CN112225489B - 一种绝缘陶瓷复合材料及其制备方法 - Google Patents

一种绝缘陶瓷复合材料及其制备方法 Download PDF

Info

Publication number
CN112225489B
CN112225489B CN202011073042.XA CN202011073042A CN112225489B CN 112225489 B CN112225489 B CN 112225489B CN 202011073042 A CN202011073042 A CN 202011073042A CN 112225489 B CN112225489 B CN 112225489B
Authority
CN
China
Prior art keywords
weight
parts
ceramic composite
stirring
insulating ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011073042.XA
Other languages
English (en)
Other versions
CN112225489A (zh
Inventor
罗泽阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Fengcai New Material Technology Co ltd
Original Assignee
Shenzhen Fengcai New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Fengcai New Material Technology Co ltd filed Critical Shenzhen Fengcai New Material Technology Co ltd
Priority to CN202011073042.XA priority Critical patent/CN112225489B/zh
Publication of CN112225489A publication Critical patent/CN112225489A/zh
Application granted granted Critical
Publication of CN112225489B publication Critical patent/CN112225489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/18Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/92Electrically insulating materials

Abstract

本申请公开了一种绝缘陶瓷复合材料及其制备方法。所述绝缘陶瓷复合材料包括以下组分:8289型不饱和聚酯树脂6.20~6.50重量份;8901型低收缩树脂3.50~3.80重量份;固化剂0.11~0.13重量份;阻聚剂0.030~0.040重量份;氧化铝粉9.80~10.20重量份;硅微粉14.80~15.20重量份;脱模剂0.48~0.52重量份;以及短切玻璃纤维3.80~4.20重量份。所述绝缘陶瓷复合材料具有较高的导热系数、绝缘性、防火性能和耐高温性,此外还具有高的可塑性和机械强度。此外,根据本申请的制备方法操作简便快捷、无需高温高压等严苛条件、加工速度快、生产效率高、成型合格率高。

Description

一种绝缘陶瓷复合材料及其制备方法
技术领域
本申请涉及陶瓷复合材料领域,更具体地,涉及一种绝缘陶瓷复合材料及其制备方法。
背景技术
复合材料,是指运用先进的材料制备技术将不同性质的材料组分优化组合而成的新材料,其通常具有不同材料相互取长补短的良好综合性能。复合材料兼有两种或两种以上材料的特点,能改善单一材料的性能,如提高强度、增加韧性和改善介电性能等。
氧化铝陶瓷是一种绝缘性能优异的陶瓷,同时还具有防火、阻燃、耐高温、热传导系数高等优异性能。氧化铝陶瓷分子中正负电荷束缚得很紧,可以自由移动的带电粒子极少,电阻率很大,约为1010Ω·m级别,所以一般情况下可以忽略在外电场作用下自由电荷移动所形成的宏观电流,而认为是不导电的物质。鉴于其优异的绝缘耐高温性能,氧化铝陶瓷广泛用于电器、电子行业,例如,大功率三极管、场效应管、稳压模块(LM78系列、LM317系列、三洋电源厚模、源厚模)、各种音频功放模块(TDA系列)、大功率可控硅模块(欧姆龙系列)、一体化整流模块,以及与电热元件的高温绝缘、大功率LED灯电路板散热绝缘等。此外,利用其导热性能,氧化铝陶瓷还可以代替铝散热片,耐温高,散热效果好。
陶瓷复合材料即是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅、氧化铝等高温结构陶瓷,尤其又以氧化铝陶瓷的应用最为广泛。这些先进陶瓷虽然具有防火、阻燃、耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,但其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个可行的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
但是,复合后的陶瓷材料的导热性、绝缘性等性能又会受到一定的影响,这需要技术人员去改进和提高。
发明内容
[技术问题]
针对现有技术存在的不足,本申请的一个目的在于提供一种绝缘陶瓷复合材料。所述绝缘陶瓷复合材料具有较高的导热系数以及非常优异的绝缘性、防火性能和耐高温性,此外还具有高的可塑性和机械强度,便于加工。
本申请的另一个目的在于提供上述绝缘陶瓷复合材料的制备方法,所述制备方法操作简便快捷、无需高温高压等严苛条件、加工速度快、生产效率高、成型合格率高。
[技术方案]
为了实现上述目的,根据本申请的一个实施方式提供了一种绝缘陶瓷复合材料,其包括以下组分:
Figure BDA0002715765150000021
在本申请中,以特定的树脂将氧化铝粉和硅微粉与短切玻璃纤维有机结合在一起,由此制得的绝缘陶瓷复合材料既维持了优良的导热性和绝缘性,又展现出了较高的抗压强度、抗弯强度和耐冲击性,且可塑性和加工性能优良。
优选地,所述绝缘陶瓷复合材料包括以下组分:
Figure BDA0002715765150000022
在上述组分配比下,本申请制得的绝缘陶瓷复合材料能够展现出更为优异的导热性、绝缘性、抗压强度、抗弯强度和耐冲击性。
进一步地,所述绝缘陶瓷复合材料还包括:0.74~0.80重量份的甲基环戊烯醇酮和0.52~0.56重量份的巴豆酸丁酯。优选地,所述绝缘陶瓷复合材料还包括:0.77重量份的甲基环戊烯醇酮和0.54重量份的巴豆酸丁酯。在本申请中,采用巴豆酸丁酯接枝至氧化铝的表面,加之甲基环戊烯醇酮的配合,能够促进热能在氧化铝颗粒之间的传导,并使得氧化铝与树脂充分贴合,增大整体强度,即,通过加入特定配比的甲基环戊烯醇酮和巴豆酸丁酯,本申请提高了各组分之间的相容性和相互作用,从而能够进一步提升绝缘陶瓷复合材料的导热性、绝缘性、抗压强度、抗弯强度和耐冲击性。
进一步地,所述固化剂可以为过氧化苯甲酸叔丁酯(TBPB)。采用该固化剂可以有效地将所述绝缘陶瓷复合材料固化为所需的性状。
进一步地,所述阻聚剂可以为对苯醌(PBQ)。采用该阻聚剂可以适当延缓树脂之间的交联固化速率,为绝缘陶瓷复合材料的加工提供足够的时间。
优选地,所述对苯醌可以制备为5~15重量%,优选10重量%的苯乙烯溶液后使用。通过溶于苯乙烯后使用,便于对苯醌充分分散于树脂中,均衡发挥阻聚作用,使得所述绝缘陶瓷复合材料的固化能够各部分同步进行,充分提高机械性能。
进一步地,所述氧化铝粉(Al2O3)的粒度可以为450~550目,优选为500目。在此粒度下,可以使得氧化铝充分分散于玻璃纤维中,有效发挥其导热和绝缘性能。
进一步地,所述硅微粉(石英粉)的粒度可以为450~550目,优选为500目。在此粒度下,所述硅微粉能够与氧化铝充分混合,进一步促进氧化铝发挥导热和绝缘性能,并且还能够与氧化铝共同作用,提高材料的机械强度。
进一步地,所述脱模剂可以为硬脂酸锌。采用该脱模剂能够避免绝缘陶瓷复合材料与模具的粘连,在材料固化后方便脱模取出。
进一步地,所述短切玻璃纤维的长度可以为3mm。在此长度下,可以充分补强绝缘陶瓷复合材料,使其具有较好的抗弯强度和耐冲击性。
根据本申请的另一个实施方式提供了上述绝缘陶瓷复合材料的制备方法,其包括以下步骤:
(1)树脂糊的制备:将8289型不饱和聚酯树脂、8901型低收缩树脂、固化剂、阻聚剂混合分散;
(2)粉体捏合搅拌:将氧化铝粉、硅微粉、脱模剂混合,捏合搅拌;
(3)将步骤(1)制得的树脂糊加入步骤(2)所得的捏合粉体中,顺时针与逆时针交叠搅拌捏合;以及
(4)将步骤(3)所得物顺时针旋转搅拌,同时加入短切玻璃纤维,之后继续捏合搅拌。
在本申请中,无需高温高压等严苛条件,通过上述制备方法所述的将组分分批混合/捏合搅拌即可制得根据本申请的绝缘陶瓷复合材料,条件温和易操作、简便快捷、无需高温高压等严苛条件、加工速度快、生产效率高、成型合格率高。加工完成后,将材料注入模具并固化后即可制得所需结构的产品。
进一步地,所述制备方法在步骤(1)中还加入0.74~0.80重量份的甲基环戊烯醇酮和0.52~0.56重量份的巴豆酸丁酯。优选地,所述制备方法在步骤(1)中还加入0.77重量份的甲基环戊烯醇酮和0.54重量份的巴豆酸丁酯。本申请通过加入甲基环戊烯醇酮和巴豆酸丁酯以进一步提升绝缘陶瓷复合材料的各项性能。
进一步地,所述步骤(1)中,所述混合分散可以为在900~1100转/分钟,优选1000转/分钟的搅拌速度下分散12~18分钟,优选15分钟。在此混合分散操作条件下,可以将树脂、固化剂、阻聚剂等搅拌混合混匀。
进一步地,所述步骤(2)中,所述捏合搅拌可以为在50~70转/分钟,优选60转/分钟的搅拌速度下捏合12~18分钟,优选15分钟。在此捏合搅拌操作条件下,可以将各个粉体充分搅拌混合为均一状态。
进一步地,所述步骤(3)为在70~90转/分钟,优选80转/分钟的搅拌速度下顺时针搅拌8~12分钟,优选10分钟,然后逆时针搅拌8~12分钟,优选10分钟。通过顺时针与逆时针的交叠搅拌,能够使得树脂浆料与粉体充分接触,避免出现局部混合不均匀的情况。
进一步地,所述步骤(4)为在70~90转/分钟,优选80转/分钟的搅拌速度下加入短切玻璃纤维,之后捏合搅拌6~10分钟,优选8分钟。通过搅拌捏合,可以使得短切玻璃纤维得到充分的浸润,从而发挥提高材料的耐冲击性的作用。
[有益效果]
综上所述,本申请具有以下有益效果:
根据本申请的绝缘陶瓷复合材料展现出了较高的导热系数和非常优异的绝缘性、防火性能,以及高的抗压强度、抗弯强度和耐冲击性,可塑性强,便于加工。因此根据本申请的绝缘陶瓷复合材料可用于制造耐高温的电子元件散热器等。
此外,根据本申请的绝缘陶瓷复合材料的制备方法操作简便快捷、无需高温高压等严苛条件、加工速度快、生产效率高、成型合格率高。
具体实施方式
为了使本领域技术人员能够更清楚地理解本申请,以下结合实施例对本申请作进一步详细说明,但应当理解的是,以下实施例仅为本申请的优选实施方式,而本申请要求保护的范围并不仅局限于此。
物料来源
8289型不饱和聚酯树脂、8901型低收缩树脂,购自鑫双利(惠州)树脂有限公司;
过氧化苯甲酸叔丁酯(TBPB),购自江苏晶化天成新材料科技有限公司;
对苯醌(PBQ),购自上海麦克林生化科技有限公司;
氧化铝粉(Al2O3),购自广州纳诺化学技术有限公司;
硅微粉,购自清远市鑫辉化工有限公司;
硬脂酸锌,购自广东翁江化学试剂有限公司;
短切玻璃纤维,购自北京华威锐科化工有限公司;
甲基环戊烯醇酮,购自上海易恩化学技术有限公司;以及
巴豆酸丁酯,购自上海迈瑞尔化学技术有限公司。
<实施例>
实施例1
采用以下制备方法来制备根据本申请的绝缘陶瓷复合材料:
(1)树脂糊的制备:在1000转/分钟的搅拌速度下将6.35kg的8289型不饱和聚酯树脂、3.65kg的8901型低收缩树脂、0.12kg的固化剂过氧化苯甲酸叔丁酯、0.035kg的阻聚剂对苯醌(溶于0.315kg的苯乙烯中)混合分散15分钟;
(2)粉体捏合搅拌:将10.00kg的氧化铝粉(500目)、15.00kg的硅微粉(500目)、0.50kg的脱模剂硬脂酸锌混合,在60转/分钟的搅拌速度下捏合15分钟;
(3)将步骤(1)制得的树脂糊加入步骤(2)所得的捏合粉体中,在80转/分钟的搅拌速度下顺时针搅拌捏合10分钟,然后逆时针搅拌捏合10分钟;以及
(4)在80转/分钟的搅拌速度下将步骤(3)所得物顺时针旋转搅拌,同时加入4.00kg的短切玻璃纤维(长度为3mm),之后捏合搅拌8分钟。
由此,即制得根据本申请的绝缘陶瓷复合材料。
实施例2
采用以下制备方法来制备根据本申请的绝缘陶瓷复合材料:
(1)树脂糊的制备:在900转/分钟的搅拌速度下将6.20kg的8289型不饱和聚酯树脂、3.50kg的8901型低收缩树脂、0.13kg的固化剂过氧化苯甲酸叔丁酯、0.040kg的阻聚剂对苯醌(溶于0.160kg的苯乙烯中)混合分散18分钟;
(2)粉体捏合搅拌:将9.80kg的氧化铝粉(550目)、14.80kg的硅微粉(550目)、0.52kg的脱模剂硬脂酸锌混合,在50转/分钟的搅拌速度下捏合18分钟;
(3)将步骤(1)制得的树脂糊加入步骤(2)所得的捏合粉体中,在90转/分钟的搅拌速度下顺时针搅拌捏合8分钟,然后逆时针搅拌捏合12分钟;以及
(4)在90转/分钟的搅拌速度下将步骤(3)所得物顺时针旋转搅拌,同时加入3.80kg的短切玻璃纤维(长度为3mm),之后捏合搅拌6分钟。
由此,即制得根据本申请的绝缘陶瓷复合材料。
实施例3
采用以下制备方法来制备根据本申请的绝缘陶瓷复合材料:
(1)树脂糊的制备:在1100转/分钟的搅拌速度下将6.50kg的8289型不饱和聚酯树脂、3.80kg的8901型低收缩树脂、0.11kg的固化剂过氧化苯甲酸叔丁酯、0.030kg的阻聚剂对苯醌(溶于0.420kg的苯乙烯中)混合分散12分钟;
(2)粉体捏合搅拌:将10.20kg的氧化铝粉(450目)、15.20kg的硅微粉(450目)、0.52kg的脱模剂硬脂酸锌混合,在70转/分钟的搅拌速度下捏合12分钟;
(3)将步骤(1)制得的树脂糊加入步骤(2)所得的捏合粉体中,在70转/分钟的搅拌速度下顺时针搅拌捏合12分钟,然后逆时针搅拌捏合8分钟;以及
(4)在70转/分钟的搅拌速度下将步骤(3)所得物顺时针旋转搅拌,同时加入4.20kg的短切玻璃纤维(长度为3mm),之后捏合搅拌10分钟。
由此,即制得根据本申请的绝缘陶瓷复合材料。
实施例4
除了在步骤(1)中还加入了0.77kg的甲基环戊烯醇酮和0.54kg的巴豆酸丁酯之外,以与实施例1相同的方式制得了根据本申请的绝缘陶瓷复合材料。
实施例5
采用以下制备方法来制备根据本申请的绝缘陶瓷复合材料:
(1)树脂糊的制备:在1000转/分钟的搅拌速度下将6.50kg的8289型不饱和聚酯树脂、3.50kg的8901型低收缩树脂、0.11kg的固化剂过氧化苯甲酸叔丁酯、0.040kg的阻聚剂对苯醌(溶于0.260kg的苯乙烯中)、0.80kg的甲基环戊烯醇酮和0.52kg的巴豆酸丁酯混合分散15分钟;
(2)粉体捏合搅拌:将10.20kg的氧化铝粉(450目)、14.80kg的硅微粉(550目)、0.48kg的脱模剂硬脂酸锌混合,在70转/分钟的搅拌速度下捏合15分钟;
(3)将步骤(1)制得的树脂糊加入步骤(2)所得的捏合粉体中,在70转/分钟的搅拌速度下顺时针搅拌捏合8分钟,然后逆时针搅拌捏合8分钟;以及
(4)在90转/分钟的搅拌速度下将步骤(3)所得物顺时针旋转搅拌,同时加入4.20kg的短切玻璃纤维(长度为3mm),之后捏合搅拌10分钟。
由此,即制得根据本申请的绝缘陶瓷复合材料。
实施例6
采用以下制备方法来制备根据本申请的绝缘陶瓷复合材料:
(1)树脂糊的制备:在1100转/分钟的搅拌速度下将6.20kg的8289型不饱和聚酯树脂、3.80kg的8901型低收缩树脂、0.13kg的固化剂过氧化苯甲酸叔丁酯、0.030kg的阻聚剂对苯醌(溶于0.300kg的苯乙烯中)、0.74kg的甲基环戊烯醇酮和0.56kg的巴豆酸丁酯混合分散14分钟;
(2)粉体捏合搅拌:将9.80kg的氧化铝粉(550目)、15.20kg的硅微粉(450目)、0.52kg的脱模剂硬脂酸锌混合,在60转/分钟的搅拌速度下捏合18分钟;
(3)将步骤(1)制得的树脂糊加入步骤(2)所得的捏合粉体中,在90转/分钟的搅拌速度下顺时针搅拌捏合12分钟,然后逆时针搅拌捏合12分钟;以及
(4)在70转/分钟的搅拌速度下将步骤(3)所得物顺时针旋转搅拌,同时加入3.80kg的短切玻璃纤维(长度为3mm),之后捏合搅拌8分钟。
由此,即制得根据本申请的绝缘陶瓷复合材料。
对比实施例1
采用以下制备方法来制备陶瓷复合材料:
(1)树脂糊的制备:在1200转/分钟的搅拌速度下将6.00kg的8289型不饱和聚酯树脂、4.00kg的8901型低收缩树脂、0.10kg的固化剂过氧化苯甲酸叔丁酯、0.050kg的阻聚剂对苯醌(溶于0.450kg的苯乙烯中)混合分散10分钟;
(2)粉体捏合搅拌:将9.50kg的氧化铝粉(400目)、15.50kg的硅微粉(600目)、0.45kg的脱模剂硬脂酸锌混合,在45转/分钟的搅拌速度下捏合20分钟;
(3)将步骤(1)制得的树脂糊加入步骤(2)所得的捏合粉体中,在65转/分钟的搅拌速度下顺时针搅拌捏合15分钟,然后逆时针搅拌捏合15分钟;以及
(4)在65转/分钟的搅拌速度下将步骤(3)所得物顺时针旋转搅拌,同时加入4.50kg的短切玻璃纤维(长度为3mm),之后捏合搅拌12分钟。
由此,即制得陶瓷复合材料。
对比实施例2
采用以下制备方法来制备陶瓷复合材料:
(1)树脂糊的制备:在800转/分钟的搅拌速度下将6.70kg的8289型不饱和聚酯树脂、3.20kg的8901型低收缩树脂、0.15kg的固化剂过氧化苯甲酸叔丁酯、0.020kg的阻聚剂对苯醌(溶于0.250kg的苯乙烯中)混合分散20分钟;
(2)粉体捏合搅拌:将10.50kg的氧化铝粉(600目)、14.50kg的硅微粉(400目)、0.55kg的脱模剂硬脂酸锌混合,在75转/分钟的搅拌速度下捏合10分钟;
(3)将步骤(1)制得的树脂糊加入步骤(2)所得的捏合粉体中,在95转/分钟的搅拌速度下顺时针搅拌捏合6分钟,然后逆时针搅拌捏合6分钟;以及
(4)在95转/分钟的搅拌速度下将步骤(3)所得物顺时针旋转搅拌,同时加入3.50kg的短切玻璃纤维(长度为3mm),之后捏合搅拌5分钟。
由此,即制得陶瓷复合材料。
<测试实施例>
测定实施例1至6制得的绝缘陶瓷复合材料和对比实施例1和2制得的陶瓷复合材料固化后的性能,其结果如以下表1所示:
[表1]
Figure BDA0002715765150000091
由上述表1可以看出,根据本申请实施例1至3制得的绝缘陶瓷复合材料具有较高的导热系数、体积电阻率、击穿电压、抗压强度、抗弯强度、冲击强度和防火等级,从而展现出优异的导热性、绝缘性、机械强度和防火性能等;并且,根据本申请实施例4至6制得的绝缘陶瓷复合材料由于还加入了甲基环戊烯醇酮和巴豆酸丁酯,从而展现出进一步提升的导热性、绝缘性、机械强度和防火性能等。
相比之下,对比实施例1和2由于采用了在本申请限定范围之外的组分配比和制备条件,其导热性、绝缘性、机械强度等性能要明显低于本申请。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。

Claims (8)

1.一种绝缘陶瓷复合材料,其特征在于,包括以下组分:
8289型不饱和聚酯树脂 6.20~6.50 重量份;
8901型低收缩树脂 3.50~3.80 重量份;
固化剂 0.11~0.13 重量份;
阻聚剂 0.030~0.040 重量份;
氧化铝粉 9.80~10.20 重量份;
硅微粉 14.80~15.20 重量份;
脱模剂 0.48~0.52 重量份;
短切玻璃纤维 3.80~4.20 重量份;
甲基环戊烯醇酮 0.74~0.80 重量份;
巴豆酸丁酯 0.52~0.56 重量份。
2.根据权利要求1所述的绝缘陶瓷复合材料,其特征在于,包括以下组分:
8289型不饱和聚酯树脂 6.35 重量份;
8901型低收缩树脂 3.65 重量份;
固化剂 0.12重量份;
阻聚剂 0.035重量份;
氧化铝粉 10.00重量份;
硅微粉 15.00重量份;
脱模剂 0.50重量份;
短切玻璃纤维 4.00重量份;
甲基环戊烯醇酮 0.74~0.80 重量份;
巴豆酸丁酯 0.52~0.56 重量份。
3.根据权利要求1或2所述的绝缘陶瓷复合材料,其特征在于,
所述固化剂为过氧化苯甲酸叔丁酯;
所述阻聚剂为对苯醌;
所述脱模剂为硬脂酸锌。
4.根据权利要求3所述的绝缘陶瓷复合材料,其特征在于,所述对苯醌的制备为将所述对苯醌溶于苯乙烯后使用,且所述对苯醌的重量百分比为5~15%。
5.根据权利要求1或2所述的绝缘陶瓷复合材料,其特征在于,所述氧化铝粉的粒度为450~550目;所述硅微粉的粒度为450~550目。
6.根据权利要求1或2所述的绝缘陶瓷复合材料,其特征在于,所述短切玻璃纤维的长度为3mm。
7.一种根据权利要求1至6任一项所述的绝缘陶瓷复合材料的制备方法,其特征在于,包括以下步骤:
(1)树脂糊的制备:将8289型不饱和聚酯树脂、8901型低收缩树脂、固化剂、阻聚剂、甲基环戊烯醇酮和巴豆酸丁酯混合分散;
(2)粉体捏合搅拌:将氧化铝粉、硅微粉、脱模剂混合,捏合搅拌;
(3)将步骤(1)制得的树脂糊加入步骤(2)所得的捏合粉体中,顺时针与逆时针交叠搅拌捏合;以及
(4)将步骤(3)所得物顺时针旋转搅拌,同时加入短切玻璃纤维,之后继续捏合搅拌。
8.根据权利要求7所述的制备方法,其特征在于,所述步骤(1)中,所述混合分散为在900~1100 转/分钟的搅拌速度下分散12~18 分钟;
所述步骤(2)中,所述捏合搅拌为在50~70转/分钟的搅拌速度下捏合12~18分钟;
所述步骤(3)为在70~90转/分钟的搅拌速度下顺时针搅拌8~12 分钟,然后逆时针搅拌8~12分钟;
所述步骤(4)为在70~90转/分钟的搅拌速度下加入短切玻璃纤维,之后捏合搅拌6~10分钟。
CN202011073042.XA 2020-10-09 2020-10-09 一种绝缘陶瓷复合材料及其制备方法 Active CN112225489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011073042.XA CN112225489B (zh) 2020-10-09 2020-10-09 一种绝缘陶瓷复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011073042.XA CN112225489B (zh) 2020-10-09 2020-10-09 一种绝缘陶瓷复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112225489A CN112225489A (zh) 2021-01-15
CN112225489B true CN112225489B (zh) 2021-12-21

Family

ID=74119955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011073042.XA Active CN112225489B (zh) 2020-10-09 2020-10-09 一种绝缘陶瓷复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112225489B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465100B1 (en) * 1993-06-15 2002-10-15 Alliant Techsystems Inc. Densification of composite preforms by liquid resin infiltration assisted by rigid-barrier actinic gelation
CN1948223A (zh) * 2006-11-03 2007-04-18 中国科学院上海硅酸盐研究所 一种改善凝胶浇注成型制备陶瓷成型体的浆料
CN102627833A (zh) * 2012-04-01 2012-08-08 浙江华正新材料股份有限公司 环保阻燃导热绝缘材料及其制造方法
CN109642184A (zh) * 2016-09-01 2019-04-16 西姆莱斯有限公司 包括塑料容器和物质组合物的产品
CN109651787A (zh) * 2018-12-29 2019-04-19 浙江律通复合材料有限公司 高阻燃、低密度的smc材料
CN111072313A (zh) * 2019-12-31 2020-04-28 李爱军 一种应用于电力绝缘模塑料的陶瓷化阻燃材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465100B1 (en) * 1993-06-15 2002-10-15 Alliant Techsystems Inc. Densification of composite preforms by liquid resin infiltration assisted by rigid-barrier actinic gelation
CN1948223A (zh) * 2006-11-03 2007-04-18 中国科学院上海硅酸盐研究所 一种改善凝胶浇注成型制备陶瓷成型体的浆料
CN102627833A (zh) * 2012-04-01 2012-08-08 浙江华正新材料股份有限公司 环保阻燃导热绝缘材料及其制造方法
CN109642184A (zh) * 2016-09-01 2019-04-16 西姆莱斯有限公司 包括塑料容器和物质组合物的产品
CN109651787A (zh) * 2018-12-29 2019-04-19 浙江律通复合材料有限公司 高阻燃、低密度的smc材料
CN111072313A (zh) * 2019-12-31 2020-04-28 李爱军 一种应用于电力绝缘模塑料的陶瓷化阻燃材料

Also Published As

Publication number Publication date
CN112225489A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN105198440B (zh) 耐热震性碳化硅坩埚及其制作工艺
CN103738022B (zh) 一种导热绝缘复合材料及其制备方法
CN103173660A (zh) 一种铝搪瓷复合材料及其制备方法
CN113231602B (zh) 一种具有高性能的铝合金铸造用复合铸型
CN108485224B (zh) 一种高弯曲模量导热高分子复合材料及其制备方法
CN104277455A (zh) 一种导热绝缘材料的制备方法
CN108275969A (zh) 一种利用天然矿物为原料的莫来石-碳化硅晶须复合陶瓷材料及其制备方法
CN105061855A (zh) 一种导热绝缘材料的制备方法
CN109206908B (zh) 一种高导热石墨/塑料复合材料及其制备方法
CN104369255B (zh) 一种环氧树脂热固性复合材料的注射成型方法
CN111087790A (zh) 一种石墨烯-金属粉末复合导电导热塑料及其制备方法
CN112225489B (zh) 一种绝缘陶瓷复合材料及其制备方法
CN113980429A (zh) 一种玻璃纤维增强smc模塑料及其制备方法
CN104550975B (zh) 一种快速注射成型制备硅铝合金电子封装材料的方法
CN101549402A (zh) 一种轻质高导热碳/金属复合材料及其制备方法
CN108975949B (zh) 一种基于原位发泡AlON-AlN多孔材料及其制备方法
CN103602038A (zh) 一种高导热系数的酚醛树脂基高分子材料的制备方法
CN102268181B (zh) 石墨硅高辐射散热聚碳酸酯复合材料及其制备方法
CN1275905C (zh) 一种制备高热导率和高尺寸精度氮化铝陶瓷零部件的方法
CN115772014B (zh) 一种保温陶粒混凝土材料的制备方法
CN101554699B (zh) 一种石墨基复合材料散热器的整体挤压成形制造方法
CN107189391B (zh) 一种复合增稠剂、团状模塑料及团状模塑料的制备方法
CN113861362B (zh) 一种快速固化同时增韧苯并噁嗪树脂的方法
JP2004143368A (ja) エポキシ樹脂組成物
CN112143192B (zh) 一种碳塑合金材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant