作。
较为优选地,湿度区间基于目标湿度Rhm确定。本申请中,基于目标湿度Rhm划分为三个湿度区间,即(Rhm,bRhm)、(bRhm,aRhm)和(aRhm,1)。其中,a、b为倍率系数,且a>b>1。举例而言,a=3、b=2、且Rhm=5%时,湿度区间对应的为(5%,10%)、(10%,15%)和(15%,100%)。当然,上述a、b和Rhm的具体数值并非仅限于此,本领域技术人员可以对其进行调整。同样地,上述湿度区间的划分方式仅仅为示例性的,在不偏离本申请原理的前提下,本领域技术人员可以对其进行调整。例如还可以基于目标湿度Rhm将湿度区间划分为两个、四个或更多等。
当执行步骤S205时,判断Rh≥a×Rhm是否成立,即实际湿度Rh是否处于(aRhm,1)区间。如果Rh≥a×Rhm成立,则证明衣物的含水率较高,此时 执行步骤S207,确定压缩机的频率f=a×F+k 1;否则,如果Rh≥a×Rhm不成立,则执行步骤S209,进一步判断b×Rhm≤Rh<a×Rhm是否成立,即实际湿度Rh是否处于(bRhm,aRhm)区间。
当执行步骤S209时,如果b×Rhm≤Rh<a×Rhm成立,则证明衣物的含水率已经下降至较低的范围,此时执行步骤S211,确定压缩机的频率f=(a+b)/2×F+k 2;否则,如果b×Rhm≤Rh<a×Rhm成立,则证明此时衣物的含水率已经接近目标含水率,此时执行步骤S213,确定压缩机的频率f=(a+b)/2×F+k 3;其中,上述公式中,F为压缩机的额定频率,k 1、k 2、k 3为常数,且k 1>k 2>k 3
当确定出压缩机的运行频率f后,执行步骤S215,控制压缩机以运行频率f运行。
通过基于干燥腔室21的目标湿度Rhm划分湿度区间,并在实际湿度Rh处于不同湿度区间时确定压缩机11的运行频率,本申请的烘干控制方法能够针对不同的目标湿度调整压缩机11的运行频率,提升控制方法的适用性。
需要说明的是,虽然上述实施方式是结合通过计算公式确定运行频率f进行说明的,但这并非旨在于限制本申请的保护范围,本领域技术人员还可以对确定运行频率f的方式进行调整,只要该调整方式满足实际湿度Rh与运行频率f之间成正比关系即可。比如,本领域技术人员还可以基于湿度-频率对照表来确定压缩机11的运行频率f。
实施例2
下面参照图4-5、9,对本申请的烘干控制方法的第二种实施方式进行描述。其中,图4为本发明的第二种实施方式中烘干系统的系统图;图5为本发明的第二种实施方式中水泵和流量调节阀的控制流程图;图9为本发明的气液换热器的一种具体实施方式的结构图。
如图4和图9所示,本申请的第二种实施方式中,在实施例1的基础上,烘干系统还包括气液换热器23和冷却循环回路。气液换热器23具有进气口2311、出气口2312、进液口2313和出液口2314,进气口2311与湿空气出口211连通,出气口2312与蒸发器14的进口连通。冷却循环回路包括通过液管33连通的接水盘31、水泵32和气液换热器23,接水盘31设置于蒸发器14的下方,用于收集冷凝水,进液口2313和出液口2314分别与接水盘31连通,水泵32设置于进液口2313/出液口2314与接水盘31之间,进液口2313/出液口2314与接水盘31之间的液管33上还设置有流量调节阀34。
具体地,按照空气流动方向,湿空气出口211通过风管25与气液换热器23的进气口2311连通,气液换热器23的出气口2312通过风管25与蒸发器14的进口连通,蒸发器14的出口通过风管25与冷凝器12的进口连接,冷凝器12的出口通过风管25与风机24的进口连通,风机24的出口通过风管25与干空气进口212连通,从而实现空气循环回路的连通。按照冷凝水流动方向,接水盘31通过一端为自由端的液管33与水泵32的吸水口连通,水泵32的排水口通过液管33与气液换热器23的进液口2313连通,气液换热器23的出液口2314通过液管33与流量调节阀34的一端连通,流量调节阀34的另一端通过液管33与接水盘31的侧壁上开设的回液口连通,从而实现冷却循环回路的连通。其中,与水泵32的吸水口连接的液管33的自由端伸入接水盘31内,流量调节阀34可以为电子膨胀阀或开度可调的电磁阀等。
参照图9,在一种较为优选的实施方式中,气液换热器23采用管壳式换热器,其包括大致成圆筒状的壳体231和设置于壳体231内的多根换热管232。壳体231沿竖直方向布置,其内部设置有隔板234,隔板234沿壳体231的长度方向由下部向上延伸固定,固定好后,壳体231被分隔成截面为倒U型的流道。换热管232为U型管,每个换热管232沿倒U型的流道延伸设置。壳体231内还设置有多个折流板233,每个折流板233上开设有多个允许换热管232穿过的通孔,折流板233通过多个通孔套设在换热管232上,并分别与壳体231内壁或隔板234固定连接。多 个折流板233间隔设置,从而使得U型流道的每一直线段又被分隔为S型的折流通道。
继续参照图9,按照壳体231的布置方向,进气口2311和出气口2312分别开设在壳体231的周侧下部,且进气口2311和出气口2312以相背离的方向设置于U型的流道的两端,其中进气口2311靠近U型的流道的上游端开设,出气口2312靠近U型的流道的下游端开设。壳体231内还设置有分液板235,分液板235与壳体231的下端部之间通过分腔板236分隔为进液腔237和出液腔238,进液口2313和出液口2314分别设置于壳体231的下端部对应于进液腔237和出液腔238的位置,并且进液口2313位于靠近空气流动的下游段的一侧(即图9中所示的右侧),出液口2314位于靠近空气流动的上游端的一侧(即图9中所示的左侧)。开设好后,进气口2311的面积大于进液口2313和出液口2314的面积,出气口2312的面积也大于进液口2313和出液口2314的面积。分液板235上对应进液腔237和出液腔238还分别设置有多个通孔,每根U型换热管232的两端分别插设于分液板235对应于进液腔237和出液腔238的通孔上,从而实现换热管232的固定,以及进液口2313和出液口2314与换热管232两端的连通。
按照图9方位,在水泵32的带动下,冷凝水通过进液口2313进入进液腔237内并分流为多路分别进入一根U型管,在流经U型管后通过U型管的另一端汇流至出液腔238,最终通过出液口2314流回接水盘31(冷凝水循环路径图9中以空心箭头示出)。与此同时,在风机24的带动下,湿空气通过进气口2311进入壳体231,在折流板233和隔板234的阻隔下,沿S型的折流通道往复流动,在流动过程中,与U型管充分接触实现与冷凝水之间的热交换而温度下降,热交换后的空气通过出气口2312流出壳体231(空气循环路径图9中以实心箭头示出)。
参照图5,与该烘干系统对应地,本申请的烘干控制方法在实施例1的基础上还包括如下步骤:
首先执行步骤S301,获取干燥腔室的实际湿度Rh,例如,通过湿度传感器获取干燥腔室内的实际湿度Rh。
然后执行步骤S303,判断实际湿度小于第一湿度阈值是否成立,即Rh<Rh 1是否成立;如果Rh<Rh 1成立,则证明此时衣物的含水率已经下降至一定程度,接水盘中的冷凝水相应的也积攒到足够的量,此时执行步骤S305,进一步确定流量调节阀的开度P;否则,如果Rh<Rh 1不成立,则证明此时衣物的含水率较高,接水盘中的冷凝水积攒量不足以支撑冷却循环回路的运行,此时执行步骤S309,保持水泵停止。
当执行步骤S305时,基于实际湿度Rh来确定流量调节阀的开度P。具体地,通过P=m/Rh+k 4来确定流量调节阀的开度P,其中m为开度系数,k 4为常数。由上述公式可以看出,实际湿度Rh与流量调节阀的开度P之间成反比关系,也即实际湿度Rh越低,相应的流量调节阀的开度P越大。
在确定出流量调节阀的开度P后,执行步骤S307,控制水泵启动并调节流量调节阀的开度至P。
上述设置方式的优点在于:通过在空气循环回路中设置气液换热器23,并增加冷却循环回路,本申请的烘干控制方法还能够进一步提升烘干效果,保证蒸发器14的除湿能力,缩短烘干时间,降低烘干能耗。
具体而言,气液换热器23的进气口2311和出气口2312分别与湿空气出口211和蒸发器14的进口连通,进液口2313和出液口2314分别与接水盘31连通,在烘干系统工作时,压缩机11、风机24和水泵32启动运行,压缩机11推动冷媒沿冷媒循环回路循环,水泵32带动接水盘31中的冷凝水沿冷却循环回路循环,风机24带动空气流在空气循环回路循环。干燥腔室21内的湿空气被吸入湿空气出口211,湿空气首先通过进气口2311进入气液换热器23,在气液换热器23内与冷却循环回路中的冷凝水进行热交换而温度降低,实现初步冷却,相应的冷凝水的温度被升高,实现冷凝水中冷量的回收利用,减少能源的浪费。温度被初步降低后的湿空气由出气口2312排 出气液换热器23并继续向前流动至蒸发器14,在蒸发器14中与冷媒进行热交换而实现二次降温,空气的温度降低至露点温度以下而析出水分,变为冷凝水滴入接水盘31中。由于在此过程中湿空气不是直接被送到蒸发器14进行热交换,而是先通过气液换热器23的与里面的低温冷凝水进行热交换,因此到达蒸发器14的湿空气将比直接送到蒸发器14的湿空气的温度更低,也即减轻了蒸发器14的显热负担,提高了烘干系统的除湿效率,同时冷凝水吸收湿空气的热量,系统回收了冷凝水的潜热,避免了低温的冷凝水没有被有效利用,减少了能量的损失,使系统循环效率提高,能耗降低。
进一步地,通过在Rh<Rh 1时,才控制所述水泵32启动运行,本申请的控制方法在干燥腔室21的湿度下降到一定程度、即冷凝水量充足时才开启水泵32,避免由于水量不足而导致的水泵32故障。同时,在干燥腔室21的湿度下降到一定程度时才开启水泵32运行,也能够适时的提升烘干效果,保证衣物含水率降低时蒸发器14的除湿能力。
进一步地,通过在液管33上设置流量调节阀34,并基于实际湿度确定流量调节阀34的目标开度,本申请还能够在水泵32开启时实现与压缩机11频率控制的联动,使得冷凝水的流量与当前的空气湿度相适应,避免出现空气流中的水分提前在气液换热器23中冷凝而导致的气液换热器23出现积水的情况。
通过采用管壳式换热器,使得本申请的气液换热器23具有传热系数高、换热速度快、占用空间小、寿命长等优点。通过在管壳式换热器内设置隔板234和折流板233,使得壳体231内部形成S型的折流通道,使得空气与换热管232充分接触,显著增加空气与换热管232的换热面积,从而大幅提高换热效果,进而降低蒸发器14的负担,提高系统的除湿效率。通过将进气口2311和出气口2312设置在壳体231的周侧且分别对应U型流道的一端,以及将进液口2313和出液口2314均设置于壳体231靠近U型管的自由端的端面上,使得空气在进入管壳式换热器后能够与换热管232最大程度的进行热交换,提高换热效果。通过将进气口2311开设于靠近U型的流道的上游端的壳体231上,出气口2312开设于靠近U型的流道的下游端的壳体231上,进液口2313开设于靠近U型管下游端的壳体231上,出液口2314开设于靠近U型管上游端的壳体231上,使得空气的流向与冷凝水的流向相反,实现空气与冷凝水之间的逆流换热,换热效果较佳。由于冷凝水为液体,压降较小,空气为气体,压降较大,因此将进气口2311的面积大于进液口2313和出液口2314的面积,出气口2312的面积大于进液口2313和出液口2314的面积,能够减小空气的压降,实现较好的流动换热效果。
当然,本领域技术人员可以理解的是,上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,或者省略部分步骤,这些简单的变化都在本发明的保护范围之内。例如,流量调节阀34可以不设置,此时可以省略确定流量调节阀开度的步骤。再如,在冷凝水量充足的前提下,也可以省略实际湿度与第一湿度阈值的判断步骤,而是直接在烘干程序启动时就控制水泵启动运行。
实施例3
下面参照图6-7,对本申请的烘干控制方法的第三种实施方式进行描述。其中,图3为本发明的第二种实施方式中烘干系统的系统图。其中,图6为本发明的第三种实施方式中烘干系统的系统图;图7为本发明的第三种实施方式中第一电控阀和第二电控阀的控制流程图。
如图6所示,本申请的第三种实施方式中,在实施例2的基础上,接水盘31还设置有挡板311,挡板311将接水盘31分隔为第一部分312和第二部分313,进液口2313与第一部分312连通,出液口2314与第二部分313连通,冷凝器12与节流元件13之间设置有并联的第一管段151和第二管段152,第一管段151上设置有第一电控阀16,第二管段152上设置有第二电控阀17,且第二管段152部分盘设 于第二部分313中。其中,盘设在第二部分313中的冷媒管15可以沿接水盘31的底面呈U型或S型排布,也可以沿接水盘31的高度方向上排布多层,每层以U型或S型排布,并且最高层的冷媒管15低于接水盘31的最高水位。此外,接水盘31对应第二部分313的侧壁上开设有溢流口(图中未标出),溢流口处连接有排水管314。
参照图7,与该烘干系统对应地,本申请的烘干控制方法在实施例1的基础上还包括如下步骤:
首先执行步骤S401,获取干燥腔室的实际湿度Rh,例如,通过湿度传感器获取干燥腔室内的实际湿度Rh。
然后执行步骤S403,判断实际湿度小于第二湿度阈值是否成立,即Rh<Rh 2是否成立;如果Rh<Rh 2不成立,则证明此时衣物的含水率较高,烘干系统的烘干效率能够保证,此时执行步骤S405,控制第一电控阀打开;否则,如果Rh<Rh 2成立,则证明此时衣物的含水率已经下降至一定程度,烘干系统的烘干效率有所下降,此时执行步骤S407,控制第一电控阀关闭、第二电控阀打开,使得全部冷媒先经过接水盘的第二部分后再进入节流元件。
通过使用挡板311将接水盘31分隔为第一部分312和第二部分313,并将冷凝器12与节流元件13之间并联设置第一管段151和第二管段152,第一管段151设置第一电控阀16,第二管段152设置第二电控阀17,以及第二管段152部分盘设在第二部分313中,并基于实际湿度与第二湿度阈值的大小来控制第一电控阀16和第二电控阀17的开闭,本申请的控制方法还使得冷媒能够通过第二管段152与第二部分313中的冷凝水进行热交换,从而实现冷媒的初步降温,增大过冷度,然后再进入节流元件13进行二次降温,降低了进入蒸发器14冷媒温度,提高了蒸发器14的换热效率,提高烘干能效。而将接水盘31分隔为第一部分312和第二部分313,并将进液口2313与第一部分312连通,出液口2314与第二部分313连通,使得冷凝水先与经过气液换热器23的湿空气进行热交换,优先保证湿空气的降温,然后再与冷媒进行热交换,提升蒸发器14的换热效果的提升,二者组合共同实现对冷凝水阶次利用,使得冷凝水的冷量回收达到极致。
实施例4
下面参照图8,对本申请的烘干控制方法的第四种实施方式进行描述。其中,图8为本发明的第四种实施方式中烘干系统的系统图。
为描述方便,以下借助在实施例1的烘干系统的基础上实施改进进行描述。本领域技术人员可以理解的是,在实施例2-3的基础上也可以实施相同或相似的改进,其取得的技术效果也相应的相同或相似。
如图8所示,在保持实施例1中的其他结构设置不变的前提下,烘干系统还包括复叠换热器22,复叠换热器22具有第一进口221、第一出口222、第二进口223和第二出口224,第一进口221与第一出口222之间形成一个空气流道,第二进口223与第二出口224之间形成另一个空气流道,两个空气流道彼此交叉设置,从而能够交叉换热。第一进口221与湿空气出口211连通,第一出口222与气蒸发器14的进口连通,第二进口223与蒸发器14的出口连通,第二出口224与冷凝器12的进口连通。本申请对于复叠换热器22的具体结构形式不作限制,任何能够满足上述条件的换热器均可以作为复叠换热器22应用于本申请中。例如,可以采用板翅式热交换器或转轮式热交换器作为本申请的复叠换热器22使用等。
按照图8所示方位,由湿空气出口211排出的高温湿空气在进入蒸发器14冷却前,首先通过复叠换热器22的第一进口221流入复叠换热器22的一个空气流道,流出蒸发器14的低温干空气通过复叠换热器22的第二进口223流入复叠换热器22的另一空气流道,两个空气流到内的空气进行热交换,从而高温湿空气的温度被降低,低温干空气的温度同时被升高(该过程是等量热交换)。然后,温度被降低后的湿空气继续向前流动到蒸发器14进行二次降温,与此同时,温度被升高后的干空气继续向前流动到冷凝器12进行二次升温。
可以看出,通过在烘干系统设置复叠换热器22,使得烘干系统能够同时提高蒸发器14与冷凝器12的换热效率,实现更高的除湿效率和更低的能耗。
具体地,湿空气在进入蒸发器14进行冷却前,首先通过复叠换热器22与流出蒸发器14的低温干空气进行热交换,其温度被大幅降低,低温干空气的温度同时被升高(该过程是等量热交换),温度被降低后的湿空气继续向前流动到蒸发器14进行二次降温而达到露点温度以下,空气中的水分大幅析出,由于在此过程中湿空气不是直接送到蒸发器14进行热交换,而是先通过复叠换热器22与来自蒸发器14的低温干空气进行热交换,然后才进入蒸发器14进行热交换,因此,到达蒸发器14的湿空气将比直接送到蒸发器14的湿空气的温度低很多,因而大幅度减轻了蒸发器14的负担,提高了除湿效率。
与此同时,由于蒸发器14流出的低温干空气与湿空气进行了热交换,因此进入冷凝器12的空气温度也比不设置复叠换热器22而直接进如冷凝器12的温度高,这样经过冷凝器12排出再次进入干燥腔室21的空气温度也要比不设置复叠换热器22时要高,因此,复叠换热器22的设置也提高了进入干燥腔室21的空气的温度,相应地加快了衣物的烘干速度,使得干燥效率进一步提升,能耗进一步下降。
需要说明的是,上述优选的实施方式仅仅用于阐述本发明的原理,并非旨在于限制本发明的保护范围。在不偏离本发明原理的前提下,本领域技术人员可以对上述设置方式进行调整,以便本发明能够适用于更加具体的应用场景。
例如,在一种可替换的实施方式中,管壳式换热器的具体设置方式并非仅限于上述方式,本领域技术人员可以对其进行调整,只要其设置方式能够实现冷凝水与空气之间的热交换即可。比如,进气口2311、出气口2312、进液口2313和出液口2314的设置位置可基于实际产品进行调整,如进气口2311和出气口2312可以分别设置在侧壁的上部和下部,可以相背离设置也可以沿壳体231长度方向共线设置;换热管232的具体形式和数量可以进行调整,如还可以为直管或S型管等;折流板233和隔板234中的一个或全部都可以选择性地省略等。
再如,在另一种可替换的实施方式中,蒸发器14、冷凝器12和风机24的设置方式并非一成不变,在满足能够组成空气循环回路的前提下,本领域技术人员可以对上述部件的设置方式进行更改,这种更改并未偏离本申请的原理。比如,蒸发器14、冷凝器12和风机24中的一个或多个还可以直接设置在风管25内部。
再如,在另一种可替换的实施方式中,虽然上述实施方式中是以管壳式换热器进行阐述的,但是气液换热器23的实施方式不只限于此,本领域技术人员可以基于实际应用场景进行选择,即时其效果较管壳式换热器并不显著。比如,气液换热器23还可以板式换热器或套管换热器等,当使用套管换热器时,可以设置为空气走外管,冷凝水走内管,以兼顾流动换热效果。
再如,在另一种可替换的实施方式中,接水盘31的第一部分312和第二部分313可以均设置在蒸发器14的下方,并且第二管段152还可以先部分悬空设置在蒸发器14与第二部分313之间,然后再盘设于接水盘31的第二部分313内部。其中,悬空部分可以沿水平面呈U型或S型排布,也可以沿高度方向排布多层,每层以U型或S型排布。这样一来,蒸发器14产生的部分冷凝水在下落过程中首先滴落到悬空的第二管段152上,然后再流至第二部分313内。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
下面参照图10,对本申请的烘干控制方法的一种可能的控制流程进行描述。其中,图10为本发明的烘干控制方法的一种可能的实施方式的逻辑图。
如图10所示,在一种可能的控制过程中,洗干一体机执行完洗涤程序后执行烘干程序。
(1)首先执行步骤S501,获取干燥腔室的实际湿度Rh和目标湿度Rhm,本实施方式中,Rhm=5%。
(2)然后执行步骤S503,判断Rh<5%是否成立;如果Rh<5%成立,则衣物烘干完毕,程序结束;否则,如果Rh<5%不成立,则进一步执行步骤S505,判断Rh≥30%是否成立。
(3)执行步骤S505时,如果Rh≥30%成立,则执行步骤S507,控制压缩机以运行频率f=1.5×80-10=110Hz运行,并且控制第一电控阀打开,第二电控阀关闭;否则,如果Rh≥30%不成立,则进一步执行步骤S509,判断15%≤Rh<30%是否成立。
(4)执行步骤S509时,如果15%≤Rh<30%成立,则执行步骤S511,控制压缩机以运行频率f=(1.5+1.1)/2×80-15=89Hz运行,并且控制第一电控阀打开,第二电控阀打开;否则,如果15%≤Rh<30%不成立,则进一步执行步骤S513,控制压缩机以运行频率f=(1.5+1.1)/2×80-40=64Hz运行,控制流量调节阀的开度为P=2100/Rh-20,并且控制第一电控阀关闭,第二电控阀打开。
本领域技术人员能够理解的是,上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。
本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
此外,需要说明的是,尽管上文详细描述了本发明方法的详细步骤,但是,在不偏离本发明的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本发明的基本构思,因此也落入本发明的保护范围之内。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种烘干系统的烘干控制方法,其特征在于,所述烘干系统包括:
    冷媒循环回路,所述冷媒循环回路包括通过冷媒管连接的压缩机、冷凝器、节流元件和蒸发器,所述蒸发器下方设置有接水盘;
    空气循环回路,所述空气循环回路包括通过风管连接的干燥腔室、所述蒸发器和所述冷凝器,所述干燥腔室具有湿空气出口和干空气进口,所述湿空气出口与所述蒸发器的进口连通,所述蒸发器的出口与所述冷凝器的进口连通,所述冷凝器的出口与所述干空气进口连通,所述空气循环回路配置有风机;
    所述烘干控制方法包括:
    在所述风机运行过程中,获取所述干燥腔室的实际湿度Rh;
    基于所述实际湿度Rh所在的湿度区间,确定所述压缩机的运行频率f;
    控制所述压缩机以所述运行频率f运行;
    其中,所述实际湿度Rh与所述运行频率f之间成正比关系。
  2. 根据权利要求1所述的烘干系统的烘干控制方法,其特征在于,所述湿度区间基于所述干燥腔室的目标湿度Rhm确定。
  3. 根据权利要求2所述的烘干系统的烘干控制方法,其特征在于,“基于所述实际湿度所在的湿度区间,确定所述压缩机的运行频率”的步骤进一步包括:
    当Rh≥a×Rhm时,确定所述运行频率f=a×F+k 1
    当b×Rhm≤Rh<a×Rhm时,确定所述运行频率f=(a+b)/2×F+k 2
    当Rhm≤Rh<b×Rhm时,确定所述运行频率f=(a+b)/2×F+k 3
    其中,F为所述压缩机的额定频率,a、b为倍率系数,k 1、k 2、k 3为常数,且a>b>1,k 1>k 2>k 3
  4. 根据权利要求2所述的烘干系统的烘干控制方法,其特征在于,所述烘干控制方法还包括:
    当Rh<Rhm时,控制所述烘干系统停止工作。
  5. 根据权利要求1所述的烘干系统的烘干控制方法,其特征在于,所述空气循环回路还包括:
    气液换热器,所述气液换热器具有进气口、出气口、进液口和出液口,所述进气口与所述湿空气出口连通,所述出气口与所述蒸发器的进口连通;
    冷却循环回路,所述冷却循环回路包括通过液管连通的所述接水盘、水泵和所述气液换热器,所述接水盘设置于所述蒸发器的下方,用于收集冷凝水,所述进液口和所述出液口分别与所述接水盘连通,所述水泵设置于所述进液口/所述出液口与所述接水盘之间;
    所述烘干控制方法还包括:
    控制所述水泵启动运行。
  6. 根据权利要求5所述的烘干系统的烘干控制方法,其特征在于,“控制所述水泵启动运行”的步骤进一步包括:
    当Rh<Rh 1时,控制所述水泵启动运行;
    其中,Rh 1为第一湿度阈值。
  7. 根据权利要求6所述的烘干系统的烘干控制方法,其特征在于,所述进液口/所述出液口与所述接水盘之间的液管上还设置有流量调节阀,所述烘干控制方法还包括:
    当Rh<Rh 1时,基于所述实际湿度Rh,确定所述流量调节阀的目标开度P;
    控制所述流量调节阀调整至所述目标开度P。
  8. 根据权利要求5所述的烘干系统的烘干控制方法,其特征在于,所述接水盘还设置有挡板,所述挡板将所述接水盘分隔为第一部分和第二部分,所述进液口与所述第一部分连通,所述出液口与所述第二部分连通,所述冷凝器与所述节流元件之间设置有并联的第一管段和第二管段,所述第一管段上设置有第一电控阀,所述第二管段上设置有第二电控阀,且所述第二管段部分盘设于所述第二部分中,
    所述烘干控制方法还包括:
    比较所述实际湿度Rh与第二湿度阈值Rh 2的大小;
    基于比较结果,控制所述第一电控阀和所述第二电控阀的开闭。
  9. 根据权利要求8所述的烘干系统的烘干控制方法,其特征在于,“基于所述实际湿度Rh,控制所述第一电控阀和所述第二电控阀的开闭”的步骤进一步包括:
    当Rh>Rh 2时,控制所述第一电控阀打开;
    当Rh≤Rh 2时,控制所述第一电控阀关闭、所述第二电控阀打开。
  10. 根据权利要求1所述的烘干系统的烘干控制方法,其特征在于,所述烘干系统还包括复叠换热器,所述复叠换热器具有第一进口、第一出口、第二进口和第二出口,所述第一进口与第一出口之间形成的空气流道与所述第二进口与所述第二出口之间形成的空气流道能够交叉换热,
    其中,所述第一进口与所述湿空气出口连通,所述第一出口与所述蒸发器的进口连通,所述第二进口与所述蒸发器的出口连通,所述第二出口与所述冷凝器的进口连通。
PCT/CN2021/131667 2020-10-16 2021-11-19 烘干系统的烘干控制方法 WO2022068973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011111012.3 2020-10-16
CN202011111012.3A CN112227043B (zh) 2020-10-16 2020-10-16 烘干系统的烘干控制方法

Publications (1)

Publication Number Publication Date
WO2022068973A1 true WO2022068973A1 (zh) 2022-04-07

Family

ID=74117724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131667 WO2022068973A1 (zh) 2020-10-16 2021-11-19 烘干系统的烘干控制方法

Country Status (2)

Country Link
CN (1) CN112227043B (zh)
WO (1) WO2022068973A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112323341A (zh) * 2020-10-16 2021-02-05 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备
CN213772594U (zh) * 2020-10-16 2021-07-23 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备
CN112227043B (zh) * 2020-10-16 2023-04-18 青岛海尔空调器有限总公司 烘干系统的烘干控制方法
CN114481578B (zh) * 2022-01-24 2022-12-09 珠海格力电器股份有限公司 热泵干衣机控制方法、装置及热泵干衣机
CN115523749B (zh) * 2022-08-09 2024-01-16 青岛海尔空调器有限总公司 热泵烘干机、热泵烘干机控制方法、装置和可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201358383Y (zh) * 2009-02-15 2009-12-09 陈少东 干衣装置
WO2011080116A1 (en) * 2009-12-31 2011-07-07 Arcelik Anonim Sirketi Heat pump laundry dryer
CN105986446A (zh) * 2015-01-30 2016-10-05 杭州三花研究院有限公司 烘干系统及其使用方法
CN206683095U (zh) * 2017-04-28 2017-11-28 广东美的制冷设备有限公司 空调器
CN110284308A (zh) * 2019-06-19 2019-09-27 无锡小天鹅电器有限公司 衣物处理设备用冷却装置及衣物处理设备
CN112227043A (zh) * 2020-10-16 2021-01-15 青岛海尔空调器有限总公司 烘干系统的烘干控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517857B (zh) * 2011-11-08 2016-08-31 青岛海尔滚筒洗衣机有限公司 一种具有余热回收功能的干衣冷凝用热交换系统及干衣机
CN105002711A (zh) * 2015-08-11 2015-10-28 珠海格力电器股份有限公司 热泵干衣机的预冷却装置、干衣机及控制方法
JP6843227B2 (ja) * 2017-03-21 2021-03-17 三菱電機株式会社 除湿機
CN111076570B (zh) * 2019-12-26 2021-11-19 浙江瑞鸿机电设备有限公司 一种干式壳管式蒸发器
CN213772594U (zh) * 2020-10-16 2021-07-23 青岛海尔空调器有限总公司 烘干系统及包括该系统的衣物处理设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201358383Y (zh) * 2009-02-15 2009-12-09 陈少东 干衣装置
WO2011080116A1 (en) * 2009-12-31 2011-07-07 Arcelik Anonim Sirketi Heat pump laundry dryer
CN105986446A (zh) * 2015-01-30 2016-10-05 杭州三花研究院有限公司 烘干系统及其使用方法
CN206683095U (zh) * 2017-04-28 2017-11-28 广东美的制冷设备有限公司 空调器
CN110284308A (zh) * 2019-06-19 2019-09-27 无锡小天鹅电器有限公司 衣物处理设备用冷却装置及衣物处理设备
CN112227043A (zh) * 2020-10-16 2021-01-15 青岛海尔空调器有限总公司 烘干系统的烘干控制方法

Also Published As

Publication number Publication date
CN112227043B (zh) 2023-04-18
CN112227043A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2022068973A1 (zh) 烘干系统的烘干控制方法
WO2022068972A1 (zh) 烘干系统及包括该系统的衣物处理设备
CN102206916B (zh) 一种用于滚筒干衣的热泵烘干系统及控制方法
EP3040470A1 (en) Clothes treating apparatus
KR101989522B1 (ko) 의류건조기
WO2022068970A1 (zh) 烘干系统及包括该系统的衣物处理设备
WO2022068971A1 (zh) 烘干系统及包括该系统的衣物处理设备
WO2020097831A1 (zh) 闭式热泵干衣机系统
CN108844145A (zh) 一种空调器和空调器的加湿控制方法
CN109708333B (zh) 一种制冷系统、空调控制方法及空调器
KR20130024715A (ko) 에너지 절약형 김 건조기
JP2016123770A (ja) 洗濯乾燥機
WO2021258819A1 (zh) 冰箱
CN211972849U (zh) 一种干衣机
CN208186806U (zh) 一种空调器
CN217005281U (zh) 一种空气源热泵烘干机组
CN218466156U (zh) 衣物处理设备
CN107543251A (zh) 室内机
CN219640636U (zh) 一种热泵除湿烘干机
CN220321942U (zh) 热泵烘干设备
CN219430339U (zh) 一种节能干衣装置
CN214009607U (zh) 热交换设备
CN216585789U (zh) 一种热泵系统及衣物处理装置
CN213681404U (zh) 一种干衣机用空气控制机构及干衣机
CN114250610B (zh) 一种用于排湿装置的换热组件、干衣机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874627

Country of ref document: EP

Kind code of ref document: A1