CN112209712A - 一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法 - Google Patents

一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN112209712A
CN112209712A CN202011080914.5A CN202011080914A CN112209712A CN 112209712 A CN112209712 A CN 112209712A CN 202011080914 A CN202011080914 A CN 202011080914A CN 112209712 A CN112209712 A CN 112209712A
Authority
CN
China
Prior art keywords
piezoelectric ceramic
potassium
sodium niobate
piezoelectric
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011080914.5A
Other languages
English (en)
Other versions
CN112209712B (zh
Inventor
龚文
吴超峰
俞胜平
高洪伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG TSINGHUA YANGTZE RIVER DELTA RESEARCH INSTITUTE
Goertek Inc
Original Assignee
ZHEJIANG TSINGHUA YANGTZE RIVER DELTA RESEARCH INSTITUTE
Goertek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG TSINGHUA YANGTZE RIVER DELTA RESEARCH INSTITUTE, Goertek Inc filed Critical ZHEJIANG TSINGHUA YANGTZE RIVER DELTA RESEARCH INSTITUTE
Priority to CN202011080914.5A priority Critical patent/CN112209712B/zh
Publication of CN112209712A publication Critical patent/CN112209712A/zh
Application granted granted Critical
Publication of CN112209712B publication Critical patent/CN112209712B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高压电常数的铌酸钾钠基无铅压电陶瓷,所述高压电常数的铌酸钾钠基无铅压电陶瓷的化学组成为:(1‑x)(K0.5Na0.5)Nb1‑ySbyO3+xCuZr0.5Ti0.5O3,其中,x,y为摩尔百分比,0≤x≤0.4,0.01≤y≤0.2。本发明的高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法,采用铜、锑、锆和钛元素进行掺杂改性,实现电荷和空位补偿,提高其压电常数,增加无铅压电陶瓷压电敏感性。本发明采用铌酸钾钠基无铅压电陶瓷具有高压电常数,大大拓宽了无铅压电陶瓷应用场景,同时无铅压电陶瓷绿色环保,可有效减少对人类健康和环境的损害。

Description

一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法
技术领域
本发明涉及无铅压电陶瓷技术领域,具体涉及一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法。
背景技术
压电材料能够实现机械能和电能之间的相互转换,在信息、电子、精密仪器和超声检测等技术领域具有广泛应用。目前普遍使用的是锆钛酸铅(PZT)基压电材料,在PZT压电材料中,铅(Pb)元素约占材料总重量的70%,这类陶瓷材料在生产、使用以及废弃处理过程中都会给人类健康和生态环境造成十分严重的损害。铌酸钾钠基无铅压电陶瓷具有较强的压电性能,通过配方体系和制备方法改进,在提高压电常数方面具有进一步提升空间,继而大幅扩宽无铅压电陶瓷应用空间。
基于上述情况,本发明提出了一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法,可有效解决以上问题。
发明内容
本发明的目的在于提供一种高机械品质因数和低介电损耗的高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法。本发明的高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法,采用铜、锑、锆和钛元素进行掺杂改性,实现电荷和空位补偿,提高其压电常数,增加无铅压电陶瓷压电敏感性。本发明采用铌酸钾钠基无铅压电陶瓷具有高压电常数,大大拓宽了无铅压电陶瓷应用场景,同时无铅压电陶瓷绿色环保,可有效减少对人类健康和环境的损害。
为解决以上技术问题,本发明提供的技术方案是:
一种高压电常数的铌酸钾钠基无铅压电陶瓷,所述高压电常数的铌酸钾钠基无铅压电陶瓷的化学组成为:(1-x)(K0.5Na0.5)Nb1-ySbyO3+xCuZr0.5Ti0.5O3,其中,x,y为摩尔百分比,0≤x≤0.4,0.01≤y≤0.2。
本发明的高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法,采用铜、锑、锆和钛元素进行掺杂改性,实现电荷和空位补偿,提高其压电常数,增加无铅压电陶瓷压电敏感性。本发明采用铌酸钾钠基无铅压电陶瓷具有高压电常数,大大拓宽了无铅压电陶瓷应用场景,同时无铅压电陶瓷绿色环保,可有效减少对人类健康和环境的损害。
优选的,所述的高压电常数的铌酸钾钠基无铅压电陶瓷的制备方法,包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、三氧化二锑、氧化铜、二氧化锆和二氧化钛放入培养皿,置于烘箱内,在120-150℃下保温3-6h;
2)称料混合:按所述高压电常数的铌酸钾钠基无铅压电陶瓷的化学组成为配比称量经步骤1)预处理后的原料,分散于无水乙醇中,混合均匀后烘干,粉碎过筛,制成预混粉;
3)预烧:将所述预混粉置于箱式炉中连续升温至850-1050℃,保温4-8h,降温至室温后粉碎过筛,得到预烧粉;
4)烧结:将所述预烧粉干压成型为生坯,在气氛烧结炉中于1150-1480℃下保温6-12h,得到致密的压电陶瓷片;
5)后处理:将烧结好的所述压电陶瓷片加工成所需形状,两侧均匀涂上银层,标注正负极后极化老化得到所述成品铌酸钾钠基无铅压电陶瓷。
优选的,步骤2)中,预处理后的原料分散于无水乙醇后,通过球磨机湿磨混合均匀,所述球磨机的转速为200-800rpm,湿磨时间为24-48h。
优选的,步骤4)中,所述气氛烧结炉中的烧结气为空气或氧气,气压为0.1-0.5MPa。
优选的,步骤5)中,所述两侧均匀涂上银层为:在压电陶瓷片的两表面丝网印刷上厚度为0.01mm的银浆,在150℃下烘干,随后在箱式炉中升温至500-600℃,保温60min后降温至室温,得到被银陶瓷片。
优选的,步骤5)中,所述极化老化为:将标注有正负极的被银陶瓷片放入装有硅油的极化装置中,油浴加热至80-120℃,在3-5kV/mm的电压下极化20-30min,然后在室温下放置24h老化,得到所述高压电常数的铌酸钾钠基无铅压电陶瓷。
本发明与现有技术相比,具有以下优点及有益效果:
本发明的高压电常数的铌酸钾钠基无铅压电陶瓷通过精选原料组成,并优化各原料含量,且采用直接干压成型、气氛烧结的方式,严格控制各步骤的工艺条件参数(工艺条件参数的控制是获得性能良好的高压电常数的铌酸钾钠基无铅压电陶瓷的关键,只有工艺条件参数控制在合适的范围内,才能保证高压电常数的铌酸钾钠基无铅压电陶瓷的质量),制备成了致密度高、电性能好的铌酸钾钠基无铅压电陶瓷,该压电陶瓷的压电常数大大提高,达到400pC/N以上,平面机电耦合常数为0.48-0.52,可以拓宽无铅压电陶瓷的应用场景。
本发明制备得到的高压电常数的铌酸钾钠基无铅压电陶瓷可取代传统的含铅压电陶瓷,在信息、电子、精密仪器和超声检测等技术领域广泛应用,绿色环保,可有效避免含铅压电陶瓷材料在生产、使用和废弃过程中带来的铅污染,减少对人类健康和生态环境造成的损害。
本发明的高压电常数的铌酸钾钠基无铅压电陶瓷选择了适当配比的碳酸钾、碳酸钠、五氧化二铌和辅料,所述辅料为三氧化二锑、氧化铜、二氧化锆和二氧化钛;
本发明在合成铌酸钾钠基无铅压电陶瓷的过程中,采用掺杂改性和复合添加的方法,并严格控制各步骤的工艺条件参数,工艺条件参数的控制是获得性能良好的高压电常数的铌酸钾钠基无铅压电陶瓷的关键,只有工艺条件参数控制在合适的范围内,才能保证高压电常数的铌酸钾钠基无铅压电陶瓷的质量,活化了压电微区,有效提高了铌酸钾钠基无铅压电陶瓷的压电常数。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明的优选实施方案进行描述,但是不能理解为对本专利的限制。
下述实施例中所述试验方法或测试方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均从常规商业途径获得,或以常规方法制备。
实施例1:
一种高压电常数的铌酸钾钠基无铅压电陶瓷,所述高压电常数的铌酸钾钠基无铅压电陶瓷的化学组成为:(1-x)(K0.5Na0.5)Nb1-ySbyO3+xCuZr0.5Ti0.5O3,其中,x,y为摩尔百分比,0≤x≤0.4,0.01≤y≤0.2。
优选的,所述的高压电常数的铌酸钾钠基无铅压电陶瓷的制备方法,包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、三氧化二锑、氧化铜、二氧化锆和二氧化钛放入培养皿,置于烘箱内,在120-150℃下保温3-6h;
2)称料混合:按所述高压电常数的铌酸钾钠基无铅压电陶瓷的化学组成为配比称量经步骤1)预处理后的原料,分散于无水乙醇中,混合均匀后烘干,粉碎过筛,制成预混粉;
3)预烧:将所述预混粉置于箱式炉中连续升温至850-1050℃,保温4-8h,降温至室温后粉碎过筛,得到预烧粉;
4)烧结:将所述预烧粉干压成型为生坯,在气氛烧结炉中于1150-1480℃下保温6-12h,得到致密的压电陶瓷片;
5)后处理:将烧结好的所述压电陶瓷片加工成所需形状,两侧均匀涂上银层,标注正负极后极化老化得到所述成品铌酸钾钠基无铅压电陶瓷。
优选的,步骤2)中,预处理后的原料分散于无水乙醇后,通过球磨机湿磨混合均匀,所述球磨机的转速为200-800rpm,湿磨时间为24-48h。
优选的,步骤4)中,所述气氛烧结炉中的烧结气为空气或氧气,气压为0.1-0.5MPa。
优选的,步骤5)中,所述两侧均匀涂上银层为:在压电陶瓷片的两表面丝网印刷上厚度为0.01mm的银浆,在150℃下烘干,随后在箱式炉中升温至500-600℃,保温60min后降温至室温,得到被银陶瓷片。
优选的,步骤5)中,所述极化老化为:将标注有正负极的被银陶瓷片放入装有硅油的极化装置中,油浴加热至80-120℃,在3-5kV/mm的电压下极化20-30min,然后在室温下放置24h老化,得到所述高压电常数的铌酸钾钠基无铅压电陶瓷。
实施例2:
一种高压电常数的铌酸钾钠基无铅压电陶瓷,包含以下原子百分比的化学组成,95%的(K0.5Na0.5)Nb0.9Sb0.1O3和5%的CuZr0.5Ti0.5O3,制备方法包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、三氧化二锑、氧化铜、二氧化锆和二氧化钛放入培养皿,置于烘箱内,在120℃下保温5h;
2)称料混合:按所述化学组成配比称量预处理后的原料,分散于无水乙醇中,放入球磨机湿磨,球磨机的转速为500rpm,湿磨时间为36h,湿磨结束后取出放入烘箱烘干,用玛瑙研钵磨碎,过80目筛,制成干粉;
3)预烧:将预混粉置于箱式炉中连续升温至900℃,保温8h,降温至室温后粉碎过筛,得到预烧粉;
4)烧结:将预烧粉干压成型为生坯,在0.1MPa氧气气氛烧结炉中于1250℃下保温10h,得到致密的压电陶瓷片;
5)后处理:将烧结好的压电陶瓷片加工成所需形状,在两侧均匀涂上银层,烧银温度为600℃;在被银陶瓷片两侧电极分别标注正负极,放入装有硅油的极化装置中,油浴加热至80℃,在3kV/mm的电压下极化30min,然后在室温下放置24h老化,得到所述高压电常数的铌酸钾钠基无铅压电陶瓷。
将本实施例得到的所述高压电常数的铌酸钾钠基无铅压电陶瓷制作成直径20mm的压电陶瓷片,压电常数测试为486pC/N。
实施例3:
一种高压电常数的铌酸钾钠基无铅压电陶瓷,包含以下原子百分比的化学组成,90%的(K0.5Na0.5)Nb0.92Sb0.08O3和10%的CuZr0.5Ti0.5O3,制备方法包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、三氧化二锑、氧化铜、二氧化锆和二氧化钛放入培养皿,置于烘箱内,在130℃下保温4h;
2)称料混合:按所述化学组成配比称量预处理后的原料,分散于无水乙醇中,放入球磨机湿磨,球磨机的转速为400rpm,湿磨时间为48h,湿磨结束后取出放入烘箱烘干,用玛瑙研钵磨碎,过80目筛,制成干粉;
3)预烧:将预混粉置于箱式炉中连续升温至950℃,保温7h,降温至室温后粉碎过筛,得到预烧粉;
4)烧结:将预烧粉干压成型为生坯,在0.1MPa空气气氛烧结炉中于1300℃下保温8h,得到致密的压电陶瓷片;
5)后处理:将烧结好的压电陶瓷片加工成所需形状,在两侧均匀涂上银层,烧银温度为600℃;在被银陶瓷片两侧电极分别标注正负极,放入装有硅油的极化装置中,油浴加热至90℃,在3kV/mm的电压下极化25min,然后在室温下放置24h老化,得到所述高压电常数的铌酸钾钠基无铅压电陶瓷。
将本实施例得到的所述高压电常数的铌酸钾钠基无铅压电陶瓷制作成直径20mm的压电陶瓷片,压电常数测试为432pC/N。
实施例4:
一种高压电常数的铌酸钾钠基无铅压电陶瓷,包含以下原子百分比的化学组成,85%的(K0.5Na0.5)Nb0.85Sb0.15O3和15%的CuZr0.5Ti0.5O3,制备方法包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、三氧化二锑、氧化铜、二氧化锆和二氧化钛放入培养皿,置于烘箱内,在140℃下保温3h;
2)称料混合:按所述化学组成配比称量预处理后的原料,分散于无水乙醇中,放入球磨机湿磨,球磨机的转速为600rpm,湿磨时间为24h,湿磨结束后取出放入烘箱烘干,用玛瑙研钵磨碎,过80目筛,制成干粉;
3)预烧:将预混粉置于箱式炉中连续升温至1000℃,保温6h,降温至室温后粉碎过筛,得到预烧粉;
4)烧结:将预烧粉干压成型为生坯,在0.1MPa空气气氛烧结炉中于1400℃下保温6h,得到致密的压电陶瓷片;
5)后处理:将烧结好的压电陶瓷片加工成所需形状,在两侧均匀涂上银层,烧银温度为600℃;在被银陶瓷片两侧电极分别标注正负极,放入装有硅油的极化装置中,油浴加热至100℃,在3kV/mm的电压下极化20min,然后在室温下放置24h老化,得到所述高压电常数的铌酸钾钠基无铅压电陶瓷。
将本实施例得到的所述高压电常数的铌酸钾钠基无铅压电陶瓷制作成直径20mm的压电陶瓷片,压电常数测试为513pC/N。
本发明的高压电常数的铌酸钾钠基无铅压电陶瓷,采用铜、锑、锆和钛元素进行掺杂改性,实现电荷和空位补偿,提高其压电常数,增加无铅压电陶瓷压电敏感性。本发明采用铌酸钾钠基无铅压电陶瓷具有高压电常数,大大拓宽了无铅压电陶瓷应用场景,同时无铅压电陶瓷绿色环保,可有效减少对人类健康和环境的损害。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种高压电常数的铌酸钾钠基无铅压电陶瓷,其特征在于,所述高压电常数的铌酸钾钠基无铅压电陶瓷的化学组成为:(1-x)(K0.5Na0.5)Nb1-ySbyO3+xCuZr0.5Ti0.5O3,其中,x,y为摩尔百分比,0≤x≤0.4,0.01≤y≤0.2。
2.根据权利要求1所述的高压电常数的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、三氧化二锑、氧化铜、二氧化锆和二氧化钛放入培养皿,置于烘箱内,在120-150℃下保温3-6h;
2)称料混合:按所述高压电常数的铌酸钾钠基无铅压电陶瓷的化学组成为配比称量经步骤1)预处理后的原料,分散于无水乙醇中,混合均匀后烘干,粉碎过筛,制成预混粉;
3)预烧:将所述预混粉置于箱式炉中连续升温至850-1050℃,保温4-8h,降温至室温后粉碎过筛,得到预烧粉;
4)烧结:将所述预烧粉干压成型为生坯,在气氛烧结炉中于1150-1480℃下保温6-12h,得到致密的压电陶瓷片;
5)后处理:将烧结好的所述压电陶瓷片加工成所需形状,两侧均匀涂上银层,标注正负极后极化老化得到所述成品铌酸钾钠基无铅压电陶瓷。
3.根据权利要求2所述的高压电常数的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,步骤2)中,预处理后的原料分散于无水乙醇后,通过球磨机湿磨混合均匀,所述球磨机的转速为200-800rpm,湿磨时间为24-48h。
4.根据权利要求2所述的高压电常数的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,步骤4)中,所述气氛烧结炉中的烧结气为空气或氧气,气压为0.1-0.5MPa。
5.根据权利要求2所述的高压电常数的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,步骤5)中,所述两侧均匀涂上银层为:在压电陶瓷片的两表面丝网印刷上厚度为0.01mm的银浆,在150℃下烘干,随后在箱式炉中升温至500-600℃,保温60min后降温至室温,得到被银陶瓷片。
6.根据权利要求5所述的高压电常数的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,步骤5)中,所述极化老化为:将标注有正负极的被银陶瓷片放入装有硅油的极化装置中,油浴加热至80-120℃,在3-5kV/mm的电压下极化20-30min,然后在室温下放置24h老化,得到所述高压电常数的铌酸钾钠基无铅压电陶瓷。
CN202011080914.5A 2020-10-11 2020-10-11 一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法 Expired - Fee Related CN112209712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011080914.5A CN112209712B (zh) 2020-10-11 2020-10-11 一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011080914.5A CN112209712B (zh) 2020-10-11 2020-10-11 一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN112209712A true CN112209712A (zh) 2021-01-12
CN112209712B CN112209712B (zh) 2022-12-16

Family

ID=74054350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011080914.5A Expired - Fee Related CN112209712B (zh) 2020-10-11 2020-10-11 一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112209712B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313664A (ja) * 1999-02-24 2000-11-14 Toyota Central Res & Dev Lab Inc アルカリ金属含有ニオブ酸化物系圧電材料組成物
JP2007022854A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp ニオブ酸カリウムナトリウム系無鉛圧電セラミック及びその製造方法
CN101376594A (zh) * 2007-08-30 2009-03-04 香港理工大学 铌锑酸钠钾系无铅压电陶瓷组合物
CN101397208A (zh) * 2007-09-30 2009-04-01 西北工业大学 Li和Bi改性的铌酸钾钠基无铅压电陶瓷材料及其制备方法
CN103288451A (zh) * 2013-05-24 2013-09-11 四川大学 铌酸钾钠-锆钛酸铋钠系无铅压电陶瓷
CN104529446A (zh) * 2014-12-16 2015-04-22 天津大学 一种氧化铜掺杂的铌酸钾钠电致应变陶瓷及其制备方法
CN105541327A (zh) * 2015-10-28 2016-05-04 济南大学 一种铌酸钾钠基压电陶瓷的制备方法
CN107512908A (zh) * 2017-08-21 2017-12-26 昆明理工大学 一种铌酸钾钠基压电陶瓷的制备方法
CN107721420A (zh) * 2017-09-06 2018-02-23 华南理工大学 一种氧化铜掺杂铌酸钾钠抗菌压电陶瓷植入体及其制备与应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313664A (ja) * 1999-02-24 2000-11-14 Toyota Central Res & Dev Lab Inc アルカリ金属含有ニオブ酸化物系圧電材料組成物
JP2007022854A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp ニオブ酸カリウムナトリウム系無鉛圧電セラミック及びその製造方法
CN101376594A (zh) * 2007-08-30 2009-03-04 香港理工大学 铌锑酸钠钾系无铅压电陶瓷组合物
CN101397208A (zh) * 2007-09-30 2009-04-01 西北工业大学 Li和Bi改性的铌酸钾钠基无铅压电陶瓷材料及其制备方法
CN103288451A (zh) * 2013-05-24 2013-09-11 四川大学 铌酸钾钠-锆钛酸铋钠系无铅压电陶瓷
CN104529446A (zh) * 2014-12-16 2015-04-22 天津大学 一种氧化铜掺杂的铌酸钾钠电致应变陶瓷及其制备方法
CN105541327A (zh) * 2015-10-28 2016-05-04 济南大学 一种铌酸钾钠基压电陶瓷的制备方法
CN107512908A (zh) * 2017-08-21 2017-12-26 昆明理工大学 一种铌酸钾钠基压电陶瓷的制备方法
CN107721420A (zh) * 2017-09-06 2018-02-23 华南理工大学 一种氧化铜掺杂铌酸钾钠抗菌压电陶瓷植入体及其制备与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
胡晓萍等: "铜掺杂对(Na_(0.5)K_(0.5))NbO_3无铅压电陶瓷性能的影响", 《陶瓷学报》 *
郭根生等: "Sb掺杂K_(0.5)Na_(0.5)NbO_3无铅压电陶瓷相结构和电学性能的研究", 《人工晶体学报》 *

Also Published As

Publication number Publication date
CN112209712B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
CN102180665A (zh) 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN111747740B (zh) 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
CN111925208A (zh) 一种铌酸锂钠基无铅压电陶瓷及其制备方法
CN111087238A (zh) 钛酸铋钠基无铅压电陶瓷及其制备方法
CN108623303A (zh) 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN111269009A (zh) 一种锆锰酸铋-钪酸铋-钛酸铅系压电陶瓷材料及其制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN102167585A (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN112159227B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制作工艺
CN110550953A (zh) 一种钛酸铋钠基无铅压电陶瓷及其制备方法
CN113603482A (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN113773078A (zh) 一种大功率型压电陶瓷材料及其制备方法
CN103204679A (zh) 一种低温烧结且老化率低的pzt压电陶瓷材料及其制备方法
CN112209712B (zh) 一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法
CN115286386B (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法
CN107540373B (zh) 一种La离子掺杂PZT基压电陶瓷材料及其制备方法
CN112500160A (zh) 一种用于压电雾化片的铌酸钾钠基无铅压电陶瓷及制作工艺
CN111704461B (zh) 一种高居里点低温共烧压电陶瓷配方及制备方法
KR20090108423A (ko) 페로브스카이트 구조를 가지는 무연계 압전 세라믹스 및 그제조방법
CN115536392A (zh) 高温叠层压电驱动器用压电陶瓷片及其制备方法
CN105218092B (zh) 一种同时具备大位移及低滞后的锆钛酸铅基压电陶瓷材料及其制备方法
CN109721352B (zh) 一种采用微波材料科学工作站制备的钛酸铋钠基无铅压电陶瓷及其制备方法
CN110894161A (zh) 一种铌酸钾钠基无铅压电陶瓷材料及其在超声波电子烟中的应用
CN115504783B (zh) 一种knn基无铅压电陶瓷及其制备方法
CN115286384B (zh) 一种knn基无铅压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221216