CN112219261A - 利用h2等离子体的可流动膜固化 - Google Patents

利用h2等离子体的可流动膜固化 Download PDF

Info

Publication number
CN112219261A
CN112219261A CN201980035901.5A CN201980035901A CN112219261A CN 112219261 A CN112219261 A CN 112219261A CN 201980035901 A CN201980035901 A CN 201980035901A CN 112219261 A CN112219261 A CN 112219261A
Authority
CN
China
Prior art keywords
substrate
plasma
amorphous silicon
processing
process gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980035901.5A
Other languages
English (en)
Inventor
江施施
P·曼纳
A·B·玛里克
S·C·赛斯
S·D·内马尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN112219261A publication Critical patent/CN112219261A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32055Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge

Abstract

本文的实施例提供对使用可流动化学气相沉积(flowable chemical vapor deposition;FCVD)工艺沉积的非晶硅层进行等离子体处理的方法。在一个实施例中,处理基板的方法包括通过以下步骤等离子体处理非晶硅层:使实质上无硅的氢处理气体流入处理腔室的处理容积中,所述处理容积中具有设置在基板支撑件上的基板;形成实质上无硅的氢处理气体的处理等离子体;和将基板的表面上沉积有非晶硅层的基板暴露于处理等离子体。在此,使用FCVD工艺沉积非晶硅层。FCVD工艺包括:将基板定位在基板支撑件上;使处理气体流入处理容积中;形成处理气体的沉积等离子体;将基板的表面暴露于沉积等离子体;和在基板的表面上沉积非晶硅层。

Description

利用H2等离子体的可流动膜固化
技术领域
本文描述的实施例大体上涉及半导体器件制造领域,并且更具体地,涉及对使用可流动化学气相沉积(FCVD)工艺沉积的非晶硅层进行原位等离子体处理的方法。
背景技术
本文描述的实施例大体上涉及半导体器件制造领域,并且更具体地,涉及对使用可流动化学气相沉积(FCVD)工艺沉积的非晶硅层进行原位等离子体处理的方法。
非晶硅(Amorphous silicon;a-Si)被广泛用于半导体器件制造中,包括作为牺牲材料,例如作为虚设栅极材料,或者作为沟槽填充材料,例如作为沟槽电容器材料。常规沉积的非晶硅通常是保形的,这意味着它通常在基板表面上或其中形成的开口表面上的特征上方具有均匀的沉积厚度。常规沉积的非晶硅的保形性质可导致在其所形成的特征中不希望地形成接缝或空隙。例如,接缝可形成在开口的超过一个垂直表面上沉积的非晶硅层在开口的中心相遇的位置,诸如在虚设栅极的形成期间。这些不希望的接缝可在后续基板处理期间裂开,并导致非晶硅特征的结构失效。在另一示例中,当常规沉积的保形非晶硅在非晶硅材料完全填充沟槽之前将其中的开口夹住时,可在高深宽比沟槽中形成空隙。类似于接缝,空隙可在后续基板处理期间暴露,并且或者可对器件性能或器件功能性产生负面影响。
在需要无缝和无空隙特征的应用中,FCVD非晶硅沉积工艺比常规非晶硅沉积工艺更具优势。不幸的是,使用FCVD工艺沉积的非晶硅,在下文中称为可流动非晶硅,比常规沉积的非晶硅具有不希望的较低致密性和在物理上更柔软,并且因此需要对密度的进一步处理(例如,固化)和增加膜的硬度。由于沉积与固化之间不同的处理温度要求以及晶片转移和温度稳定化要求,诸如UV固化的常规固化方法除了用于沉积FCVD非晶硅层的FCVD处理腔室之外还需要一个或多个处理腔室,并且因此是耗时和设备密集的。此外,UV固化可导致可流动非晶硅膜的实质收缩,诸如以体积计高达所沉积体积的70%的收缩,这在间隙填充应用中是特别不希望的,在间隙填充应用中非晶硅填充材料的收缩将导致所形成的特征中的不希望的空隙。
因此,本领域需要改良的对使用FCVD工艺沉积的非晶硅层进行固化的方法。
发明内容
本文描述的实施例大体上涉及半导体器件制造领域,并且更具体地,涉及对使用可流动化学气相沉积(FCVD)工艺沉积的非晶硅(a-Si)层(在下文中称为可流动非晶硅层)进行等离子体处理的方法。
在一个实施例中,一种处理基板的方法,包括:等离子体处理非晶硅层。等离子体处理非晶硅层包括:使实质上无硅的氢处理气体流入处理腔室的处理容积中,所述处理容积中具有设置在基板支撑件上的基板;形成实质上无硅的氢处理气体的处理等离子体;和将基板的表面上沉积有非晶硅层的基板暴露于处理等离子体。在此,使用FCVD工艺沉积非晶硅层。FCVD工艺包括:将基板定位在基板支撑件上;使处理气体流入处理容积中;形成处理气体的沉积等离子体;将基板的表面暴露于沉积等离子体;和在基板的表面上沉积非晶硅层。
在另一实施例中,一种处理基板的方法,包括:将基板保持在约-100℃与约100℃之间的温度;沉积非晶硅层;和等离子体处理非晶硅层。沉积非晶硅层包括:将基板定位在处理容积中设置的基板支撑件上;使处理气体流入处理容积中;通过将处理气体与电极在小于约300W的RF或其他交流频率功率下电容耦合来形成处理气体的沉积等离子体;将基板的表面暴露于沉积等离子体;和在基板的表面上沉积非晶硅层。在此,处理气体实质上无氧且实质上无氮。等离子体处理非晶硅层包括:使处理气体流入处理容积中;通过将处理气体与电极在约100W与约500W之间的RF或其他交流频率功率下电容耦合来形成处理气体的处理等离子体;和将非晶硅层暴露于处理等离子体长达大于约10秒的持续时间。在此,处理气体包含H2和惰性气体,两者比率介于约1:10与约5:1之间,并且处理气体实质上无硅且实质上无氧。
在另一实施例中,一种处理基板的方法包括:将基板保持在约-100℃与约100℃之间的温度;沉积非晶硅层;从处理容积中净化处理气体;和等离子体处理非晶硅层。沉积非晶硅层包括:将基板定位在处理容积中设置的基板支撑件上;使处理气体流入处理容积中,其中处理气体实质上无氧且实质上无氮;通过将处理气体与电极在小于约300W的RF或其他交流频率功率下电容耦合来形成处理气体的沉积等离子体;将基板的表面暴露于沉积等离子体;和在基板的表面上沉积非晶硅层。净化处理容积包括:停止处理气体的流动;熄灭沉积等离子体;使净化气体流入处理容积中;和在等离子体处理非晶硅层之前,从处理容积中排出净化气体。等离子体处理非晶硅层包括:使处理气体流入处理容积中,其中处理气体包含H2和惰性气体,两者比率介于约1:10与约5:1之间,并且其中处理气体实质上无硅且实质上无氧;通过在约100W与约500W之间的RF或其他交流频率功率下电容耦合电极来形成处理气体的处理等离子体;和将非晶硅层暴露于处理等离子体长达大于约10秒的持续时间。
附图说明
为了可以详细地理解本公开的上述特征,可通过参考实施例更具体地描述上文简要概述的本公开内容,一些实施例在附图中示出。然而,应注意,附图仅示出本公开的典型实施例,并且因此不应被认为是对其范围的限制,因为本公开可允许其他同等有效的实施例。
图1是根据一个实施例的用于实践本文阐述的方法的示例性处理腔室的示意性截面图。
图2是根据一个实施例的对非晶硅层进行等离子体处理的方法的流程图。
具体实施方式
本文描述的实施例大体上涉及半导体器件制造领域,并且更具体地,涉及对使用可流动化学气相沉积(FCVD)工艺沉积的非晶硅(a-Si)层(在下文中称为可流动非晶硅层)进行等离子体处理的方法。
使用FCVD工艺沉积非晶硅有利地提供特征的无接缝形成和高深宽比开口的无空隙填充。然而,使用FCVD工艺沉积的非晶硅通常包含高氢含量,诸如大于约30原子%,这与具有较低氢含量的常规沉积的非晶硅膜相比不希望地导致较低的膜密度和膜品质。因此,本文的方法提供了通过在用于沉积可流动非晶硅层的同一处理腔室中将可流动非晶硅层暴露于原位等离子体来等离子体处理可流动非晶硅层。本文的等离子体处理通过使可流动非晶硅膜的Si-H键断裂来降低可流动非晶硅膜的氢含量,以使得具有悬空键的Si能够形成Si-Si键,从而产生期望的致密膜。在此,与需要单独处理腔室和单独基板处理操作的诸如UV固化的其他固化方法相比,在用于沉积可流动非晶硅层的同一处理腔室中执行等离子体处理可流动非晶硅层,导致总基板处理时间和个别基板处理操作减少。
图1是根据一个实施例的用于实践本文阐述的方法的示例性处理腔室的示意性截面图。可用于实践本文描述的方法的其他示例性沉积腔室包括可购自美国加利福尼亚州圣克拉拉市应用材料公司的
Figure BDA0002802455230000041
ETERNA
Figure BDA0002802455230000043
系统或Ultima HDP
Figure BDA0002802455230000042
系统以及购自其他制造商的适宜沉积腔室。
处理腔室100包括腔室盖组件101、一个或多个侧壁102和腔室基座104。腔室盖组件101包括腔室盖106、设置在腔室盖106中的喷头107和设置在腔室盖106与一个或多个侧壁102之间的电绝缘环108。喷头107、一个或多个侧壁102和腔室基座104一起界定处理容积105。穿过腔室盖106设置的气体入口109流体耦接至气体源110。具有从中穿过设置的多个开口111的喷头107用于将来自气体源110的处理气体均匀地分配至处理容积105中。喷头107电耦接至第一电源112,诸如RF电源,此电源经由与处理气体电容耦合而供电以点燃和维持处理气体的等离子体113。在此,RF功率具有约400kHz与约40MHz之间的频率,例如约400kHz或约13.56MHz。在其他实施例中,处理腔室100包含感应等离子体产生器,并且通过将RF功率电感耦合至处理气体来形成等离子体。
处理容积105经由真空出口114流体耦接至真空源,诸如至一个或多个专用真空泵,所述真空出口将处理容积105保持在低于大气压的条件下,并从中排出处理气体和其他气体。设置在处理容积105中的基板支撑件115设置在可移动支撑轴116上,所述可移动支撑轴密封地延伸穿过腔室基座104,诸如被腔室基座104下方的区域中的波纹管(未示出)围绕。在此,处理腔室100通常配置为促进经由一个或多个侧壁102中的一个侧壁中的开口118将基板116移送至基板支撑件115和从基板支撑件115移出,所述开口在基板处理期间通常用门或阀(未示出)密封。
在此,使用诸如电阻加热元件119的加热器和设置在基板支撑件115中的一个或多个冷却通道120中的一者或两者将设置在基板支撑件115上的基板117保持在期望的处理温度。通常,一个或多个冷却通道120流体耦接至冷却剂源(未示出),诸如具有相对较高电阻的改良水源或制冷剂源。在一些实施例中,基板支撑件115或其一个或多个电极(未示出)电耦接至向其供应偏置电压的第二电源121,诸如连续波(continuous wave;CW)RF电源或脉冲RF电源。
图2是根据一个实施例的对可流动非晶硅层进行等离子体处理的方法的流程图。在活动201处,方法200包括使实质上无硅的氢处理气体流入处理腔室的处理容积中。在此,将其上通过可流动CVD工艺形成有非晶硅层的基板设置在处理容积中设置的基板支撑件上。通常,氢处理气体包含氢源气体,诸如H2、NH3或上述项的组合,以及一种或多种惰性稀释气体,诸如He、Ar、Kr、N2或上述项的组合,例如Ar。通常,氢源气体与惰性稀释气体的比率介于约1:10与约5:1之间,例如,在一个实施例中,H2与Ar的比率介于约1:10与约2:1之间。在一些实施例中,氢处理气体是实质上无硅、实质上无氧和实质上无氮的气体中的一种或组合,这意味着形成氢处理气体的气体分别不具有硅、氧和氮部分。在一些实施例中,希望将基板保持在以下温度:约-100℃与约100℃之间、约-100℃与约75℃之间、约-100℃与约75℃之间,例如约-100℃与约50℃之间,或小于约100℃,诸如小于约50℃。
在活动202处,方法200包括形成氢处理气体的处理等离子体。在此,形成处理等离子体包含经由与由RF或其他交流频率电源供电的喷头电容耦合来点燃和维持氢处理气体的等离子体。在其他实施例中,经由与感应耦合等离子体(inductively coupled plasma;ICP)产生器电感耦合来形成处理等离子体,感应耦合等离子体产生器为诸如线圈围绕或覆盖耦接至RF或其他交流频率电源的处理容积的至少一部分。在此,处理等离子体是原位等离子体,即在设置于基板支撑件上的基板与喷头之间形成的等离子体。在一些实施例中,RF或其他交流频率功率介于约100W与约500W之间,或小于约500W。在一些实施例中,希望在等离子体处理非晶硅层期间将处理容积的压力保持在约1毫托与约2托之间。
在活动203处,方法200包括将基板的表面上沉积有非晶硅层的基板暴露于处理等离子体。通常,在基板的等离子体处理期间,基板支撑件处于升高的基板处理位置,在此为第一基板处理位置。在第一基板处理位置中,基板的表面与喷头的面向基板的表面间隔大于10mm的距离,诸如大于约20mm,或介于约10mm与约300mm之间,诸如介于约20mm与约300mm之间,介于约50mm与约300mm之间,或例如介于约20mm与约100mm之间,介于约100mm与约200mm之间,或介于约200mm与约300mm之间。
在此,等离子体处理非晶硅层包括将基板暴露于处理等离子体长达大于约10秒的持续时间,例如介于约10秒与约60秒之间。在此,使用FCVD工艺沉积非晶硅层,所述FCVD工艺包括:将基板定位在处理容积中设置的基板支撑件上;使处理气体流入处理容积中;形成处理气体的沉积等离子体;将基板的表面暴露于沉积等离子体;和在基板的表面上沉积非晶硅层。通常,在非晶硅层的沉积期间,基板支撑件处于第二基板处理位置。在第二基板处理位置中,基板与喷头的面向基板的表面间隔小于约20mm的距离,诸如介于约5mm与20mm之间,例如介于约7mm与约18mm之间。在一些实施例中,方法200包括使用FCVD工艺沉积非晶硅层。在一些实施例中,方法200包括通过在等离子体处理与非晶硅FCVD工艺之间降低基板支撑件将基板从第二处理位置移动至第一处理位置。
在此,处理气体包含一种或多种硅前驱物,诸如硅烷(SiH4)、乙硅烷(Si2H6)、丙硅烷(Si3H8)和四硅烷(Si4H10)、新五硅烷(neopentasilane;NPS)、环六硅烷或上述项的组合。在一些实施例中,硅前驱物实质上无碳,其中实质上无碳意味着硅前驱物中不具有碳部分。在一些实施例中,处理气体是实质上无碳、实质上无氧和实质上无氮中的一个或多个。
在一些实施例中,基板是基板的表面上形成有多个特征的图案化基板。在一些实施例中,图案化基板在基板的表面上形成有多个开口,并且在基板的表面上沉积非晶硅层包括在多个开口中沉积非晶硅层。在一些实施例中,多个开口具有大于2:1的深宽比(深度与宽度比率),诸如大于5:1、大于10:1、大于20:1,例如大于25:1。在一些实施例中,开口的宽度小于约90nm,诸如小于约65nm、小于约45nm、小于约32nm、小于约22nm,例如小于约16nm,或在约16nm与约90nm之间。
通常,基板由适用于电子器件制造工艺中的任何材料和材料层形成,诸如硅、氧化硅、应变硅、绝缘体上硅(silicon on insulator;SOI)、掺碳氧化硅、非晶硅、掺杂硅、锗、砷化镓、玻璃、蓝宝石、金属、金属氮化物、金属合金和上述项的组合。
在此,形成沉积等离子体包括与喷头电容耦合,具有(待处理的基板表面的)小于约1W/cm2的RF或其他交流频率功率施加于喷头上,诸如小于约0.7W/cm2、小于约0.5W/cm2、小于约0.3W/cm2、小于约0.15W/cm2、小于约0.1W/cm2,例如小于约0.05W/cm2。例如,对于具有约300mm直径的基板,施加于喷头上的RF小于约300W,诸如小于约250W、小于约200W、小于约150W、小于约100W、小于约50W,例如小于约25W。在一些实施例中,FCVD工艺包括将偏置功率提供至基板支撑件,其中对于300mm直径基板,偏置功率是介于约20W与约500W之间的连续RF功率。在其他实施例中,偏置功率是介于约20W与约500W之间的脉冲RF功率,具有约1Hz与约1000Hz之间的脉冲频率和约10%至95%的导通占空比。在其他实施例中,偏置功率是脉冲直流功率。
在一些实施例中,处理气体进一步包含载气或稀释气体,诸如He、Ar、H2、Kr、N2、NH3或上述项的组合。通常,在FCVD工艺期间,希望将处理容积的压力保持在约10毫托与约10托之间,诸如小于约6托,诸如小于约5托,或在约0.1托与约4托之间,诸如在约0.5托与约3托之间。通常,在FCVD和等离子体处理工艺期间,将基板保持在相同的温度或相同的温度范围内。
在一些实施例中,方法包括在等离子体处理非晶硅层之前净化处理气体的处理容积。通常,净化处理气体和处理气体副产物的处理容积包括:停止处理气体的流动;熄灭沉积等离子体;使净化气体流入处理容积中;和在等离子体处理非晶硅层之前从处理容积中排出净化气体。通常,净化气体包含惰性气体,诸如He、Ar、Kr、N2或上述项的组合,例如Ar。在一些实施例中,净化处理容积包含使净化气体流动和排出净化气体长达约5秒与约60秒之间的持续时间。
期望地,上文描述的FCVD和后处理工艺提供可流动非晶硅膜,所述可流动非晶硅膜能够在基板表面上无接缝地形成特征,并且能够自底向上无空隙地填充基板表面中所形成的高深宽比开口,诸如具有小于90nm的宽度和大于约10:1的深宽比的开口。对可流动非晶硅层进行等离子体处理降低了可流动非晶硅层中的氢含量,并且增加了其中Si-Si键的数量,从而产生期望的致密膜。在一些实施例中,使用本文描述的FCVD方法沉积的非晶硅层的等离子体处理前氢含量大于约30原子%,而等离子体处理后氢含量小于约20原子%。此外,与诸如UV固化的其他固化方法相比,本文的等离子体处理方法导致较少的膜收缩。在一些实施例中,使用本文提供的等离子体处理方法的可流动非晶硅膜的收缩小于约50%,诸如小于约40%,例如小于约30%。在一些实施例中,在此形成的等离子体处理的非晶硅层具有不小于约4.1的折射率,诸如不小于约4,或不小于约3.9,例如不小于约3.8,其中较高折射率指示提高的膜品质。
尽管前述内容针对本公开的实施例,但可在不脱离本公开的基本范围的情况下设计本公开的其他和进一步实施例,并且本公开的范围由随附权利要求书确定。

Claims (15)

1.一种处理基板的方法,包含:
等离子体处理非晶硅层,包含:
使实质上无硅的氢处理气体流入处理腔室的处理容积中,所述处理容积中具有设置在基板支撑件上的基板;
形成所述实质上无硅的氢处理气体的处理等离子体;和
将基板的表面上沉积有所述非晶硅层的所述基板暴露于所述处理等离子体,其中使用FCVD工艺沉积所述非晶硅层,所述FCVD工艺包含:
将所述基板定位在所述基板支撑件上;
使处理气体流入所述处理容积中;
形成所述处理气体的沉积等离子体;
将所述基板的所述表面暴露于所述沉积等离子体;和
在所述基板的所述表面上沉积所述非晶硅层。
2.如权利要求1所述的方法,其中所述处理等离子体是通过将所述实质上无硅的处理气体与电极在基板表面区域的约0.10W/cm2与约1W/cm2之间的RF功率下电容耦合来形成的。
3.如权利要求1所述的方法,其中等离子体处理所述非晶硅层包含将所述处理容积保持在约1毫托与约2托之间的压力下。
4.如权利要求1所述的方法,其中所述氢处理气体实质上无硅且实质上无氧。
5.如权利要求1所述的方法,其中处理所述基板进一步包含将所述基板保持在约-100℃与约100℃之间的温度。
6.如权利要求1所述的方法,其中所述实质上无硅的氢处理气体包含H2和惰性气体。
7.如权利要求1所述的方法,其中等离子体处理所述非晶硅层包含将所述基板暴露于所述处理等离子体长达大于约10秒。
8.如权利要求1所述的方法,其中所述处理气体包含选自由以下组成的群组中的一种或多种硅前驱物:硅烷(SiH4)、乙硅烷(Si2H6)、丙硅烷(Si3H8)和四硅烷(Si4H10)、新五硅烷(NPS)和环六硅烷。
9.如权利要求6所述的方法,其中H2与惰性气体的比率介于约1:10与约5:1之间。
10.如权利要求7所述的方法,其中所述惰性气体是Ar。
11.如权利要求8所述的方法,其中所述处理气体是实质上无氮和实质上无氧中的一种或两种。
12.一种处理基板的方法,包含:
将所述基板保持在约-100℃与约100℃之间的温度;
沉积非晶硅层,包含:
将所述基板定位在处理容积中设置的基板支撑件上;
使处理气体流入所述处理容积中,其中所述处理气体实质上无氧且实质上无氮;
通过将所述处理气体与电极在小于约300W的RF或其他交流频率功率下电容耦合来形成所述处理气体的沉积等离子体;
将所述基板的所述表面暴露于所述沉积等离子体;和
在所述基板的表面上沉积所述非晶硅层;和
等离子体处理所述非晶硅层,包含:
使处理气体流入所述处理容积中,其中所述处理气体包含H2和惰性气体,两者比率介于约1:10与约5:1之间,并且其中所述处理气体实质上无硅且实质上无氧;
通过将所述处理气体与电极在约100W与约500W之间的RF功率下电容耦合来形成所述处理气体的处理等离子体;和
将所述非晶硅层暴露于所述处理等离子体长达大于约10秒的持续时间。
13.如权利要求12所述的方法,进一步包含在等离子体处理所述非晶硅层之前净化所述处理容积,包含:
停止所述处理气体的流动;
熄灭所述沉积等离子体;
使净化气体流入所述处理容积中;和
在等离子体处理所述非晶硅层之前,从所述处理容积中排出所述净化气体。
14.如权利要求12所述的方法,进一步包含沉积所述非晶硅层和等离子体处理所述非晶硅层的多个顺序循环。
15.一种处理基板的方法,包含:
将所述基板保持在约-100℃与约100℃之间的温度;
沉积非晶硅层,包含:
将基板定位在处理容积中设置的基板支撑件上;
使处理气体流入所述处理容积中,其中所述处理气体实质上无氧且实质上无氮;
通过将所述处理气体与电极在小于约300W的RF或其他交流频率功率下电容耦合来形成所述处理气体的沉积等离子体;
将所述基板的所述表面暴露于所述沉积等离子体;和
在所述基板的表面上沉积所述非晶硅层;
净化所述处理容积,包含:
停止所述处理气体的流动;
熄灭所述沉积等离子体;
使净化气体流入所述处理容积中;和
在等离子体处理所述非晶硅层之前,从所述处理容积中排出所述净化气体;和
等离子体处理所述非晶硅层,包含:
使处理气体流入所述处理容积中,其中所述处理气体包含H2和惰性气体,两者比率介于约1:10与约5:1之间,并且其中所述处理气体实质上无硅且实质上无氧;
通过在约100W与约500W之间的RF或其他交流频率功率下电容耦合至电极来形成所述处理气体的处理等离子体;和
将所述非晶硅层暴露于所述处理等离子体长达大于约10秒的持续时间。
CN201980035901.5A 2018-04-03 2019-04-01 利用h2等离子体的可流动膜固化 Pending CN112219261A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN201841012612 2018-04-03
IN201841012612 2018-04-03
PCT/US2019/025227 WO2019195188A1 (en) 2018-04-03 2019-04-01 Flowable film curing using h2 plasma

Publications (1)

Publication Number Publication Date
CN112219261A true CN112219261A (zh) 2021-01-12

Family

ID=68100158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980035901.5A Pending CN112219261A (zh) 2018-04-03 2019-04-01 利用h2等离子体的可流动膜固化

Country Status (6)

Country Link
US (1) US20210025058A1 (zh)
JP (1) JP2021520630A (zh)
KR (1) KR20200128445A (zh)
CN (1) CN112219261A (zh)
SG (1) SG11202009405VA (zh)
WO (1) WO2019195188A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578409B2 (en) 2019-06-08 2023-02-14 Applied Materials, Inc. Low deposition rates for flowable PECVD
CN111725297B (zh) * 2020-06-08 2023-06-02 武汉华星光电半导体显示技术有限公司 有源层结构及其制作方法
US11562902B2 (en) * 2020-07-19 2023-01-24 Applied Materials, Inc. Hydrogen management in plasma deposited films
US11887811B2 (en) 2020-09-08 2024-01-30 Applied Materials, Inc. Semiconductor processing chambers for deposition and etch
US20220076922A1 (en) * 2020-09-08 2022-03-10 Applied Materials, Inc. Single chamber flowable film formation and treatments
US11699571B2 (en) 2020-09-08 2023-07-11 Applied Materials, Inc. Semiconductor processing chambers for deposition and etch
US20220157602A1 (en) * 2020-11-18 2022-05-19 Applied Materials, Inc. Silicon oxide gap fill using capacitively coupled plasmas
KR20220102569A (ko) * 2021-01-13 2022-07-20 에이에스엠 아이피 홀딩 비.브이. 갭 충진 유체를 증착하기 위한 방법 그리고 이와 관련된 시스템 및 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1129492A (zh) * 1994-06-15 1996-08-21 精工爱普生株式会社 薄膜半导体器件的制造方法、薄膜半导体装置、液晶显示装置和电子仪器
US20070299239A1 (en) * 2006-06-27 2007-12-27 Air Products And Chemicals, Inc. Curing Dielectric Films Under A Reducing Atmosphere
US20090142878A1 (en) * 2007-11-02 2009-06-04 Applied Materials, Inc. Plasma treatment between deposition processes
US20120202315A1 (en) * 2011-02-03 2012-08-09 Applied Materials, Inc. In-situ hydrogen plasma treatment of amorphous silicon intrinsic layers
US20140335680A1 (en) * 2013-05-09 2014-11-13 Applied Materials, Inc. Multi-layer amorphous silicon structure with improved poly-silicon quality after excimer laser anneal
US20140357065A1 (en) * 2013-05-31 2014-12-04 Applied Materials, Inc. Amorphous silicon thickness uniformity improved by process diluted with hydrogen and argon gas mixture
US20150118864A1 (en) * 2013-10-31 2015-04-30 Asm Ip Holding B.V. Method for Treating SiOCH Film With Hydrogen Plasma
US20170372919A1 (en) * 2016-06-25 2017-12-28 Applied Materials, Inc. Flowable Amorphous Silicon Films For Gapfill Applications

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562913A (ja) * 1991-09-04 1993-03-12 Canon Inc 堆積膜の成膜方法
JPH0613329A (ja) * 1992-06-25 1994-01-21 Canon Inc 半導体装置及び半導体製造装置及び製造方法
JP2945234B2 (ja) * 1993-03-15 1999-09-06 三洋電機株式会社 半導体薄膜の形成方法
US20120083133A1 (en) * 2010-10-05 2012-04-05 Applied Materials, Inc. Amine curing silicon-nitride-hydride films
WO2013021426A1 (ja) * 2011-08-10 2013-02-14 パナソニック株式会社 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
US20130288485A1 (en) * 2012-04-30 2013-10-31 Applied Materials, Inc. Densification for flowable films
US9130014B2 (en) * 2013-11-21 2015-09-08 United Microelectronics Corp. Method for fabricating shallow trench isolation structure
US9777378B2 (en) * 2015-01-07 2017-10-03 Applied Materials, Inc. Advanced process flow for high quality FCVD films
KR102655396B1 (ko) * 2015-02-23 2024-04-04 어플라이드 머티어리얼스, 인코포레이티드 고품질 얇은 필름들을 형성하기 위한 사이클식 순차 프로세스들
CN106373908B (zh) * 2015-07-20 2019-07-02 成均馆大学校产学协力团 多晶硅沉积方法及用于其的沉积装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1129492A (zh) * 1994-06-15 1996-08-21 精工爱普生株式会社 薄膜半导体器件的制造方法、薄膜半导体装置、液晶显示装置和电子仪器
US20070299239A1 (en) * 2006-06-27 2007-12-27 Air Products And Chemicals, Inc. Curing Dielectric Films Under A Reducing Atmosphere
US20090142878A1 (en) * 2007-11-02 2009-06-04 Applied Materials, Inc. Plasma treatment between deposition processes
US20120202315A1 (en) * 2011-02-03 2012-08-09 Applied Materials, Inc. In-situ hydrogen plasma treatment of amorphous silicon intrinsic layers
US20140335680A1 (en) * 2013-05-09 2014-11-13 Applied Materials, Inc. Multi-layer amorphous silicon structure with improved poly-silicon quality after excimer laser anneal
US20140357065A1 (en) * 2013-05-31 2014-12-04 Applied Materials, Inc. Amorphous silicon thickness uniformity improved by process diluted with hydrogen and argon gas mixture
US20150118864A1 (en) * 2013-10-31 2015-04-30 Asm Ip Holding B.V. Method for Treating SiOCH Film With Hydrogen Plasma
US20170372919A1 (en) * 2016-06-25 2017-12-28 Applied Materials, Inc. Flowable Amorphous Silicon Films For Gapfill Applications

Also Published As

Publication number Publication date
SG11202009405VA (en) 2020-10-29
WO2019195188A1 (en) 2019-10-10
JP2021520630A (ja) 2021-08-19
KR20200128445A (ko) 2020-11-12
US20210025058A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
CN110431661B (zh) 用于用非晶硅膜对高深宽比沟槽进行间隙填充的两步工艺
CN112219261A (zh) 利用h2等离子体的可流动膜固化
US9528183B2 (en) Cobalt removal for chamber clean or pre-clean process
TW202043521A (zh) 用於重組非晶碳聚合物膜之方法
US6143128A (en) Apparatus for preparing and metallizing high aspect ratio silicon semiconductor device contacts to reduce the resistivity thereof
US20160247718A1 (en) Method of enabling seamless cobalt gap-fill
US10199230B2 (en) Methods for selective deposition of metal silicides via atomic layer deposition cycles
CN110476222B (zh) 用于硅间隙填充的两步工艺
TW202117931A (zh) 間隙填充沉積製程
JP2016503966A (ja) 高密度プラズマを実施する窒化ケイ素間隙充填
TW202305161A (zh) 使用依序沉積-蝕刻-處理製程的氧化矽及氮化矽之由下而上的生長
KR20200090989A (ko) 유전 상수 엔지니어링된 인시츄 전하 트랩 재료들을 이용한 고온 정전 척킹
KR102184690B1 (ko) 오목부의 매립 방법 및 처리 장치
CN110431660B (zh) 表面改性以改进非晶硅间隙填充
US20220238331A1 (en) Gapfill process using pulsed high-frequency radio-frequency (hfrf) plasma
US20230386829A1 (en) Low temperature silicon oxide gap fill
TW202412066A (zh) 低溫氧化矽間隙填充
CN116568857A (zh) 形成硬模的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination