CN112194781A - 一种由乙醇酸制备聚酯多元醇的方法 - Google Patents

一种由乙醇酸制备聚酯多元醇的方法 Download PDF

Info

Publication number
CN112194781A
CN112194781A CN202011036664.5A CN202011036664A CN112194781A CN 112194781 A CN112194781 A CN 112194781A CN 202011036664 A CN202011036664 A CN 202011036664A CN 112194781 A CN112194781 A CN 112194781A
Authority
CN
China
Prior art keywords
polyester polyol
glycolic acid
raw material
catalyst
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011036664.5A
Other languages
English (en)
Inventor
于在乾
杨昕龙
张龙
王成仟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN202011036664.5A priority Critical patent/CN112194781A/zh
Publication of CN112194781A publication Critical patent/CN112194781A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4283Hydroxycarboxylic acid or ester
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明提供了一种以乙醇酸低聚物为主链的聚酯多元醇的制备方法,属新型生物聚氨酯材料合成技术领域。以乙醇酸、1,4‑丁二醇为原料,二水合乙酸锌为催化剂,通过缩聚反应制备聚酯多元醇,在适当的缩聚反应条件下,所得聚酯多元醇的羟值为310.0mgKOH/g,粘度为230.5mPa·s,分子量为438,产物收率95%,此种方法所用设备及操作简单,所得的聚酯多元醇为生物可降解材料,可用于制备可生物降解的环保型聚氨酯材料的原料。

Description

一种由乙醇酸制备聚酯多元醇的方法
技术领域
本发明涉及新型可生物降解聚氨酯原料的合成技术领域,具体涉及一种可生物降解的聚酯多元醇的制备方法。
背景技术
聚氨酯(PU)是目前应用最广泛的高分子材料之一,因其具有高强度、抗撕裂、耐磨损等诸多优势,广泛应用于各个领域,但是聚氨酯材料不易降解,给生态环境安全造成很大危害,从而使可生物降解的聚氨酯成为当今的研究热点。
聚氨酯(Polyurethane,简称PU)全称为聚氨基甲酸酯,是1937年由Otto Bayer等人在I. G. Farbe实验室开发研究出来的高分子有机聚合物,由多异氰酸酯和多元醇聚合物等经过加成聚合反应生成,主要的基团是氨基甲酸酯键(—NH—COO—),其次是醚、酯、脲等。其中,聚合物中—NCO与—OH比例的不同使聚氨酯有热固性和热塑性之别;而按多元醇种类的不同可把聚氨酯分为聚酯型聚氨酯和聚醚型聚氨酯。
聚氨酯材料具有高强度、抗撕裂、耐磨损等诸多优势特性,自问世以来得到迅速发展,成为性能优越、应用广泛的高分子材料。而且聚氨酯生产工艺多样,通过调控不同工艺条件和参数,可以制得从橡胶到塑料、从软到硬等各种性能的聚氨酯制品,广泛应用于家居、服装、电器、交通、医疗等各个领域。与此同时,聚氨酯生产工艺中使用的各种添加剂不仅提高了材料的持久性和稳定性,也提高了其抗生物降解性,增加了其在自然环境中的降解难度和降解周期,使得聚氨酯材料在给人们生产、生活带来便利之余,也加重了对生态环境的污染,危害人类及其他生物的健康。 因此,开发可降解聚氨酯材料变得至关重要。
聚酯多元醇是合成聚氨酯的重要原料, 通常是由有机多元羧酸(酸酐或酯)与多元醇缩合(或酯交换),或由内酯与多元醇聚合而成。
脂肪族聚酯多元醇是人工合成生物降解聚氨酯的最重要的前体原料之一,制品广泛应用于医疗领域,常用的可生物降解的聚酯多元醇主要有聚己内酯(PCL)多元醇、聚乳酸(PLA)多元醇及其共混物,通常其分子量小于5000。
冯月兰等采用高效自制氧化物催化剂与丁二醇或三羟甲基丙烷的混合体系来引发己内酯单体的开环聚合反应:在配有搅拌器、温度计和回流冷凝管的500ml反应瓶中称取ε-己内酯(CL)、1,4-丁二醇(BDO)或三羟甲基丙烷(TMP)和一定量的催化剂,在一定温度和氮气保护下反应2-8h,并趁热出料,得乳白色固体产物聚己内酯多元醇(PCL)。(冯月兰, 殷宁, 赵雨花,等. 聚ε-己内酯多元醇合成反应的研究[C]// 中国聚氨酯工业协会第十七次年会论文集. 0.)
孙建等,将己内酯单体分别与乙二醇、三羟甲基丙烷、季戊四醇按照不同摩尔比加入到反应器中,反应温度为120 ℃,用无水乙酸锌( 用量为己内酯单体摩尔分数的0. 2%) 作为催化剂,反应时间为4 h,合成出不同相对分子质量的聚己内酯二元醇、三元醇、四元醇。(孙建, 张鑫, 卫慧凯, et al. 聚己内酯多元醇的合成与表征[J]. 聚氨酯工业, 2014(3):10-13.)
李朝华等以丙交酯( LLA) 为原料,在催化剂Sn( Oct)2作用下,分别以1,6-己二醇(1,6-HDO)和TMP为链转移剂在洁净的圆底三口瓶中,氮气保护下,一定量丙交酯及熔融液体1,6-己二醇或固体TMP,氮气置换,设定油温100 ~ 120 ℃升温熔融清亮,水泵110 ~ 120℃减压脱水1 h,氮气环境下加入Sn( Oct)2,继续升温140 ~ 160 ℃计时反应20 h,水泵减压脱轻组分1. 5 h,降温至60 ~ 80 ℃,倒入特制的小桶内继续冷却至室温存放8 h制得了聚乳酸(PLA)多元醇。(李朝华, 袁明伟, 王煜丹, et al. 聚乳酸多元醇的制备研究[J]. 云南民族大学学报(自然科学版), 2019, 28(01):35-39.)
Tsou等研究不同含量PCL的多元醇对聚氨酯材料的结构与性能影响,随着组分中PCL含量的提高,其降解性能明显提高,12d后,其失重率为20%,平衡含水率为17.2%。(Chi-HuiTsou, Hsun-Tsing Lee, Hui-An Tsai,等. Synthesis and properties ofbiodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanolas a chain extender[J]. Polymer Degradation & Stability, 2013, 98(2):643-650.)
Singhal等以PCL多元醇为原料,多元醇胺为交联剂,制备出可记忆聚氨酯泡沫,发现PCL的含量越高,材料的降解性越好。(Singhal P , Small W , Cosgriff-Hernandez E ,et al. Low density biodegradable shape memory polyurethane foams for embolicbiomedical applications[J]. Acta Biomaterialia, 2014, 10(1):67-76.)
Baez等以PCL多元醇为软段、不同扩链剂以及六亚甲基二异氰酸酯作为硬段,制备了一系列可生物降解的聚氨酯材料,并用磷酸盐缓冲溶液测定材料的降解性,PCL基聚氨酯材料可以降解,并且具有较长的降解时间。(Báez, José E, Ramírez, Daniel, Valentín,Juan L,等.Biodegradable Poly(ester–urethane–amide)s Based on Poly(ε-caprolactone) and Diamide–Diol Chain Extenders with Crystalline HardSegments. Synthesis and Characterization[J]. Macromolecules, 2012, 45(17):6966-6980.)
Changshun等以PLA二元醇、六亚甲基二异氰酸酯为原料制备了可降解记忆恢复聚氨酯材料。该聚氨酯具有很好的力学性能、记忆恢复性以及生物降解性,可作为生物材料有望应用于医学移植领域。(Ruan C , Wang Y , Zhang M , et al. Design, synthesis andcharacterization of novel biodegradable shape memory polymers based on poly(D,L-lactic acid) diol, hexamethylene diisocyanate and piperazine[J]. PolymerInternational, 2012, 61(4):524-530.)
Wang等用PLA二元醇为软段、六亚甲基二异氰酸酯以及不同的扩链剂(哌嗪、1,4-丁二醇和1,4-丁二胺)为硬段制备可降解的嵌段聚氨酯,探讨不同扩链剂对聚氨酯降解性能的影响。以哌嗪和1,4-丁二胺作为扩链剂制备的聚氨酯具有较好的降解稳定性。因此,通过选择合适的扩链剂,可制备具有不同降解性能的聚氨酯应用于不同的医疗领域。(Wang Y ,Ruan C , Sun J , et al. Degradation studies on segmented polyurethanesprepared with poly ( d, l -lactic acid) diol, hexamethylene diisocyanate anddifferent chain extenders[J]. Polymer Degradation & Stability, 2011, 96(9):1687-1694.)
目前基于乙醇酸的聚酯多元醇的制备及应用尚未见报道。
发明内容
目前基于乙醇酸的聚酯多元醇的制备及应用尚未见报道。
针对上述存在的问题,本发明提出了一种以乙醇酸为主要原料制备聚酯多元醇的方法,采用乙醇酸作为单体,1,4-丁二醇作为封端剂,二水合乙酸锌为催化剂,在加热真空减压的条件下发生聚合反应,得到以低分子量聚乙醇酸为主链的聚酯多元醇,本发明采用以下的技术方案:
一种以乙醇酸为主要原料制备聚酯多元醇方法,采用熔融聚合的合成方法,将乙醇酸单体、封端剂、催化剂按照比例依次加入三口烧瓶中,加热反应体系,使乙醇酸变为熔融状态,并施加磁力搅拌,逐渐增加体系的真空度,在100-160℃下反应5-10h,得以低分子量聚乙醇酸为主链的聚酯多元醇。
所述原料为固体乙醇酸;
催化剂为二水合乙酸锌,其添加量为反应原料乙醇酸总质量的0.1-1.0%;
封端剂为1,4-丁二醇,其添加量为反应原料乙醇酸总质量的8-30%;
产物的熔融聚合条件为,在100-160℃,-0.002MPa条件下熔融聚合5-10h。
本发明的有益效果是:1)采用二水合乙酸锌作催化剂,避免了使用传统合成聚乙醇酸所用的有机锡催化剂,催化剂无毒,且催化效果好,反应后不需要脱除;
2)通过控制封端剂1,4-丁二醇的加入比例,可以调控多元醇的分子量,得到不同粘度和羟值的液态聚酯多元醇,过程的操作简单,所得的不同羟值的多元醇可以合成不同性能的聚氨酯材料;
3)所得聚酯多元醇的羟值为310.0mgKOH/g,粘度为230.5mPa·s,可完全满足制备可降解型硬质聚氨酯材料的原料使用要求;
4)目前乙醇酸的深加工产品仅有聚乙醇酸,本产品为乙醇酸的深加工提供了新产品。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1.
向250 ml三口烧瓶中加入50g的固体乙醇酸,再加入1.0g二水合乙酸锌催化剂,在100℃下常压熔融,待乙醇酸全部熔融后施加磁力搅拌,使单体与催化剂混合均匀,在100℃下常压反应1小时后加入单体物质的量8%的1,4-丁二醇,同时增加反应体系的真空度,真空反应5小时后得到聚酯多元醇,收率88%,分子量350,经测定聚酯多元醇的羟值为283.5mgKOH/g,粘度200.5 cps。
实施例2.
向250ml三口烧瓶中加入50g的固体乙醇酸,再加入0.5g二水合乙酸锌催化剂,在130℃下常压熔融,待乙醇酸全部熔融后施加磁力搅拌,使单体与催化剂混合均匀,在130℃下常压反应2小时后加入单体物质的量16%的1,4-丁二醇,同时增加反应体系的真空度,真空反应8小时后得到聚酯多元醇,收率92%,分子量390,经测定聚酯多元醇的羟值为305.5mgKOH/g,粘度213.3 cps。
实施例3.
向250 ml三口烧瓶中加入50g的固体乙醇酸,再加入0.5g二水合乙酸锌催化剂,在150℃下常压熔融,待乙醇酸全部熔融后施加磁力搅拌,使单体与催化剂混合均匀,在150℃下常压反应2小时后加入单体物质的量20%的1,4-丁二醇,同时增加反应体系的真空度,真空反应10小时后得到聚酯多元醇,收率95%,分子量438,经测定聚酯多元醇的羟值为310.0mgKOH/g,粘度230.5 cps。
实施例4
利用制备的多元醇合成可降解聚氨酯材料
分别称取20.0g不同实施例中的聚酯多元醇产物,异佛尔酮二异氰酸酯(IPDI),加入IPDI的质量按照-NCO/-OH=1.05:1 计算。将反应物置于500ml烧杯中混合均匀,加热至60℃,反应在机械搅拌下进行2小时,通过对反应物进行红外测试,当-NCO在2250-2270 cm-1处的特征峰消失后,证明反应已经完成。经测定所得聚氨酯材料的拉伸强度为17.1Mpa,断裂伸长率为22.3%,弹性模量为315.4MPa。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (6)

1.一种制备聚羟基乙酸基聚酯多元醇的方法,其特征在于,其制备步骤如下:向三口瓶中加入一定质量的乙醇酸单体,然后向其中加入一定质量百分比的催化剂,加热至一定温度下施加磁力搅拌,经过一定时间的常压预聚后加入一定物质的量百分比的1,4-丁二醇并将反应体系抽真空,反应5-10小时即得以低分子量聚乙醇酸为主链的聚酯多元醇。
2.根据权利要求1所述的一种以乙醇酸为原料的聚酯多元醇的制备方法,其特征在于:采用催化固相缩聚合成方法,所用的原料为乙醇酸与1,4-丁二醇。
3.根据权利要求1所述的一种以乙醇酸为原料的聚酯多元醇的制备方法,其特征在于:所用的封端剂为1,4-丁二醇,用量为单体物质的量的10-30%。
4.根据权利要求1所述的一种以乙醇酸为原料的聚酯多元醇的制备方法,其特征在于:所用的催化剂为二水合乙酸锌,用量为原料总质量的0.1-1.0%。
5.根据权利要求1所述的一种以乙醇酸为原料的聚酯多元醇的制备方法,其特征在于:反应温度为100-160℃,体系真空度为-0.002MPa,反应5-10小时,得到聚合产物。
6.根据权利要求1所述的一种乙醇酸为原料的聚酯多元醇的制备方法,其特征在于:所得的聚酯多元醇产物适用作制备生物可降解聚氨酯的原料。
CN202011036664.5A 2020-09-28 2020-09-28 一种由乙醇酸制备聚酯多元醇的方法 Pending CN112194781A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011036664.5A CN112194781A (zh) 2020-09-28 2020-09-28 一种由乙醇酸制备聚酯多元醇的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011036664.5A CN112194781A (zh) 2020-09-28 2020-09-28 一种由乙醇酸制备聚酯多元醇的方法

Publications (1)

Publication Number Publication Date
CN112194781A true CN112194781A (zh) 2021-01-08

Family

ID=74007480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011036664.5A Pending CN112194781A (zh) 2020-09-28 2020-09-28 一种由乙醇酸制备聚酯多元醇的方法

Country Status (1)

Country Link
CN (1) CN112194781A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307932A (zh) * 2021-07-14 2021-08-27 四川轻化工大学 聚羟基乙酸基聚氨酯及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101684173A (zh) * 2008-09-22 2010-03-31 中国科学院宁波材料技术与工程研究所 一种可生物降解的共聚酯及其制备方法
CN101805583A (zh) * 2010-03-18 2010-08-18 上海同杰良生物材料有限公司 一种聚乳酸卷烟丝束用可降解粘合剂及其制备方法
CN107177032A (zh) * 2016-03-11 2017-09-19 上海浦景化工技术股份有限公司 由乙醇酸或乙醇酸甲酯制备高分子量聚乙醇酸的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101684173A (zh) * 2008-09-22 2010-03-31 中国科学院宁波材料技术与工程研究所 一种可生物降解的共聚酯及其制备方法
CN101805583A (zh) * 2010-03-18 2010-08-18 上海同杰良生物材料有限公司 一种聚乳酸卷烟丝束用可降解粘合剂及其制备方法
CN107177032A (zh) * 2016-03-11 2017-09-19 上海浦景化工技术股份有限公司 由乙醇酸或乙醇酸甲酯制备高分子量聚乙醇酸的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307932A (zh) * 2021-07-14 2021-08-27 四川轻化工大学 聚羟基乙酸基聚氨酯及其制备方法

Similar Documents

Publication Publication Date Title
US6784273B1 (en) Biomedical polyurethane, its preparation and use
KR0120326B1 (ko) 열가소성 생분해성 지방족 폴리에스테르 및 그 제조방법
KR101129932B1 (ko) 생분해성 폴리에스테르류 및 그 제조방법
EP0581410B1 (en) Polyester blow-molded articles
CN100558786C (zh) 一种聚乳酸基嵌段共聚物的制备方法
CN101899139B (zh) 一种聚乳酸基高弹性共聚物的制备方法
CN100558787C (zh) 一种生物全降解聚酯共聚物的制备方法
JP2001514279A (ja) 生分解性ラクトン共重合体
JP5223347B2 (ja) 樹脂組成物及びその製造方法、並びに共重合体
JP3775423B2 (ja) ポリ乳酸系共重合体
CN112194781A (zh) 一种由乙醇酸制备聚酯多元醇的方法
US5391644A (en) Polyester injection-molded articles
US5324556A (en) Polyester blow-molded articles
CN114292388B (zh) 一种可降解pet基共聚酯的制备方法
CN112759737B (zh) 一种三重形状记忆聚合物及其制备方法
JP4390273B2 (ja) 生分解性樹脂組成物
JPH10237164A (ja) ポリ乳酸系共重合体の製造方法及びポリ乳酸系共重合体
JP3620170B2 (ja) ポリ乳酸系共重合体の製造方法及びポリ乳酸系共重合体
JP2752876B2 (ja) ポリエステル製射出成形体
JP3515053B2 (ja) ポリエステルブロック共重合体の製造方法
Monga et al. 4 Polylactide-based shape-memory biodegradable polyurethanes and their potential applications
KR20020065180A (ko) 생분해성 폴리에스테르 우레탄 및 그의 제조방법
Mao et al. Highly Stretchable Biobased Poly (butylene succinate) Elastomer Copolymerized with Naphthalate-Monomer-Derived Shape Memory having Self-healing Properties
JP2747195B2 (ja) ポリエステル製二軸延伸中空成形体
JP2747196B2 (ja) ポリエステル製射出中空成形体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210108

WD01 Invention patent application deemed withdrawn after publication