CN112225555A - 一种基于钛酸镧锂陶瓷的全固态参比电极及制备方法 - Google Patents

一种基于钛酸镧锂陶瓷的全固态参比电极及制备方法 Download PDF

Info

Publication number
CN112225555A
CN112225555A CN202011038328.4A CN202011038328A CN112225555A CN 112225555 A CN112225555 A CN 112225555A CN 202011038328 A CN202011038328 A CN 202011038328A CN 112225555 A CN112225555 A CN 112225555A
Authority
CN
China
Prior art keywords
heating
reference electrode
llto
solid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011038328.4A
Other languages
English (en)
Inventor
李强
王文慧
戴梦婷
缪佳艳
衡月容
于翠艳
潘鑫
刘苏苏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202011038328.4A priority Critical patent/CN112225555A/zh
Publication of CN112225555A publication Critical patent/CN112225555A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4539Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension as a emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种基于钛酸镧锂陶瓷(Li0.35La0.55TiO3)的全固态参比电极及制备方法,其制备是将LaCl3、LiOH和TiCL4按比例混合加热、烘干并烧结后压成片状体,将片状体在1300℃下加热6h后打磨平整,在平整片状体上粘结Ag或者Cu电极。与标准Ag/AgCl参比电极相比,本发明的全固态参比电极更稳定,易保存。经过高温高压(400℃、35Mpa)处理3h后,LLTO全固态参比电极的电势还能保持稳定,说明该电极耐高温高压,因此测试范围更广泛。

Description

一种基于钛酸镧锂陶瓷的全固态参比电极及制备方法
技术领域
本发明涉及化学合成材料技术及其应用,具体地说是一种基于钛酸镧锂陶瓷的全固态参比电极及制备方法。
背景技术
参比电极是电化学分析法中不可或缺的重要部件。目前,除特定用途外,常用的参比电极是需要内参液的甘汞电极(Hg/HgCl2)。但是甘汞电极难以微型化,且含有有毒物质汞,在一些检测中受到了一定限制。另一方面,甘汞电极在高于75℃后易发生歧化反应,导致电位值不稳定,容易引起测量误差。而市售的Ag/AgCl参比电极均采用电镀法在Ag丝表面沉积一层AgCl,AgCl在饱和氯化钾内参液中易形成可溶性的AgCl3 2-或AgCl4 3-,使AgCl逐渐溶解而引起标准电极电位的变化。其次,有内参液的参比电极在连续测定中还容易出现电解质溶液通过陶瓷芯的微孔渗出而减少导致断路,为避免此问题,一般电极杆均由无色透明玻璃或PVC等材质制作而成,方便观察内参液的液面位置并及时添加内参液,如果是远程测试,没有办法及时添加内参液,测试结果就容易出现误差;其次,Ag/AgCl参比电极装置繁琐,易碎,保存起来也不方便。
发明内容
本发明的目的是提供一种基于钛酸镧锂陶瓷的全固态参比电极及制备方法,该参比电极稳定,易保存,可以在高温高压环境下稳定测定不同溶液的pH值。
实现本发明目的的具体技术方案是:
一种基于钛酸镧锂陶瓷的全固态参比电极的制备方法,特点是该方法包括以下步骤:
步骤1:水热法合成Li0.35La0.55TiO3
将LaCl3、LiOH和TiCL4分散在蒸馏水中,搅拌均匀;紧接着放入聚四氟乙烯的反应釜中,在180℃中加热12h,加热结束后自然冷却到常温,烘干,得到钛酸镧锂盐Li0.35La0.55TiO3即LLTO粉末;其中,LaCl3、LiOH和TiCL4的摩尔比为(0.01-0.04):(0.016-0.022):(0.03-0.06);
步骤2:将制得的LLTO粉末以2200r/min的速度砂磨5h来激活烧结活性;
步骤3:取砂磨后的LLTO粉末(0.6-1.0)g,放入直径为12mm的模具中压片,真空封装后进行等静压;在氧化铝坩埚底部铺设1-2mm砂磨后的LLTO粉末,将等静压之后的片子平铺在坩埚内的LLTO粉末上,在片子的上表面再次铺设1-2mm砂磨后的LLTO粉末,将片子放入高温炉中,在1300℃的高温下加热6h,具体的升温速度为: 0℃-800℃的升温速度为15℃/min,800℃-1300℃的升温速度为2℃/min。待样品自然冷却到常温,将片子打磨到表面平整;
步骤4:在打磨后的LLTO片子的一个平面上通过丝网均匀印刷银浆,粘上Ag丝或者Cu丝,烘干,放入马弗炉,以10℃/min的升温速度升温到500℃,在500℃下加热40min,形成Ag或者Cu电极;
步骤5:用透明防火阻燃高温胶把步骤4所得样品表面上的银浆和电极进行封装。这样就制得所述的基于钛酸镧锂陶瓷的全固态参比电极。
一种上述方法制得的基于钛酸镧锂陶瓷的全固态参比电极。
本发明的有益效果
(1)用水热法合成钛酸镧锂盐(Li0.35La0.55TiO3),有效的降低了合成钛酸镧锂盐的温度,获得超细粉体。
(2)钛酸镧锂盐粉末进行高速球磨后,降低超细粉体的团聚,激活了烧结的活性,使样品的致密度得到了有效的提高。
(3)钛酸镧锂盐制备的全固态参比电极用高温胶进行封装后,避免了参比电极表面的银浆和溶液的接触,保证了电极的稳定性。
(4)钛酸镧锂盐制备的全固态电极作为参比电极时,在不同pH值的溶液中均可以保持电势稳定。
附图说明
图1本发明实施例2制得的全固态参比电极在铁氰化钾溶液中测试电化学循环伏安曲线图;
图2为本发明实施例2制得的全固态参比电极和标准Ag/AgCl参比电极在不同pH值的缓冲溶液中的时间-电势图;
图3为本发明实施例2制得的全固态参比电极和Ir/IrO2工作电极在不同pH值的缓冲溶液中的时间-电势图。
具体实施方式
以下结合附图及实施例对本发明作详细描述。
实施例1
步骤1:水热法合成Li0.35La0.55TiO3。按照合成Li0.35La0.55TiO3固溶体(LLTO)的化学计量,按照LaCl3、LiOH和TiCL4摩尔比例为0.028:0.018:0.046称量相应的质量,分散在蒸馏水中,搅拌均匀。紧接着放入聚四氟乙烯的反应釜中,在180℃中加热12h,加热结束后冷却到常温,烘干。
步骤2:将制得的LLTO粉末以2200r/min的速度砂磨5h来激活烧结活性;
步骤3:压片时每次取0.6g样品,在直径为12mm的模具中压片,真空封装后进行等静压。在刚玉坩埚底部铺2mm的LLTO粉末,将等静压之后的片子平铺在坩埚,在片子的上方再次铺2mm的LLTO粉末,将片子放入高温炉中,在1300℃的高温下加热6h,具体的升温速度为: 0℃-800℃的升温速度为15℃/min,800℃-1300℃的升温速度为2℃/min。待样品自然冷却到常温,将片子打磨到表面平整;
步骤4:在打磨后的LLTO片子的一个平面上通过丝网均匀印刷银浆,粘上Cu丝,烘干,放入马弗炉,以10℃/min的升温速度升温到500℃,在500℃下加热40min,形成Cu电极;
步骤5:用透明防火阻燃高温胶把步骤4所得样品表面上的银浆和电极进行封装,制得所述基于钛酸镧锂陶瓷的全固态参比电极。
实施例2
步骤1:水热法合成Li0.35La0.55TiO3。按照合成Li0.35La0.55TiO3固溶体(LLTO)的化学计量,按照LaCl3、LiOH和TiCL4摩尔比例为0.024: 0.018:0.046称量相应的质量,分散在蒸馏水中,搅拌均匀。紧接着放入聚四氟乙烯的反应釜中,在180℃中加热12h,加热结束后冷却到常温,将样品烘干。
步骤2:将制得的LLTO粉末以2200r/min的速度砂磨5h来激活烧结活性;
步骤3:压片时每次取0.8g样品,在直径为12mm的模具中压片,真空封装后进行等静压。在刚玉坩埚底部铺1mm的LLTO粉末,将等静压之后的片子平铺在坩埚,在片子的上方再次铺1mm的LLTO粉末,放入1300℃ 的高温炉加热6h,0℃-800℃的升温速度为15℃/min,800℃-1300℃的升温速度为2℃min,待样品自然冷却到常温,将片子打磨到表面平整。
步骤4:在打磨后的LLTO片子的一个平面上通过丝网均匀印刷银浆,粘上Cu丝,烘干,放入马弗炉,以10℃/min的升温速度升温到500℃,在500℃下加热40min,形成Cu电极;
步骤5:用透明防火阻燃高温胶把步骤4所得样品表面上的银浆和电极进行封装,制得所述基于钛酸镧锂陶瓷的全固态参比电极。
从图1可以看出本实施例制得的LLTO全固态参比电极在电化学系统中的使用,该电极在常规实验室条件下,在铁氰化钾溶液中以三电极配置用于循环伏安实验。将获得的曲线与使用标准Ag/AgCl参比电极获得的曲线进行比较,两条曲线非常吻合。
从图2可以看出在不同pH值的标准缓冲溶液中,即室温下pH值≈1.68、pH值≈4、pH值≈6.86和pH值≈9.18下,LLTO全固态参比电极在高温高压(400℃、35Mpa)处理3h后,相对于标准Ag/AgCl参比电极的电位响应时间的函数。在图中可以观察到,经过高温高压处理的LLTO全固态参比电极,每次浸入不同pH值的标准缓冲溶液后,电极在较短时间内就能稳定下来,并且电极的电势在不同pH值的标准缓冲溶液中均可以保持恒定。
从图3可以看出在模拟海水的实验条件下,LLTO全固态参比电极在相对于Ir/IrO2工作电极的电位响应pH值的函数,电势随溶液pH值的变化有明显的梯度。图3为拟合线,5个pH值的电势值基本在一条直线上,拟合度为99.723%,并且该曲线符合能斯特方程,说明LLTO全固态参比电极可以用作海水测试pH值的参比电极。
实施例3
步骤1:水热法合成Li0.35La0.55TiO3。按照合成Li0.35La0.55TiO3固溶体(LLTO)的化学计量,按照LaCl3、LiOH和TiCL4摩尔比例为0.028:0.018:0.036称量相应的质量,分散在蒸馏水中,搅拌均匀。紧接着放入聚四氟乙烯的反应釜中,在180℃中加热12h,加热结束后冷却到常温,将样品烘干。
步骤2:将制得的LLTO粉末以2200r/min的速度砂磨5h来激活烧结活性;
步骤3: 压片时每次取1.0g样品,在直径为12mm的模具中压片,真空封装后进行等静压。在刚玉坩埚底部铺1mm的LLTO粉末,将等静压之后的片子平铺在坩埚,在片子的上方再次铺1mm的LLTO粉末,将片子放入高温炉中,在1300℃的高温下加热6h,具体的升温速度为:0℃-800℃的升温速度为15℃/min,800℃-1300℃的升温速度为2℃/min。待样品自然冷却到常温,将片子打磨到表面平整;
步骤4:在打磨后的LLTO片子的一个平面上通过丝网均匀印刷银浆,粘上Ag丝,烘干,放入马弗炉,以10℃/min的升温速度升温到500℃,在500℃下加热40min,形成Ag;
步骤5:用透明防火阻燃高温胶把步骤4所得样品表面上的银浆和电极进行封装,制得所述基于钛酸镧锂陶瓷的全固态参比电极。

Claims (2)

1.一种基于钛酸镧锂陶瓷的全固态参比电极的制备方法,其特征在于,该方法包括以下步骤:
步骤1:水热法合成Li0.35La0.55TiO3
将LaCl3、LiOH和TiCL4分散在蒸馏水中,搅拌均匀;紧接着放入聚四氟乙烯的反应釜中,在180℃中加热12h,加热结束后自然冷却到常温,烘干,得到钛酸镧锂盐Li0.35La0.55TiO3即LLTO粉末;其中,LaCl3、LiOH和TiCL4的摩尔比为(0.01-0.04):(0.016-0.022):(0.03-0.06);
步骤2:将制得的LLTO粉末以2200r/min的速度砂磨5h来激活烧结活性;
步骤3:取砂磨后的LLTO粉末0.6-1.0g,放入直径为12mm的模具中压片,真空封装后进行等静压;在氧化铝坩埚底部铺设1-2mm砂磨后的LLTO粉末,将等静压之后的片子平铺在坩埚内的LLTO粉末上,在片子的上表面再次铺设1-2mm砂磨后的LLTO粉末,将片子放入高温炉中,在1300℃下加热6h,具体的升温速度为: 0℃-800℃的升温速度为15℃/min,800℃-1300℃的升温速度为2℃/min;待样品自然冷却到常温,将片子打磨到表面平整;
步骤4:在打磨后的LLTO片子的一个平面上通过丝网均匀印刷银浆,粘上Ag丝或者Cu丝,烘干,放入马弗炉,以10℃/min的升温速度升温到500℃,在500℃下加热40min,形成Ag或者Cu电极;
步骤5:用透明防火阻燃高温胶把步骤4所得物品表面上的银浆和电极进行封装;制得所述的基于钛酸镧锂陶瓷的全固态参比电极。
2.一种权利要求1所述方法制得的基于钛酸镧锂陶瓷的全固态参比电极。
CN202011038328.4A 2020-09-28 2020-09-28 一种基于钛酸镧锂陶瓷的全固态参比电极及制备方法 Pending CN112225555A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011038328.4A CN112225555A (zh) 2020-09-28 2020-09-28 一种基于钛酸镧锂陶瓷的全固态参比电极及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011038328.4A CN112225555A (zh) 2020-09-28 2020-09-28 一种基于钛酸镧锂陶瓷的全固态参比电极及制备方法

Publications (1)

Publication Number Publication Date
CN112225555A true CN112225555A (zh) 2021-01-15

Family

ID=74120267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011038328.4A Pending CN112225555A (zh) 2020-09-28 2020-09-28 一种基于钛酸镧锂陶瓷的全固态参比电极及制备方法

Country Status (1)

Country Link
CN (1) CN112225555A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970455A (zh) * 2006-12-15 2007-05-30 清华大学 一种制备锂镧钛氧化合物的方法
US20130084406A1 (en) * 2011-09-29 2013-04-04 Toyota Jidosha Kabushiki Kaisha Method for producing electrode composite material
CN105720306A (zh) * 2016-02-19 2016-06-29 四川大学 钙钛矿型锂快离子导体的水热制备方法
CN110318067A (zh) * 2019-07-09 2019-10-11 清华大学 可回收利用的电催化电极、制备和回收方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970455A (zh) * 2006-12-15 2007-05-30 清华大学 一种制备锂镧钛氧化合物的方法
US20130084406A1 (en) * 2011-09-29 2013-04-04 Toyota Jidosha Kabushiki Kaisha Method for producing electrode composite material
CN105720306A (zh) * 2016-02-19 2016-06-29 四川大学 钙钛矿型锂快离子导体的水热制备方法
CN110318067A (zh) * 2019-07-09 2019-10-11 清华大学 可回收利用的电催化电极、制备和回收方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STPHANIE LORANT等: "All-Solid-State pH Sensor Used in Oil Drilling Mud", 《ELECTROANALYSIS》 *
杜元生: "新型全固态pH传感器的研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Similar Documents

Publication Publication Date Title
Jonson et al. Tape casting and sintering of Li7La3Zr1. 75Nb0. 25Al0. 1O12 with Li3BO3 additions
JP5634865B2 (ja) ガーネット構造を有するイオン伝導体
US3895963A (en) Process for the formation of beta alumina-type ceramics
CN102910902B (zh) 一种bnt-bt-bkt基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN103650186A (zh) 压电材料
CN108793987A (zh) 一种新型锂离子传导氧化物固体电解质及其制备方法
CN104969302A (zh) 质子传导体
CN109553411A (zh) 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法
JP2008258183A (ja) 製法及び応用を含む圧電セラミック材料
JP6456241B2 (ja) リチウム含有複合酸化物粉末の製造方法
JPH1171169A (ja) 酸化物イオン導電性セラミックス及びその製造方法
JP3997365B2 (ja) 酸化物イオン導電性単結晶及びその製造方法
CN112225555A (zh) 一种基于钛酸镧锂陶瓷的全固态参比电极及制备方法
WO2010102563A1 (zh) 压电晶体元件
JPH07149522A (ja) ジルコニア電解質粉体及びその製造方法
CN106478089A (zh) 一种择优取向性BaTiO3/SrTiO3纳米复合陶瓷的制备方法
CN115010483A (zh) 一种应变对成分不敏感的压电陶瓷材料及其制备方法和应用
EP0133509A2 (en) Methods for predicting and controlling the shrinkage of aluminaceramic articles during sintering
CN106995313A (zh) 一种铌酸钾钠基陶瓷粉体及其制备方法
JP2012056810A (ja) ペロブスカイト型導電性酸化物材料及びそれを用いた電極
CN111848164A (zh) 一种高横向谐振频率温度稳定性压电陶瓷及其制备方法与应用
JP3798990B2 (ja) 固体電解質の製造方法
JPH03172751A (ja) 銀・銀化合物電極およびその製造方法
Wang et al. Effect of PbO excess on sintering and piezoelectric properties of 12Pb (Ni1/3Sb2/3) O3–40PbZrO3–48PbTiO3 ceramics
JP3044304B1 (ja) 高性能圧電セラミックスおよびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210115