CN1121906A - 通过热挤压制造荧光陶瓷的方法 - Google Patents

通过热挤压制造荧光陶瓷的方法 Download PDF

Info

Publication number
CN1121906A
CN1121906A CN95108931A CN95108931A CN1121906A CN 1121906 A CN1121906 A CN 1121906A CN 95108931 A CN95108931 A CN 95108931A CN 95108931 A CN95108931 A CN 95108931A CN 1121906 A CN1121906 A CN 1121906A
Authority
CN
China
Prior art keywords
fluorescence
described method
fluorescence ceramics
interlayer
overflow mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95108931A
Other languages
English (en)
Other versions
CN1065220C (zh
Inventor
H·伯丁格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1121906A publication Critical patent/CN1121906A/zh
Application granted granted Critical
Publication of CN1065220C publication Critical patent/CN1065220C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • C09K11/7771Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提出用陶瓷的挤压模来制造高密度的透明的荧光陶瓷。模具上涂有MoS2隔层,并将荧光原材料在高温下单轴挤压成荧光陶瓷。

Description

通过热挤压制造荧光陶瓷的方法
陶瓷的荧光物质可用来探测高能辐射,例如可用它把X射线转变成可见光线,并用通常的方法对其进行检测和分析。
用稀土氧硫化物之类的化合物制备的荧光材料可用于高灵敏度的射线探测仪,例如用于层析X射线计算机摄影仪。用这类化合物适当制备的荧光粉可通过单轴热挤压加工成高密度的荧光陶瓷,这种陶瓷在光学上为半透明体到透明体。这种方法例如在德国专利DE-A 42 24 931中提出。通过适当的添加荧光陶瓷可达到高的光输出而余辉则足够的小。
热挤压过程采用可由氧化铝、石墨或碳化硅组成的陶瓷挤压模。但在要求的1100~1500℃高挤压温度的情况下,在待挤压的荧光粉和模具材料之间发生不希望出现的反应。由于形成的化学键合在荧光陶瓷和模具之间产生高的粘合,这样,在冷却时,由于荧光陶瓷和模具材料的不同膨胀系数而引起荧光陶瓷裂纹。此外,荧光陶瓷不可能脱模。
为了避免这些缺点,可在模具材料和待挤压的荧光粉之间放钼薄膜或钨薄膜作为隔层。在上述高温下,稀土氧硫化物不与钼或钨化合,并只在表面产生反应。这样,烧结的稀土氧硫化物陶瓷易于脱模,所以陶瓷保持完好无损。
但是用这种金属薄膜作为隔层仍有一些附带的缺点:金属薄膜不易加工,所以不能精确的按挤压模下料。此外,金属薄膜只能用一次,所以,这种加工方法由于金属薄膜的价格高而对成本不利。其次,在热挤压时,金属薄膜产生折叠而可导致荧光陶瓷和模具材料的损坏。在金属薄膜的边上搭接区可能使荧光陶瓷产生裂纹。通过使用较厚和较精确下料的厚约0.2~0.3mm的金属薄膜虽然可以减少折叠和荧光陶瓷损坏的危险,但却增加了金属薄膜装入挤压模的困难和这种昂贵金属的用量。
本发明的任务是提出一种改进的热挤压方法来生产光学纯的荧光陶瓷,这种方法简单、成本低并可减少荧光陶瓷在热挤压过程中和脱摸过程中损坏的危险。
上述任务的技术解决方案在于,首先在陶瓷挤压模中形成含MoS2的隔层,然后将荧光原材料装入挤压模中,最后将荧光原材料在超过其烧结温度时单轴挤压成高密度的透明荧光陶瓷。
本发明的其他实施形式体现在从属权利要求中。
通过在陶瓷挤压模中生成含硫钼化物的隔层简单地解决了脱模的工艺问题。因而在冷却和脱模时毫不损坏陶瓷。
但令人意外惊奇的是,用本发明方法可获得光学纯的陶瓷,这种陶瓷与按迄今为至的方法制造的荧光陶瓷比较,并没有减少荧光强度,也没有增加余辉。这说明用这种方法没有把任何杂质带入荧光陶瓷中,尽管这种陶瓷具有极高的烧结活化性和高反应性。尤其令人惊奇的成就是,硫钼化物是一种黑色的粉末,但它却没有象预料的那样,把不希望的夹杂物带入荧光陶瓷中而使通常为透明的陶瓷体变暗。不然,热必使荧光陶瓷的光学性质变坏并难于把它用在高分辨率的射线探测仪。
此外,热挤压过程一般在硫钼化物的分解温度大约1200~1300℃进行。同样,本来担心这种情况也会造成硫钼化物渗入和夹杂在荧光陶瓷中,但用本发明的方法却没有这种令人担心的缺点。只在荧光陶瓷的表面观察到了粘附有易于清除的隔层残余物,而在体积内即在荧光陶瓷的内部则根本没有观察到或检验出杂质。
可用简便的方式将硫钼化物粉涂抹在挤压模上形成隔层。
另一种可能性,则是把含粉状硫钼化物的喷射液喷射到挤压模而形成隔层。但这种喷射液含有有机成分,需要将喷射后的挤压模进行加热,以便除掉喷射液的有机成分。用这种方式也可形成牢固附着的和足够厚的隔层。
本发明的另一实施形式是对制造荧光陶瓷用的荧光粉进行预压。预压可在形成隔层之间或在另一个没有涂含硫钼化物隔层的压制模具中进行。通过预压成型的荧光陶瓷毛坯已被压实到这样的程度,即在荧光陶瓷表面上粘附的隔层残余物尚待进一步减少。
本发明方法特别适用于制造由稀土氧硫化物物系构成的荧光陶瓷。这种荧光物质具有的一般成分为(M1-xLnx)2O2S。其中:M代表周期表中γ、La和Gd族的至少一种元素;Ln代表Eu、Pr、Tb、Yb、Dy、Sm、和Ho族的至少一种元素;(2×10-1)≥x≥(1×10-6)。如用上述DE-A 42 24 931公开的方法制造这种荧光粉,则它具有足够的烧结活性并可挤压成高密度的荧光陶瓷。这种粉具有很高的至少为10m2/g的表面积(用布鲁瑙厄-埃梅特-泰勒吸气法测定)。热挤压过程本身在真空中或在惰性至还原气氛中进行。挤压力为0.1~10kN/cm2(1~100MPa),温度调节在1100~1300℃。
下面结合实施例和附图来详细说明本发明。
附图表示实施本发明方法适用装置的横断面示意图。
陶瓷模具例如用Al2O3制作并由例如空心圆柱体结构的模具1、第一隔板2和第二隔板4组成。
至少隔板2和隔板4面向待挤压件3的表面和空心圆柱体1的内壁用市售的MoS2喷射液喷涂。然后溶剂蒸发并在进入空气的情况下,在大约500℃烧去喷射液的有机粘结剂,于是形成隔层6。
然后在空心圆柱体1中装入第一块隔板2,在其上装入待挤压的原材料(荧光原材料),例如由作为荧光材料添加的一种Ga2OS2构成的预压制毛坯3,再在其上面加第二隔板4,最后放适当横截面的冲头5。
这时模具完全作好热挤压的装配,并在真空下大约在最大挤压力50MPa和最高温度1250℃下挤压12小时左右,然后挤压件在不受损伤的情况下不成问题地得以脱模。
但本发明的方法不限于用于稀土氧硫化物物系,而是适用于通过热挤压过程制成高纯度陶瓷的所有陶瓷热挤压法,例如荧光陶瓷,其中,极小的杂质就可导致荧光性能恶化。只要待挤压的陶瓷粉或别的原材料与硫钼化物不产生化学反应,则可用本发明的方法。本发明方法不适用于必须在高于1300℃和/或在含氧气氛中进行的热挤压过程,因为MoS2在氧气下在600~800℃就分解,并可随后产生SO2

Claims (6)

1.通过单轴热挤压制造荧光陶瓷的方法,其中,首先在陶瓷挤压模中形成含MoS2的隔层,然后将荧光原材料装入挤压模中,最后将荧光原材料在超过其烧结温度时单轴挤压成高密度的透明荧光陶瓷。
2.按权利要求1所述的方法,其中,通过把MoS2粉涂抹在挤压模上形成隔层。
3.按权利要求1所述的方法,其中,通过把含有MoS2粉和有机成分的喷射液喷射到挤压模上形成隔层,然后通过加热除去喷射液的有机成分。
4.按权利要求1~3任一项所述的方法,其中,将含有要求成分的荧光粉首先在没有隔层的挤压模中预挤压成毛坯,然后,这种预挤压的毛坯作为荧光原材料使用。
5.按权利要求1~4任一项所述的方法,其中,荧光陶瓷用稀土氧硫化物物系制成。
6.按权利要求5所述的方法,其中,用一般成分为(M1-xLnx)2O2S的荧光粉,式中:M代表周期表中Y、La和Gd族的至少一种元素,Ln代表Eu、Pr、Tb、Yb、Dy、Sm和Ho族的至少一种元素,(2×10-1)≥x≥(1×10-6),并且荧光粉的比表面积(用布鲁瑙厄-埃梅特-泰勒吸气法测定)至少为10m2/g,并且热挤压在真空中或在隋性至还原气氛中在挤压力为0.1~10kN/cm2(1~100Mpa)和温度为1100~1300℃的情况下进行。
CN95108931A 1994-07-21 1995-07-21 通过热挤压制造荧光陶瓷的方法 Expired - Fee Related CN1065220C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4425922A DE4425922B4 (de) 1994-07-21 1994-07-21 Verfahren zur Herstellung einer Leuchtstoffkeramik durch Heißpressen
DEP4425922.0 1994-07-21

Publications (2)

Publication Number Publication Date
CN1121906A true CN1121906A (zh) 1996-05-08
CN1065220C CN1065220C (zh) 2001-05-02

Family

ID=6523838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95108931A Expired - Fee Related CN1065220C (zh) 1994-07-21 1995-07-21 通过热挤压制造荧光陶瓷的方法

Country Status (4)

Country Link
US (1) US5676891A (zh)
JP (1) JP2866031B2 (zh)
CN (1) CN1065220C (zh)
DE (1) DE4425922B4 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715725C1 (de) * 1997-04-15 1998-12-10 Siemens Ag Leuchtstoff-Körper mit anisotroper Lichtleitung und Verfahren zur Herstellung
DE19913545C1 (de) * 1999-03-25 2000-07-06 Siemens Ag Verfahren zur Herstellung von Szintillatorkeramik
DE19930645A1 (de) * 1999-07-02 2001-01-11 Rainer Kassing Wiederverwendbare Bildplatte mit einem Speicherleuchtstoff zur Speicherung von Röntgenstrahlbildern und Herstellungsverfahren für eine wiederverwendbare Bildplatte
DE19934761C1 (de) * 1999-07-23 2000-11-30 Bosch Gmbh Robert Verfahren zum Pressen zylindrischer Verbundkörper
US7361938B2 (en) * 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
US7341878B2 (en) * 2005-03-14 2008-03-11 Philips Lumileds Lighting Company, Llc Wavelength-converted semiconductor light emitting device
CN101253128B (zh) * 2005-07-25 2011-09-14 圣戈本陶瓷及塑料股份有限公司 稀土氧硫化物闪烁体及其生产方法
WO2007049186A1 (en) * 2005-10-27 2007-05-03 Philips Intellectual Property & Standards Gmbh Uniaxial pressing and heating apparatus
WO2010078223A2 (en) 2008-12-30 2010-07-08 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
CN102317409B (zh) 2008-12-30 2016-01-20 圣戈本陶瓷及塑料股份有限公司 陶瓷闪烁体本体和闪烁装置
WO2010078221A2 (en) 2008-12-30 2010-07-08 Saint-Gobain Ceramics & Plastics, Inc. Scintillation device and method of producing a ceramic scintillator body
WO2010078220A2 (en) 2008-12-30 2010-07-08 Saint-Gobain Ceramics & Plastics, Inc. Scintillation device and method of producing a ceramic scintillator body
TWI356890B (en) * 2008-12-31 2012-01-21 Wistron Corp Backlight module and related manufacturing method
WO2010141235A1 (en) * 2009-06-01 2010-12-09 Nitto Denko Corporation Light-emitting divice comprising a dome-shaped ceramic phosphor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999216A (en) * 1970-07-30 1976-12-21 Eastman Kodak Company Material for magnetic transducer heads
US4039697A (en) * 1973-08-27 1977-08-02 The Fujikura Cable Works, Ltd. Process for forming a film composed of plastic-coated inorganic powder particles
US4242221A (en) * 1977-11-21 1980-12-30 General Electric Company Ceramic-like scintillators
US4518545A (en) * 1982-06-18 1985-05-21 General Electric Company Method for sintering high density yttria-gadolinia ceramic scintillators
US4752424A (en) * 1986-01-30 1988-06-21 Kabushiki Kaisha Toshiba Method of manufacturing a rare earth oxysulfide ceramic
US4828729A (en) * 1988-04-13 1989-05-09 The United States Of America As Represented By The Secretary Of The Air Force Molybdenum disulfide - molybdenum oxide lubricants
JP2685867B2 (ja) * 1989-02-09 1997-12-03 株式会社東芝 蛍光性セラミックスの製造方法
JP2773193B2 (ja) * 1989-03-03 1998-07-09 住友電気工業株式会社 透光性イツトリア焼結体の製造方法
DE4224931C2 (de) * 1992-07-28 1995-11-23 Siemens Ag Verfahren zur Herstellung einer Szintillatorkeramik und deren Verwendung
US5282985A (en) * 1993-06-24 1994-02-01 The United States Of America As Represented By The Secretary Of The Air Force Lubricant coatings
DE4402258C2 (de) * 1994-01-26 1996-06-20 Siemens Ag Leuchtstoff mit reduziertem Nachleuchten

Also Published As

Publication number Publication date
JPH0867582A (ja) 1996-03-12
JP2866031B2 (ja) 1999-03-08
US5676891A (en) 1997-10-14
CN1065220C (zh) 2001-05-02
DE4425922B4 (de) 2004-03-18
DE4425922A1 (de) 1996-01-25

Similar Documents

Publication Publication Date Title
CN1065220C (zh) 通过热挤压制造荧光陶瓷的方法
DE4224931C2 (de) Verfahren zur Herstellung einer Szintillatorkeramik und deren Verwendung
EP2401342B1 (de) Mit zirkonium und hafnium co-dotierte nitridosilikate
EP1760794B1 (en) White light emitting diode device
CA1149133A (en) Sintered polycrystalline nitrogen stabilized cubic aluminum oxide material
US8298442B2 (en) Method of manufacturing phosphor translucent ceramics and light emitting devices
WO2013143645A1 (de) Kompositkeramik, die einen konversionsleuchtstoff und ein mit einem negativen thermischen ausdehnungskoeffizienten material enthält
EP2324096B1 (de) Co-dotierte 1-1-2 nitride
US5147832A (en) Thermal conductive colored aluminum nitride sintered body and method of preparing the same
DE2737208C2 (de) Verfahren zur Kapselung eines Formkörpers aus Keramik
DE3873663T2 (de) Sinterkoerper aus aluminiumnitrid und verfahren zu seiner herstellung.
CN1061958C (zh) 一种半透明度高的发光材料制造方法
CA1280810C (en) High k dielectric composition for use in multilayer ceramic capacitors having copper internal electrodes
EP0267623B1 (en) Black sintered body of aluminum nitride and process for producing the same
KR101923273B1 (ko) 어븀과 툴륨이 공동도핑된 다결정 투광성 업컨버팅 알파사이알론 세라믹스 및 그 제조방법
CN101391769B (zh) 反应合成法制备二碳化钡电介质块体材料
WO2017195954A1 (ko) 다결정 투광성 업컨버팅 알파사이알론 세라믹스 및 그 제조방법
WO2018097350A1 (ko) 삼중 도핑된 다결정 투광성 업컨버팅 알파사이알론 세라믹스 및 그 제조방법
KR101792943B1 (ko) 다결정 투광성 업컨버팅 알파사이알론 세라믹스 및 그 제조방법
DE102013205329A1 (de) Verfahren zum Herstellen einer Leuchtstoffkeramik
CN106634947A (zh) 自钝化金属掺杂红光核壳量子点、led及制备方法
DE68923326T2 (de) Verfahren zur Herstellung einer Aluminiumnitrid-Keramik.
CN116283289A (zh) 一种高透明Gd2O3透明陶瓷材料的制备方法
Barannik et al. Exciton X-Ray Induced Luminescence of Y2O3 Polycrystals Sintered from the Nanopowder
WO2020161167A1 (en) Method to reduce darkening in phosphor in glass (pig) made by sps

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee