CN112194800B - 一种4d打印智能水凝胶的制备、打印方法及其应用 - Google Patents

一种4d打印智能水凝胶的制备、打印方法及其应用 Download PDF

Info

Publication number
CN112194800B
CN112194800B CN202010846797.2A CN202010846797A CN112194800B CN 112194800 B CN112194800 B CN 112194800B CN 202010846797 A CN202010846797 A CN 202010846797A CN 112194800 B CN112194800 B CN 112194800B
Authority
CN
China
Prior art keywords
printing
neck flask
hydrogel
preparation
intelligent hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010846797.2A
Other languages
English (en)
Other versions
CN112194800A (zh
Inventor
高志刚
罗勇
柳国玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Meize Bowen New Material Application Technology Co.,Ltd.
Original Assignee
Dalian Xinhong Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Xinhong Biotechnology Co ltd filed Critical Dalian Xinhong Biotechnology Co ltd
Priority to CN202010846797.2A priority Critical patent/CN112194800B/zh
Publication of CN112194800A publication Critical patent/CN112194800A/zh
Application granted granted Critical
Publication of CN112194800B publication Critical patent/CN112194800B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/02Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/71Oxidoreductases (EC 1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography
    • C12N2535/10Patterned coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Vascular Medicine (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明属于生物墨水技术领域,一种4D打印智能水凝胶的制备、打印方法及其应用,其中制备方法包括以下步骤:(1)向三颈烧瓶中依次加入纤维素纳米纤维、N,N‑二甲基丙烯酰胺、光引发剂、葡萄糖氧化酶、葡萄糖、内皮细胞生长因子及肝素,混合后置于机械搅拌装置中,通入氮气进行保护;(2)向三颈烧瓶中多次缓慢加入硅酸镁锂,(3)采用去离子水将附着在瓶口的物质冲入三颈烧瓶中;(4)取出三颈烧瓶,室温下反应,制得目标材料。本发明制备的4D打印智能水凝胶具有良好打印性和4D形变性能,具有受外界刺激相应的性质。对该水凝胶进行包被后,在进行细胞培养的实验中,内皮细胞能够表现出良好的粘附性。

Description

一种4D打印智能水凝胶的制备、打印方法及其应用
技术领域
本发明渉及一种4D打印智能水凝胶的制备、打印方法及其应用,属于生物墨水技术领域。
背景技术
3D生物打印技术是近几年来兴起的一项技术,其已被尝试用于构建复杂的组织和器官。4D打印使用与3D打印相同的技术,通过计算机编程沉积连续层中的材料来创建三维物体。但是,4D打印增加了时间转换的维度。因此,这是一种可编程物质,其在制造过程之后,印刷产品与环境的参数(湿度,温度等)反应并随着时间的推移,相应地改变其原有形式。
支架材料是组织工程研究的三个要素之一,要求既具备生物3D可打印性,又拥有相当的机械强度和细胞相容性。由于缺乏生物可打印性,在生物打印中水凝胶应用有限。4D打印技术通过增加时间这一维度,使3D打印出的图像在水中随着时间的推移发生形变。
生物4D打印作为一种新兴的技术,应用于生活的方方面面,其生物墨水的选择至关重要。但是由于一般生物墨水存在受外界刺激响应迟缓、流变学表征错综复杂、生物相容性差等缺陷,故制备出具有良好打印性、受外界刺激相应性和生物相容性的生物墨水是至关重要的。
发明内容
为了克服现有技术中存在的不足,本发明目的是提供一种4D打印智能水凝胶的制备、打印方法及其应用。本发明是采用纤维素纳米纤维(CNF)为主要原料,编程制作复杂物体,其包含许多微小纤维的胶状物质,硬度及水溶性都能根据不同排列方式发生变化,在“编码”后将打印出的物体变为更加复杂的形状。该智能墨水具有良好打印性和4D形变性能,具有受外界刺激相应的性质以及生物相容性,未来能较广泛应用于仿生器官模型的构建。
为了实现上述发明目的,解决已有技术中所存在的问题,本发明采取的技术方案是:一种4D打印智能水凝胶的制备方法,包括以下步骤:
步骤1、向三颈烧瓶中依次加入40~60g的纤维素纳米纤维(NFC)、2~4g的N,N-二甲基丙烯酰胺、0.1~0.2g的光引发剂Irgacure 2959、0.1~0.2g的葡萄糖氧化酶、1~2g的葡萄糖、浓度为200μg/ml的3~4g内皮细胞生长因子及浓度为20μg/ml的1~2g肝素,均匀混合反应后置于打开的机械搅拌装置中,通入氮气进行保护;
步骤2、向三颈烧瓶中3~5次缓慢加入2~4g硅酸镁锂;
步骤3、采用10~15g去离子水冲洗三颈烧瓶进料口径,将附着在瓶口的物质冲入三颈烧瓶中;
步骤4、取出三颈烧瓶,室温下反应0.5-1.0h,制得目标材料4D打印智能水凝胶;
所述制备方法制备的4D打印智能水凝胶的打印方法,包括以下步骤:
步骤1、构建三维模型,将模型导入到切片软件中,设置填充率为30~80%,填充方式选自六边形或交叉90°中的一种,然后导入本公司自组装3D生物打印机中进行打印;
步骤2、对3D生物打印机打印后得到的图案采用紫外灯连续照射5~8min,使其交联完全;
所述打印方法得到的图案在生物打印方面中的应用。
本发明有益效果是:一种4D打印智能水凝胶的制备、打印方法及其应用,其中制备方法包括以下步骤:(1)向三颈烧瓶中依次加入纤维素纳米纤维(NFC)、N,N-二甲基丙烯酰胺、光引发剂Irgacure 2959、葡萄糖氧化酶、葡萄糖、内皮细胞生长因子及肝素,均匀混合后置于打开的机械搅拌装置中,通入氮气进行保护;(2)向三颈烧瓶中每次缓慢加入硅酸镁锂,(3)采用去离子水冲洗三颈烧瓶进料口径,将附着在瓶口的物质冲入三颈烧瓶中;(4)取出三颈烧瓶,室温下反应,制得目标材料4D打印智能水凝胶。与已有技术相比,本发明制备的4D打印智能水凝胶具有良好打印性和4D形变性能,具有受外界刺激相应的性质。对该水凝胶进行包被后,在进行细胞培养的实验中,内皮细胞能够表现出良好的粘附性。
附图说明
图1是本发明实施例1中所打印填充率为30%、填充方式为六边形的切片图案和打印后的图案图。
图中:(a)为切片图案图,(b)为打印后的图案图。
图2是本发明实施例2中所打印填充率为60%、交叉90°的切片图案和打印后的图案图。
图中:(a)为切片图案图,(b)为打印后的图案图。
图3是本发明实施例3中所打印填充率为80%、交叉90°切片图案和打印后的图案图。
图中:(a)为切片图案图,(b)为打印后的图案图。
图4是本发明实施例3中填充率为80%、交叉90°时,打印后实物随时间发生形变过程图。
图中:(a)为形变0分钟实物图,(b)为形变3分钟实物图,(c)为形变5分钟实物图,(d)为形变10分钟实物图。
图5是本发明实施例5制备的4D打印智能水凝胶的G-ω曲线图。
图6是本发明实施例5制备的4D打印智能水凝胶的黏度随角频率变化曲线图。
图7是本发明实施例5制备的4D打印智能水凝胶的G′-G″-γ曲线图。
图8是本发明实施例5制备的4D打印智能水凝胶电镜下交联水凝胶图像图。
图9是细胞在本发明4D打印智能水凝胶打印实物上生长情况图。
图中:(a)为细胞生长3天时,显微镜观察明场图,(b)为细胞生长3天时,显微镜观察暗场图,(c)为细胞生长10天时,显微镜观察明场图,(d)为细胞生长10天时,显微镜观察暗场图。
具体实施方式
下面结合实施例对本发明做进一步说明。
实施例1 4D打印智能水凝胶的制备
向三颈烧瓶中依次加入40g的纤维素纳米纤维(NFC)、2g的N,N-二甲基丙烯酰胺、0.1g的光引发剂Irgacure 2959、0.1g的葡萄糖氧化酶、1g的葡萄糖、浓度为200μg/ml的4g内皮细胞生长因子(ECGF)及浓度为20μg/ml的2g肝素,均匀混合反应后置于打开的机械搅拌装置中,通入氮气进行保护;再向三颈烧瓶中3次缓慢加入2g硅酸镁锂,采用10g去离子水冲洗三颈烧瓶进料口径,将附着在瓶口的物质冲入三颈烧瓶中;取出三颈烧瓶,室温下反应0.5h,制得目标材料4D打印智能水凝胶。
实施例2 4D打印智能水凝胶的制备
向三颈烧瓶中依次加入50g的纤维素纳米纤维(NFC)、3g的N,N-二甲基丙烯酰胺、0.1g的光引发剂Irgacure 2959、0.1g的葡萄糖氧化酶、1.5g的葡萄糖、浓度为200μg/ml的4g内皮细胞生长因子(ECGF)及浓度为20μg/ml的2g肝素,均匀混合反应后置于打开的机械搅拌装置中,通入氮气进行保护;再向三颈烧瓶中4次缓慢加入2.5g硅酸镁锂,采用10g去离子水冲洗三颈烧瓶进料口径,将附着在瓶口的物质冲入三颈烧瓶中;取出三颈烧瓶,室温下反应0.5h,制得目标材料4D打印智能水凝胶。
实施例3 4D打印智能水凝胶的制备
向三颈烧瓶中依次加入50g纤维素纳米纤维(NFC)、4gN,N-二甲基丙烯酰胺、0.1g光引发剂Irgacure 2959、0.1g葡萄糖氧化酶、1.5g葡萄糖、浓度为200μg/ml的4g内皮细胞生长因子(ECGF)及浓度为20μg/ml的2g肝素,均匀混合反应后置于打开的机械搅拌装置中,通入氮气进行保护;再向三颈烧瓶中3次缓慢加入4g硅酸镁锂,采用10g去离子水冲洗三颈烧瓶进料口径,将附着在瓶口的物质冲入三颈烧瓶中;取出三颈烧瓶,室温下反应0.5h,制得目标材料4D打印智能水凝胶。
实施例4 4D打印智能水凝胶的制备
向三颈烧瓶中依次加入60g纤维素纳米纤维(NFC)、3gN,N-二甲基丙烯酰胺、0.1g光引发剂Irgacure 2959、0.1g葡萄糖氧化酶、2g葡萄糖、浓度为200μg/ml的4g内皮细胞生长因子(ECGF)及浓度为20μg/ml的2g肝素,均匀混合反应后置于打开的机械搅拌装置中,通入氮气进行保护;再向三颈烧瓶中3次缓慢加入2g硅酸镁锂,采用10g去离子水冲洗三颈烧瓶进料口径,将附着在瓶口的物质冲入三颈烧瓶中;取出三颈烧瓶,室温下反应0.5h,制得目标材料4D打印智能水凝胶。
实施例5 4D打印智能水凝胶的制备
向三颈烧瓶中依次加入60g纤维素纳米纤维(NFC)、4gN,N-二甲基丙烯酰胺、0.1g光引发剂Irgacure 2959、0.1g葡萄糖氧化酶、2g葡萄糖、浓度为200μg/ml的4g内皮细胞生长因子(ECGF)及浓度为20μg/ml的2g肝素,均匀混合反应后置于打开的机械搅拌装置中,通入氮气进行保护;再向三颈烧瓶中5次缓慢加入4g硅酸镁锂,采用10g去离子水冲洗三颈烧瓶进料口径,将附着在瓶口的物质冲入三颈烧瓶中;取出三颈烧瓶,室温下反应0.5h,制得目标材料4D打印智能水凝胶。
实施例6 4D打印智能水凝胶打印实物
构建骨头三维模型,将模型导入到切片软件中,设置填充率30%,填充方式为六边形,导入3D打印机中利用实施例1制备的4D打印智能水凝胶进行打印。由打印后得到的图案采用紫外灯连续照射五分钟,使其交联完全。完全交联后的4D打印智能水凝胶放置到清水中,计时并观察其形变过程,用照片记录下来。为了方便成像,使用罗丹明B染色剂对4D打印智能水凝胶进行染色,如图1所示。
实施例7 4D打印智能水凝胶打印实物
构建骨头三维模型,将模型导入到切片软件中,设置填充率60%,填充方式为交叉90°,导入3D打印机中利用实施例2制备的4D打印智能水凝胶进行打印。打印后得到的图案用紫外灯连续照射五分钟,使其交联完全。完全交联后的4D打印智能水凝胶放置到清水中,计时并观察其形变过程,用照片记录下来。为了方便成像,使用罗丹明B染色剂对4D打印智能水凝胶进行染色,如图2所示。
实施例8 4D打印智能水凝胶打印实物
构建骨头三维模型,将模型导入到切片软件中,设置填充率80%,填充方式为交叉90°,导入3D打印机中利用实施例3制备的4D打印智能水凝胶进行打印。打印后得到的图案用紫外灯连续照射五分钟,使其交联完全。完全交联后的4D打印智能水凝胶放置到清水中,计时并观察其形变过程,用照片记录下来。为了方便成像,使用罗丹明B染色剂对4D打印智能水凝胶进行染色,如图3所示,打印后实物随时间发生形变过程图,如图4所示。
实施例9流变性能测试
应变动态扫描(粘弹性测试):将实施例5制备的4D打印智能水凝胶样品放置于样品台上融化,平铺在平板和样品台之间,设置行板间距为1mm,剪切频率为1.0rad/s,动态应变范围设为0.1~100%,测定室温下弹性模量(G′)和粘流模量(G″)动态曲线,如图5所示。
稳态剪切稀化测试:将实施例5制备的4D打印智能水凝胶样品放置于样品台上融化,平铺在平板和样品台之间,设置行板间距为1mm,固定应变设为0.5%,调节剪切速率从0.1rad/s到100rad/s变换,测定4D打印智能水凝胶样品的表观黏度随剪切速率变化的关系曲线,如图6、图7所示。
实施例10电镜测试
观察交联状态下实施例5制备的4D打印智能水凝胶表面的电镜图像,如图8所示。
实施例11生物相容性测定
将实施例7中打印得到的图案取出切块,在75%的乙醇中浸泡两小时,去除液体后在通风下用紫外灯照射半小时。照射结束用PBS浸泡半小时后去除液体。将5%明胶在45℃水浴中完全融化,用无菌滴管吸取适量明胶放入盛有实施例1处理后的水凝胶图案的培养皿中,使其完全被覆盖。明胶风干后,将水凝胶图案转移到新无菌皿中,用同样的方法包被海藻酸钠。海藻酸钠风干后,转移水凝胶图案到新无菌培养皿中,用氯化钙溶液进行浸泡十分钟至水凝胶图案表面变白,去除液体。将适量消化好的人脐静脉内皮细胞(HUVEC)转移到盛有处理好的水凝胶图案的培养皿中,最后加入适量培养液,放置到细胞培养箱中进行培养。每两天换液并在显微镜下观察。所述细胞培养液成分为DMEM-F12(主要培养基)、10%的NBCS和1%的双抗,所述细胞培养箱为150i细胞培养箱,所述显微镜为奥林巴斯Ⅸ71倒置荧光显微镜。培养有细胞的水凝胶图案转移至新皿中,加入适量细胞培养液,依次加入1μmol/mL钙黄绿素和25μmol/1mL的PI并摇匀,放入培养箱中染色20min后将培养液吸出,加入PBS后置于摇床5~8min/次,清洗三次,清洗结束后加入适量PBS观察拍照,如图9所示。

Claims (1)

1.一种4D打印智能水凝胶的制备方法,其特征在于包括以下步骤:
步骤1、向三颈烧瓶中依次加入40~60g的纤维素纳米纤维(NFC)、2~4g的N,N-二甲基丙烯酰胺、0.1~0.2g的光引发剂Irgacure 2959、0.1~0.2g的葡萄糖氧化酶、1~2g的葡萄糖、浓度为200μg/ml的3~4g内皮细胞生长因子及浓度为20μg/ml的1~2g肝素,均匀混合后置于打开的机械搅拌装置中,通入氮气进行保护;
步骤2、向三颈烧瓶中3~5次缓慢加入2~4g的硅酸镁锂;
步骤3、采用10~15g去离子水冲洗三颈烧瓶进料口径,将附着在瓶口的物质冲入三颈烧瓶中;
步骤4、取出三颈烧瓶,室温下反应0.5-1.0h,制得目标材料4D打印智能水凝胶;
所述制备方法制备的4D打印智能水凝胶的打印方法,包括以下步骤:
步骤1、构建三维模型,将模型导入到切片软件中,设置填充率为30~80%,填充方式选自六边形或交叉90°中的一种,然后导入本公司自组装3D生物打印机中进行打印;
步骤2、对3D生物打印机打印后得到的图案采用紫外灯连续照射5~8min,使其交联完全;
所述打印方法得到的图案在生物打印方面中的应用。
CN202010846797.2A 2020-08-21 2020-08-21 一种4d打印智能水凝胶的制备、打印方法及其应用 Active CN112194800B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010846797.2A CN112194800B (zh) 2020-08-21 2020-08-21 一种4d打印智能水凝胶的制备、打印方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010846797.2A CN112194800B (zh) 2020-08-21 2020-08-21 一种4d打印智能水凝胶的制备、打印方法及其应用

Publications (2)

Publication Number Publication Date
CN112194800A CN112194800A (zh) 2021-01-08
CN112194800B true CN112194800B (zh) 2022-06-21

Family

ID=74006487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010846797.2A Active CN112194800B (zh) 2020-08-21 2020-08-21 一种4d打印智能水凝胶的制备、打印方法及其应用

Country Status (1)

Country Link
CN (1) CN112194800B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107325470A (zh) * 2017-07-12 2017-11-07 浙江大学 一种纤维素纳米纤维增强苯硼酸基水凝胶及其制备方法
CN109180988A (zh) * 2018-08-27 2019-01-11 武汉理工大学 一种功能化纳米纤维素水凝胶及其制备方法
CN110801532A (zh) * 2019-11-28 2020-02-18 中国人民大学 一种生物墨水及其制备方法
CN113876999A (zh) * 2020-07-01 2022-01-04 杜克大学 附着水凝胶的纳米纤维强化

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10954315B2 (en) * 2017-11-15 2021-03-23 Trustees Of Dartmouth College Mechanically interlocked molecules-based materials for 3-D printing
CN110522947B (zh) * 2019-09-16 2021-04-02 青岛大学 一种4d-壳聚糖温敏凝胶制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107325470A (zh) * 2017-07-12 2017-11-07 浙江大学 一种纤维素纳米纤维增强苯硼酸基水凝胶及其制备方法
CN109180988A (zh) * 2018-08-27 2019-01-11 武汉理工大学 一种功能化纳米纤维素水凝胶及其制备方法
CN110801532A (zh) * 2019-11-28 2020-02-18 中国人民大学 一种生物墨水及其制备方法
CN113876999A (zh) * 2020-07-01 2022-01-04 杜克大学 附着水凝胶的纳米纤维强化

Also Published As

Publication number Publication date
CN112194800A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
Dorishetty et al. Bioprintable tough hydrogels for tissue engineering applications
Ng et al. Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting
Koivisto et al. Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering
CN110272860B (zh) 一种细胞三维培养微环境构建方法及应用
RU2427647C2 (ru) Способ изготовления конструкции, содержащей кристаллическую целлюлозу
CN105254917B (zh) 一种利用海藻酸钠水凝胶制备细胞膜片的方法
CN111097068B (zh) 一种仿生的羟基磷灰石粉体/明胶/海藻酸钠复合3d打印支架及其制备方法
CN109316630A (zh) 一种生物仿生基质的3d打印墨水及其制备方法
CN105412987B (zh) 一种纤维内外协同矿化胶原支架及其制备方法
CN105268028B (zh) 一种软骨组织工程支架及其制备方法
CN108484956A (zh) 具有图案化表面的可降解高分子材料及其制备方法与应用
Li et al. Porcine skeletal muscle tissue fabrication for cultured meat production using three-dimensional bioprinting technology
CN113950339A (zh) 3d生物打印皮肤组织模型
KR20190141171A (ko) 유체-유체 계면을 기초로 하는 적층 가공
CN112336920B (zh) 一种多细胞生物复合支架及其制备方法和应用
CN109701083A (zh) 一种利用生物三维打印和静电纺丝技术制备人工肌腱方法
WO2005014774A1 (ja) 動物細胞の培養担体と、該培養担体を用いた動物細胞の培養方法および移植方法
CN108587191A (zh) 一种丝蛋白/透明质酸互穿网络水凝胶及其制备方法
CN107638590B (zh) 一种壳聚糖基梯度仿生复合支架材料及其构建方法
CN112194800B (zh) 一种4d打印智能水凝胶的制备、打印方法及其应用
Nachtsheim et al. Chondrocyte colonisation of a tissue-engineered cartilage substitute under a mechanical stimulus
CN114042191A (zh) 一种细胞打印的成骨功能化支架及其制备方法和应用
CN109833515A (zh) 一种具有3d微图案的胶原薄膜及其制备方法和应用
CN106924817B (zh) 一种超薄载体细胞片及其制备方法
CN108359143A (zh) 一种水凝胶3d打印材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230817

Address after: No. 15 Muze Road, Songmu Island Chemical Industry Park, Jinpu New District, Dalian City, Liaoning Province, 116101

Patentee after: Dalian Meize Bowen New Material Application Technology Co.,Ltd.

Address before: No. 131, Guangxian Road, Dalian high tech Industrial Park, Liaoning, 116023

Patentee before: Dalian Xinhong Biotechnology Co.,Ltd.