CN112189046B - 生物喷气燃料的制造方法 - Google Patents

生物喷气燃料的制造方法 Download PDF

Info

Publication number
CN112189046B
CN112189046B CN201980032001.5A CN201980032001A CN112189046B CN 112189046 B CN112189046 B CN 112189046B CN 201980032001 A CN201980032001 A CN 201980032001A CN 112189046 B CN112189046 B CN 112189046B
Authority
CN
China
Prior art keywords
catalyst
bio
oil
jet fuel
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980032001.5A
Other languages
English (en)
Other versions
CN112189046A (zh
Inventor
藤元薫
村上弥生
野田修嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Environmental Energy Co ltd
Hibd Research Institute
Original Assignee
Environmental Energy Co ltd
Hibd Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Environmental Energy Co ltd, Hibd Research Institute filed Critical Environmental Energy Co ltd
Publication of CN112189046A publication Critical patent/CN112189046A/zh
Application granted granted Critical
Publication of CN112189046B publication Critical patent/CN112189046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/043Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • C10G2300/203Naphthenic acids, TAN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/307Cetane number, cetane index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/043Kerosene, jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Fats And Perfumes (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

生物喷气燃料的制造方法,其具有下述反应工序:在反应温度为180℃~350℃、压力为0.1MPa~30MPa的条件下,使用氢化催化剂及异构化催化剂在氢气氛下对粗制油进行氢化、异构化、分解,所述粗制油是对含有甘油三酯和/或游离脂肪酸的原料油进行脱氧处理而得到的。

Description

生物喷气燃料的制造方法
技术领域
本发明涉及以对含有甘油三酯和/或游离脂肪酸的原料油进行脱氧处理而得到的粗制油作为原料的生物喷气燃料(biojet fuel)的制造方法。
背景技术
近年来,地球温暖化对策已成为紧迫的课题。作为解决该课题的方法之一,为了消减地球温暖化气体的排出量、构筑能量循环型社会,作为无碳燃料的生物喷气燃料的开发已成为极其重要的开发主题。
为了解决该主题,现今进行了各种研究,并且,相应报告了各种文献。例如:
·专利文献1公开了:“一种制造柴油燃料馏分和生物喷气燃料馏分的方法,其在氢气氛下使用催化剂通过氢化和脱氧对可再生供给原料进行处理,得到烃馏分,接下来,对前述馏分进行异构化,选择性进行裂化,然后将得到的柴油燃料馏分·生物喷气燃料馏分·石脑油产物·LPG利用选择性高温高压氢汽提塔进行分离,从而制造柴油燃料馏分和生物喷气燃料馏分。”;
·专利文献2公开了:“一种生物喷气燃料或喷气燃料以及生物喷气燃料的复合油的制造方法,其中,在第1阶段中,在氢气气氛下,使用氢化脱氧化催化剂,对生物来源的油进行氢化脱氧化反应,生成正烷烃,在第2阶段中,在异构化催化剂的存在下,对正烷烃和氢气进行异构化反应,生成异烷烃和分离馏分,在异构化催化剂的存在下,对第2阶段中得到的具有200℃以上的沸点的馏分进行异构化,从而制造生物喷气燃料或喷气燃料以及生物喷气燃料的复合油。”;
·专利文献3公开了:“一种制造喷气燃料的方法,其是将含三酰基甘油的油转化为烃燃料的方法,所述方法在约250℃~约560℃且约75巴的条件下,针对含三酰基甘油的油、水和氢的混合物,使三酰基甘油的至少一部分进行转化,得到包含水与异烯烃、异烷烃、环烷烃、环烯烃和芳香族中的1种以上的反应流出液,对该反应流出液进行氢处理,从而制备喷气燃料。”;
·专利文献4公开了:“一种获得生物柴油燃料和生物喷气燃料的方法,其是烷烃系烃的供给流的氢化异构化方法,其中,使前述烃的供给流与氢、以及包含在晶体骨架中具有铁的结晶性金属硅酸盐分子筛的催化剂接触,从而获得生物柴油燃料和生物喷气燃料。”;
·专利文献5公开了:“一种以非食用油脂为原料来制造生物喷气燃料的方法,其中,不添加氢,在催化剂的存在下,由液态非食用油脂经由脱氧反应、异构化反应和芳构化反应而制造包含烷烃系烃和芳香族化合物的反应产物。”。
现有技术文献
专利文献
专利文献1:日本特表2011-515539号公报
专利文献2:日本专利第5506791号公报
专利文献3:日本特表2015-531430号公报
专利文献4:日本特表2016-519692号公报
专利文献5:国际公开2016060450号公报
发明内容
发明所要解决的课题
但是,上述以往技术中存在如下所述的课题。
(1)专利文献1是对原料油脂进行氢化脱氧反应,接着进行异构化分解反应的两阶段反应工序,因此,在氢化脱氧反应中消耗大量氢,并且,在该方法中生成具备游离脂肪酸骨架结构的正烷烃,结果具有下述课题:异构化分解反应的反应条件变得严苛,反应复杂,缺乏节能性。
(2)专利文献2具有对原料油脂进行氢化脱氧反应工序,因此,消耗大量的氢,且说明书0086段的实施例1所示的从第1异构化至第2异构化(重质再循环流)为止所得产物的凝固点均未达到-40℃,具有倾点高而难以满足喷气燃料的倾点-40℃的课题。
(3)专利文献3是在水、氢的存在下对油脂进行高温高压水热反应,然后进行氢化反应,从而得到喷气燃料的方法,具有下述课题:缺乏节能性且氢的消耗量大;根据说明书0052、0053段,芳香族收率大,为32.6重量%,不满足ASTM的0.5质量%以下。另外,没有关于倾点的记载、关于产物的化合物的记载,不清楚是否满足芳香族的含有率,也不清楚是否满足倾点等其他标准。
(4)专利文献4在说明书0014段记载了在包括约400~约2000psig(2.86~13.89MPa)的压力的氢化异构化条件下,另外,说明书0047、0048段的实施例3的反应压力为580psig(3.55MPa)的高压,因此,具有需要高压气体对策这样的课题。
(5)专利文献5中,芳香族化合物在实施例2中为60.7%,使用了实施例3的β沸石催化剂的芳香族化合物为69%,使用了Y沸石催化剂的芳香族化合物为36.2%,作为煤的原料的芳香族馏分多,作为喷气燃料而言具有缺乏燃烧性这样的课题。
本申请的发明人为了解决上述以往的课题,针对生物喷气燃料的制造方法进行了深入研究,所述生物喷气燃料以对生物来源的油脂、废食用油等含有甘油三酯和/或游离脂肪酸的原料油进行脱氧处理而得到的粗制油作为原料。
特别是针对在脱氧处理中使用油脂脱羧分解催化剂进行脱羧处理而得的粗制油进行了各种分析,结果可知具有以下的物性。
(1)在脱羧工序中得到的粗制油是包含具备以碳原子数15~17为主的抛物线形碳原子数分布的、碳原子数为6~25的烃化合物的油,所述粗制油与以碳原子数为9~15的烃化合物为主的喷气燃料相比碳原子数大,存在喷气燃料馏分的收率低这样的课题。
(2)主要的烃化合物为直链饱和烃,析出点、倾点为-15℃以上,因此存在作为喷气燃料而言过高这样的课题。
(3)在脱羧工序中,生成一部分芳香族烃,含有率为1~20%左右,因此,存在下述课题:不满足生物喷气燃料的芳香族烃含有率MAX0.5%的条件。
(4)在脱羧工序中,得到表示脂肪酸含量的酸值的值为0~20mg-KOH/g-oil的生成油,由于脂肪酸显著影响燃料的氧化稳定性,因此存在需要达到大约0mg-KOH/g-oil这样的课题。
本发明的目的在于,提供生物喷气燃料的制造方法,所述制造方法能够由具有上述物性的粗制油以低成本批量生产可实现以下基准(ASTM D7566-Annex2)的生物喷气燃料。
a.是以碳原子数为9~15个的烃化合物为主的精制油;
b.倾点为-40℃以下;
c.芳香族烃含有率为0.5质量%以下;
d.酸值的值大约为0mg-KOH/g-oil(0.015mg-KOH/g-oil以下);
e.环烷烃含有率为15质量%以下。
用于解决课题的手段
为了解决上述课题,本发明的生物喷气燃料的制造方法具有以下的构成。
本发明的生物喷气燃料的制造方法〈1〉具有下述构成:具有下述反应工序:在反应温度为180℃~350℃、压力为0.1MPa~30MPa的条件下,使用氢化催化剂及异构化催化剂在氢气氛下对粗制油进行氢化、异构化、分解,所述粗制油是对含有甘油三酯和/或游离脂肪酸的原料油进行脱氧处理而得到的。
根据该构成,可获得以下的作用。
(1)通过氢化使芳香族成分的双键饱和,转化成环烷等,从而能够使芳香族成分的含量降低。
(2)通过氢化使来自原料油(粗制油)的游离脂肪酸脱氧,从而能够使酸值的值变低。
(3)通过异构化、氢化分解使粗制油中的成分转化成环烷烃、异烷烃、正烷烃,因此能够使析出点及倾点降低。
(4)装置能够在反应温度、反应压力低的条件下运转,因此节能性优异,并且还能够大幅降低装置的制造成本。
(5)通过氢化使烯烃类的双键饱和,从而能够转化成烷烃类。
通过获得以上的作用,从而能够在反应工序中高效地获得生物喷气燃料组成(或与其相近的组成)。
此处,作为含有甘油三酯和/或游离脂肪酸的原料油,可列举植物油、植物脂肪、通过基因操作而得的植物油、植物脂肪、动物脂肪、鱼油或者它们的混合物。
具体而言,作为废食用油、植物油、植物脂肪,可列举葵花籽油,菜籽油、低芥酸菜籽油、棕榈油、棕榈仁油、豆油、大麻油、橄榄油、紫苏子油、亚麻籽油、芥子叶油、花生油、蓖麻油、椰子油、麻疯果油、松树的浆液中所含的妥尔油、从食品产业中排放的油、脂肪或它们的混合物等废弃物。
另外,作为动物油、动物脂肪,可列举培根脂肪(bacon fat)、猪油、动物脂、乳脂、从食品产业中排出的油、脂肪或它们的混合物等废弃物。
此外,还可列举萜烯油、鱼油、从某种藻类中提取的油脂、黑油(dark oil)、污泥、油棕的果肉或种子、椰子的胚乳、菜籽、橄榄的果实、紫苏或蓖麻等的种子、麻疯果或光皮树(Cornus wisoniana)的种子等榨油前的果实或种子废榨油原料。
另外,本发明的反应工序中供于反应的粗制油通过对上述含有甘油三酯和/或游离脂肪酸的原料油进行脱氧处理而得到。作为脱氧处理,可列举使用油脂脱羧分解催化剂对原料油进行脱羧的处理(例如,日本专利第5353893号公报记载的方法)、在原料油中加入甲醇而进行甲基酯化的处理、在高压下对原料油进行氢化而进行脱氧的处理,从在反应工序中容易获得所需的生物喷气燃料组成(或与其相近的组成)的方面考虑,优选使用了油脂脱羧分解催化剂的脱羧处理。针对该脱羧化处理,在后文中进行说明。
作为反应温度,可使用180℃~350℃,优选可使用200℃~320℃。随着变得低于200℃,可观察到高级饱和烃以未分解的状态残留的倾向,另外,随着变得高于320℃,观察到因过度分解所导致的生物喷气燃料馏分的收率减少的倾向,特别是随着变得低于180℃或变得高于350℃,该倾向明显,因此不优选。
作为压力,可使用0.1MPa~30MPa。优选可使用0.5MPa~3MPa,更优选可使用0.5MPa~2.5MPa,进一步优选可使用1MPa~2.5MPa。随着变得低于1MPa,观察到氢化变得不充分,芳香族烃的含有率增加的倾向,特别是随着变得低于0.1MPa,该倾向明显。另外,随着变得高于2.5MPa,观察到组成的改善小,节能性降低的倾向。需要说明,本发明的方法中,即使在2.5MPa以下也可得到生物喷气燃料组成(或与其相近的组成)。
所使用的催化剂为氢化催化剂及异构化催化剂,可以分别使用,也可以混合使用。详细情况在后文中说明。
反应槽优选使用固定床方式。反应优选以连续反应进行。另外,氢化反应和异构化反应可以在不同的反应槽中进行,但优选在同一反应槽中进行。
氢气和粗制油向反应器的供给为H2/原料油=500~5000vol/vol,优选为1000~2000vol/vol。随着变得低于1000vol/vol,观察到氢化变得不充分、反应产物的芳香族烃的含有率增加的倾向,另外,随着变得高于2000vol/vol,存在反应物的滞留时间变短,未反应物增加,氢的浪费多,需要再利用,装置变得复杂的倾向。特别是随着变得低于500vol/vol或变得高于5000vol/vol,这些倾向明显。
需要说明,本发明中的氢气氛下优选为仅由氢气构成的气氛下,但是也可以在对反应没有影响的范围内含有氮、氩等非活性气体。
本发明的生物喷气燃料的制造方法〈2〉具有下述构成:在上述生物喷气燃料的制造方法〈1〉中,在前述反应工序中使用包含氢化催化剂及异构化催化剂的氢化异构化催化剂进行氢化、异构化、分解。
根据该构成,相较于分别使用氢化催化剂及异构化催化剂而言,能够更高效地制造生物喷气燃料。需要说明,如后述的本发明的生物喷气燃料的制造方法〈3〉所述,可以在1个反应槽内进行反应,也可以使用反应条件(温度、压力等)各自不同的2个以上反应槽分别进行以氢化为主的反应和以异构化·分解为主的反应。
本发明的生物喷气燃料的制造方法〈3〉具有下述构成:在上述生物喷气燃料的制造方法〈2〉中,在前述反应工序中使用包含氢化催化剂及异构化催化剂的氢化异构化催化剂同时进行氢化、异构化、分解。
根据该构成,能够以一步反应更高效地制造生物喷气燃料。需要说明,同时进行氢化、异构化、分解并不意味着反应严格地同时发生,而是指与氢化异构化催化剂相的通过一起发生氢化、异构化和分解。
本发明的生物喷气燃料的制造方法〈4〉具有下述构成:在上述生物喷气燃料的制造方法〈1〉~〈3〉中任一者中,脱氧处理为使用了油脂脱羧分解催化剂的脱羧处理。
使用了油脂脱羧分解催化剂的脱羧处理例如在日本专利第5353893号公报中进行了具体记载。具体而言,为于350℃~475℃在反应容器内使油脂脱羧分解催化剂与油脂(含有甘油三酯和/或游离脂肪酸的原料油)接触的方法。在该方法中,通过下述反应式而主要生成碳原子数为8~24的脂肪族烃。
[化学式1]
Figure BDA0002774557610000071
其中,R1、R2、R3为构成油脂的烷基,表示链状烷烃、烯烃。
CxHy主要为碳原子数为3的丙烷,另外生成少量的甲烷、乙烷、丁烷。
另外,本发明的生物喷气燃料的制造方法〈5〉具有下述构成:在上述生物喷气燃料的制造方法〈4〉中,油脂脱羧分解催化剂包含镁的氢氧化物、氧化物及碳酸盐中任一者。
具体而言,例如可列举经活化的碳、活性焦炭及它们的混合物中的任意物质被镁的氢氧化物、氧化物及碳酸盐中的任意物质涂布而得的催化剂。
通过使用这样的催化剂,从而能够高效地实现原料油的脱羧化。
本发明的生物喷气燃料的制造方法〈6〉具有下述构成:在上述生物喷气燃料的制造方法〈4〉或〈5〉中,对含有甘油三酯和/或游离脂肪酸的原料油进行脱羧处理而得到的粗制油满足以下a.~e.的要件。
a.包含碳原子数为16个以上的烃化合物
b.倾点为-15℃以上
c.芳香族烃含有率为1~15质量%
d.酸值的值为0~20mg-KOH/g-oil
e.环状化合物含有率为15质量%以下
根据这些构成,可以得到更适于生物喷气燃料的制造的粗制油。
a.的条件中,例如可包含5%以上的碳原子数为16个以上的烃化合物,可包含10%以上的碳原子数为16个以上的烃化合物。
b.的条件中,倾点的上限为10℃左右。
c.的条件中,芳香族烃含有率可以为1~10质量%。
d.的条件中,酸值的值可以为0~10mg-KOH/g-oil。
e.的条件中,环状化合物含有率可以为10质量%以下。
本发明的生物喷气燃料的制造方法〈7〉具有下述构成:在上述生物喷气燃料的制造方法〈1〉~〈6〉中的任一者中,在反应工序中在0.5MPa~3MPa的条件下进行反应。
本发明的方法即使利用这样的低压反应也能够高效地得到生物喷气燃料组成(或与其相近的组成)。
本发明的生物喷气燃料的制造方法〈8〉具有下述构成:在上述生物喷气燃料的制造方法〈1〉~〈7〉中的任一者中,氢化催化剂包含第9族和/或第10族的金属。
作为第9族的金属,可列举Co。另外,作为第10族的金属,可列举Ni、Pd、Pt,优选使用2种以上。例如,优选使用Ni及Pd。进而,作为这些催化剂的载体,优选使用氧化铝、二氧化硅、活性炭等表面积大的多孔体。需要说明,还可以含有Mo、W等第6族的金属、Ru等第8族的金属、Cu等第11族的金属。
另外,本发明的生物喷气燃料的制造方法〈9〉具有下述构成:在上述生物喷气燃料的制造方法〈1〉~〈8〉中的任一者中,异构化催化剂包含固体酸催化剂。
作为异构化催化剂,可使用包含卤化铝等卤化金属的催化剂、包含氧化硅铝、活性氧化铝、活性白土、沸石等的固体酸催化剂等,优选包含沸石的固体酸催化剂。由此,能够利用廉价的催化剂高效地将高级烯烃、高级烷烃异构化和/或分解成低级烷烃。
作为沸石,可列举β型沸石、Y型沸石、MFI沸石、丝光沸石、L型沸石等。由于耐热性、对于通过游离脂肪酸的氢化而产生的水等的耐水性优异,并且可期待焦化的抑制效果,因此优选β型沸石、Y型沸石、MFI沸石,更优选β型沸石。
本发明的生物喷气燃料的制造方法〈10〉具有下述构成:在上述生物喷气燃料的制造方法〈2〉~〈9〉中的任一者中,氢化异构化催化剂为由氢化催化剂:异构化催化剂=5:95~95:5的混合比(质量比)构成的混合催化剂。
此处,作为氢化异构化催化剂,可使用以氢化催化剂:异构化催化剂=5:95~95:5、优选10:90~90:10的混合比混合而得的催化剂。随着氢化催化剂的混合比变低,观察到氢化变得不充分,反应产物的芳香族烃的含有率增加,因过度分解而使生物喷气燃料馏分的收率减少的倾向,另外,随着氢化催化剂的混合比变高,观察到异构化反应被抑制,高级饱和烃以未反应的状态残留,析出点、倾点不降低的倾向。
另外,非活性物质可以以氢化异构化催化剂:非活性物质=10~90:90~10的混合比混合。其原因在于,由于氢化异构化催化剂为结晶性物质,使非活性物质介在,结晶性的氢化异构化催化剂得以分散,从而提高氢化异构化催化剂的催化剂活性。此处,作为非活性物质,可列举玻璃珠、二氧化硅珠、氧化铝珠。
本发明的生物喷气燃料的制造方法〈11〉具有下述构成:上述生物喷气燃料的制造方法〈2〉~〈10〉中的任一者中,氢化异构化催化剂为氢化催化剂及异构化催化剂的复合体。
本发明的氢化异构化催化剂可以为仅经混合的状态,但优选经一体化的复合体。作为复合体,例如可以为在氢化催化剂粒子表面附着或担载有异构化催化剂粒子而成的复合体,也可以为在异构化催化剂粒子表面附着或担载有氢化催化剂粒子而成的复合体,还可以为将氢化催化剂粒子及异构化催化剂粒子混合并使用粘结剂进行一体化而得的复合体。
本发明的生物喷气燃料的制造方法〈12〉具有下述构成:在上述生物喷气燃料的制造方法〈2〉~〈11〉中的任一者中,氢化催化剂的粒子的粒径被粉化为比异构化催化剂的粒子的粒径小,且附着或担载于异构化催化剂的粒子表面。
根据该构成,可得到以下的作用。
(1)通过使氢化催化剂的微细粒子附着或担载于异构化催化剂的粒子表面,从而接近于异构化催化剂的粒子表面的高级烷烃的活性位点移动至氢化催化剂,高级烷烃被高效地氢化分解,从而被低分子烷烃化、异构化、异烷烃化。由此,能够有效地使碳原子数为9~15的烃化合物的含有率增加。
(2)通过有效地将芳香族烃氢化,从而能够使芳香族烃的含有率降低。
(3)另外,通过氢化,从而能够有效地将游离脂肪酸分解,使酸值的值降低。
本发明的生物喷气燃料的制造方法〈13〉具有下述构成:在上述生物喷气燃料的制造方法〈1〉~〈12〉中的任一者中,在氢化催化剂中添加有1~10质量%的Cu。
根据该构成,可得到以下的作用。
(1)由于在氢化催化剂中添加有Cu,因此,能够抑制因氢化分解所致的烷烃末端甲基的甲烷化,顺利地进行烯烃的氢化。
(2)由于在氢化催化剂中添加有Cu,因此,能够将直烷烃无规地分解,使高级烷烃低级化,使倾点下降。
(3)通过将甲苯氢化而分解、异构化、低分子化为环己烷,进而分解、异构化、低分子化为二甲基环戊烷,另外,将十六烷(C16H34)分解、异构化、低分子化为辛烷、二甲基环己烷、2-甲基辛烷等,从而也能够使倾点下降。
(4)能够进行游离脂肪酸的羧基、羰基的脱氧反应。
此处,Cu的添加量可使用1~10质量%,优选可使用2~5质量%。随着变得少于2质量%,存在因烷烃末端甲基的解离而使甲烷的生成量增加这样的倾向,随着超过5质量%,存在使Ni的氢化能力降低这样的倾向,在少于1质量%或多于10质量%时,这些倾向强,因此不优选。需要说明,可以使用Fe代替Cu。
本发明的生物喷气燃料的制造方法〈14〉具有下述构成:在上述生物喷气燃料的制造方法〈1〉~〈13〉中的任一者中,在反应工序中催化剂相中的液体空间速度为0.1~10h-1
通过将催化剂相中的液体空间速度(LHSV)设定为0.1~10.0h-1,从而粗制油在氢气氛中能够进行充分的氢化、氢化分解、脱氧分解、芳香族的环烷属烃化反应等。
此处,作为催化剂相中的液体空间速度,优选为0.1~10.0h-1,更优选应用0.2~4.0h-1,进一步优选应用0.2~2.0h-1。随着变得少于0.2h-1,存在因过度分解而使生物喷气燃料馏分的收率减少的倾向,随着超过2.0h-1,存在高级饱和烃以未反应的状态残留这样的倾向,在少于0.1h-1或多于10.0h-1时,这些倾向强。
本发明的生物喷气燃料的制造方法〈15〉具有下述构成:在上述生物喷气燃料的制造方法〈1〉~〈14〉中的任一者中,在反应工序中得到的精制油满足以下的A.~E.的要件。
A.包含60质量%以上的碳原子数为9~15个的烃化合物
B.倾点为-40℃以下
C.芳香族烃含有率为0.5质量%以下
D.酸值的值为0.015mg-KOH/g-oil以下
E.环烷烃含有率为15质量%以下
A.的条件中,优选包含70质量%以上的碳原子数为9~15个的烃化合物,更优选包含80质量%以上。
发明的效果
如上所述,本发明的生物喷气燃料的制造方法能够满足ASTM D7566-Annex2的主要基准。另外,具有以下这样的效果。
(1)由于以天然来源的粗制油作为原料,因此,能够以高收率且低成本制造无碳且高品质的生物喷气燃料。
(2)由于能够在较低温、较低操作压力的条件下进行制造,因此,例如还能够以在高压气体保安法中不包括在高压气体的定义中的低于1.0MPa的压力进行反应,能够安全且经济地以高收率得到异烷烃为主体且含有少量芳香族化合物的高品质生物喷气燃料。
(3)所得的生物喷气燃料基本全部由烃构成,能够与由石油来源的原料所得的喷气燃料任意混合。
(4)通过氢化而使来自生物燃料粗制油的游离脂肪酸进行脱羧,使酸值的值显著降低,接近于0mg-KOH/g-oil,并且,通过异构化、氢化分解而将芳香族烃、烯烃、正烷烃转化为环烷烃、异烷烃、正烷烃,因此能够使析出点及倾点降低。
附图说明
[图1]本发明的生物喷气燃料的制造装置的主要部分示意图
[图2]实施例1~4中的产物的组成图(C8-9)
[图3]实施例1~4中的转化率
[图4]实施例1~4中的产物的倾点
[图5]实施例5、6中的产物的组成图(C8-9)
[图6]实施例5、6中的产物的组成图
[图7]实施例5、6中的产物的倾点
[图8]实施例7中的产物的选择率
[图9]实施例8中的产物的选择率
[图10]实施例9中的产物的碳原子数分布
[图11]实施例10中的产物的碳原子数分布
[图12]实施例9中的产物的组成图
[图13]实施例10中的产物的组成图
具体实施方式
以下,使用附图对本发明的生物喷气燃料的制造装置进行说明,并且,使用实施例详细地进行说明,但并不对本发明的范围进行限定。
图1是本发明的生物喷气燃料的制造装置的主要部分示意图。1为控制氢的流量而将反应器的压力维持为0.5MPa~3MPa的氢质量流量控制器,2是储藏对天然来源的含甘油三酯的原料油进行分解而得的粗制油的原料油罐,3是输送泵,3a是将原料油预热至150~320℃的预热器,4是压力计,5是利用氢化异构化催化剂在氢气氛下对粗制油进行氢化、异构化、分解反应的固定床式反应槽,6是将反应槽5加热至180℃~350℃的加热器,7是氢化异构化分解催化剂,8是测定反应层的外部温度的外部温度控制器,9是测定反应层的内部温度的内部温度控制器,10是反应产物的冷却器,11是生物喷气燃料贮存部,12是保压阀,13是气相馏分的流出部。
使用如上所述构成的生物喷气燃料的制造装置,以下,针对本发明的生物喷气燃料的制造方法进行简单说明。
首先,在密闭状固定床反应槽5中投入由氢化催化剂和异构化分解催化剂的混合物形成的氢化异构化分解催化剂7,制作氢化异构化分解催化剂7的固定床。接下来,利用加热器6将固定床反应槽5的内部温度加热至180~350℃左右。从氢气质量流量控制器1中流入氢气至反应槽内的压力达到0.5~3MPa为止。从原料油罐2中一边利用预热器3a将生物燃料粗制油加热至150~320℃,一边利用输送泵3输送至经预热的固定床反应槽5。在固定床反应槽5内,一边将空塔速度保持为0.1~10.0h-1,一边以一步的方式对生物柴油燃料进行氢化、异构化、分解反应,从而转化为生物喷气燃料。将所得的反应产物在冷却器10中冷却,进行气液分离。经气液分离的液态馏分作为生物喷气燃料粗制油而贮存在贮存罐中,气相馏分被从流出部13中排出到体系外。生物喷气燃料粗制油被送至未图示的精馏装置,作为煤油馏分被分流,成为生物喷气燃料。
实施例
1)原料(生物燃料粗制油)
作为原料,使用了(表2)所示的试样。
(表2)中的“HiBD粗制油”表示基于日本专利第5353893号的记载所制造的生物燃料粗制油。
(1)模型化合物的研究
生物燃料粗制油根据原料组成而物性不同。
(表1)示出生物原料不同的生物燃料粗制油的油性性状。需要说明,表中“HiBD”为藤元薰的注册商标。
[表1]
Figure BDA0002774557610000151
(表1)中的“HiBD”是将各原料基于日本专利第5353893号的记载进行制造而得的。由蒸馏性状可知,生物燃料粗制油(HiBD)中混合存在有多种化合物,因此数据复杂,分析极为困难,为了进行制造方法的评价,利用模型化合物制造生物喷气燃料,并对制造方法进行分析,从而进行评价。
(2)模型化合物的制作
在HiBD(原料:废食用油)的组成分析中,大致为50%的正烷烃、29%的烯烃类、10%的芳香族化合物、7%的氧化合物、1%的环烷属烃。
HiBD中的烯烃类容易被氢化,因此,通过混合烯烃类,从而使得仅氢化以外的反应进行且结果复杂,对整体评价没有影响,因此,作为模型化合物,除去烯烃类而混合与烯烃类相当的量的烷烃。
HiBD中的直链烃化合物的碳原子数的分布形成了以碳原子数15及17作为顶点的山形,因此,作为模型化合物而选择了处于碳原子数15及17的中间的十六烷和庚烷。
ASTM D7566 Annex2中,芳香族化合物的含有率成为0.5%以下,环烷属烃(环烷烃)成为15%以下。
HiBD中的环烷属烃的含量为微量,大多是通过芳香族化合物的氢化而生成的,因此,作为模型化合物,使芳香族化合物的含有率为相较于15%而言过量的20%。作为芳香族化合物的模型而选择了甲苯。
HiBD中,通过制造方法、制造装置而混合有若干的游离脂肪酸。因此,作为模型化合物而含有1%的辛酸来代替游离脂肪酸。
由此可知,模型化合物的组成确定为(表2)No.1所示的、50%的正十六烷+正庚烷+29%的甲苯+1%的辛酸的混合油。
[表2]
Figure BDA0002774557610000161
作为氢化异构化催化剂,使用了(表3)所示的组合物。
[表3a]
Figure BDA0002774557610000171
[表3b]
No. 组成
1 氢化催化剂2和异构化催化剂1的混合催化剂
2 3wt%Cu担载氢化催化剂2(微粉)附着异构化催化剂
3 氢化催化剂3和异构化催化剂2的复合体
4 氢化催化剂3和异构化催化剂3的复合体
<实施例>
使用(表2)记载的原料名的原料,将如(表3b)所记载那样对(表3a)记载的催化剂进行调制而得的氢化异构化催化剂填充于固定床反应槽,一边将槽内保持为规定温度,一边以200ml/min的流量流入氢,在(表4)的条件下进行实验。
[表4]
Figure BDA0002774557610000181
由实施例得到的产物通过(1)GC/MS分析(C8-C9区间的峰群的成分分布)、(2)GC-FID分析(转化率)、(3)倾点(℃)进行评价。
需要说明,倾点是如下进行测定而得的值:将采集有1ml试样的试管浸渍在装有1/4左右乙醇的杜瓦瓶中,使用能够测定至-100℃的温度计,利用干冰以5℃的刻度使温度降低;使乙醇溶剂降低5℃后,保持温度3分钟,然后取出试管,将试管横向倾斜,将即使静止5秒也不流动(不产生滴液)而成为固体状态的试样温度和该温度+5℃的温度范围作为倾点来进行测定。
(实施例1~4)
确认分解反应的压力依存性。关于原料:模型化合物,使用粒子混合催化剂作为氢化异构化催化剂,将反应温度恒定保持为220℃,将LHSV(h-1)恒定保持为0.5,使压力变化,从而确认作为产物的生物喷气燃料的组成的压力依存性。对于粒子混合催化剂而言,使用了将作为氢化催化剂的NIKKO RICA CORPORATION.制的氢化催化剂d-311L(2~10mm粒状物)和作为异构化催化剂的日挥触媒化成(株)制的β沸石催化剂F05M-1308-1(Φ3.4mm×3mm的颗粒)以约1:1且以粒子状直接进行物理混合而得的物质((表3b)的No.1)。
将其确认结果示于(表5)~(表7)、(图2)~(图4)。
[表5]
GC/MS分析C8-C9区间的峰群的成分分布
[%] 实施例1 实施例2 实施例3 实施例4
正烷烃 7.5 7.8 7.7 7.9
异烷烃 68.4 65.2 72.8 70.9
异烯烃 0 0 0 0
正烯烃 0 0 0 0
环烯烃 0 0 0 0
环烷属烃 24.1 27.1 19.5 21.2
芳香族烃 0 0 o 0
含氧化合物 0 0 0 0
总计 100.0 100.0 100.0 100.0
[表6]
GC-FID转化率
[%] 实施例1 实施例2 实施例3 实施例4
庚烷 -37.3 -43.2 -43.4 -31.0
甲苯 100 100 100 100
辛酸 100 100 100 100
十六烷 94.7 98.9 97.5 96.9
[表7]
倾点
Figure BDA0002774557610000191
图2为基于GC/MS分析而得的C8~C9区间的峰群的成分分布图,图3为转化率图,图4为倾点的图。
由该确认结果可知,关于模型化合物,使用粒子混合催化剂作为氢化异构化催化剂,在将反应温度设为220℃、将LHSV设为0.5(h-1)的条件下,以0.5~2.0MPa的低压力,所需的反应得以进行。
(实施例5、6)
作为原料,使用了(表2)的原料No.2的HiBD粗制油1。
对于实施例而言,确认了作为产物的生物喷气燃料的组成在高温时的温度依存性。与实施例1同样地将压力保持为2.0(MPa),将LHSV保持为0.5(h-1),使反应温度变化为290℃、300℃,并且,将氢化异构化催化剂变为附着混合催化剂((表3b)的No.2),除此以外,在与实施例1相同的条件下进行。需要说明,作为对比原料,确认了(表2)的原料No.2的HiBD粗制油1的成分分布。在成分分布的计算中使用了GC-FID。在与GC-FID的测定相同的条件下,使用GC/MS进行样品分析,然后对各峰进行分析。以该GC/MS分析结果为基础,将GC-FID测定中的各结果的峰标记为正烷烃等。标记后,对每种同类化合物,将峰面积进行合计,将其相对于总体峰面积而言的比例作为各化合物的成分分布。
将其确认结果示于(表8)~(表11)、(图5)~(图7)。
[表8]
GC/MS分析C8-C9区间的峰群的成分分布
[%] 原料 实施例5 实施例6
正烷烃 45.8 38.7 42.7
异烷烃 5.0 33.3 30.6
异烯烃 0 0 0
正烯烃 27.7 0 0
环烯烃 1.7 0 0
环烷属烃 0.7 28.1 26.7
芳香族烃 18.0 0 0
含氧化合物 0.9 0 0
总计 100.0 100.0 100.0
[表9]
GC-FID成分分布
[%] 原料 实施例5 实施例6
正烷烃 80.3 73.3 64.0
异烷烃 0.5 16.8 22.8
烯烃类 10.9 0 0
环烷属烃 0.8 9.5 12.6
芳香族烃 3.6 0 0
含氧化合物 3.9 0.5 0.5
总计 100 100 100
[表10]
倾点
Figure BDA0002774557610000211
[表11]
馏出温度(模拟的(Simulated))
[%] 原料 实施例5 实施例6
10%馏出温度 190.5 113 93
50%馏出温度 254 176 153
90%馏出温度 342 245 210.5
终点 575 271 255
由该确认结果可知,关于原料No.2,使用附着混合催化剂作为氢化异构化催化剂,在将压力设为2.0(MPa)、将LHSV设为0.5(h-1)的条件下,均可用作高品质的生物喷气燃料。
(实施例7)
[异构化催化剂的研究]
为了使倾点降低,从作为直链烃的正烷烃向作为带有甲基等支链的烃的异烷烃进行异构化是必须的。
本评价中,引入了基于庚烷的模型原料的试验以使得能够利用简便的实验方法判断催化剂的异构化活性。关于结果,根据产物的种类而分类为以下3种反应,进行评价。
1)生成异庚烷(异构化反应)
2)生成丙烷和异丁烷(分解反应)
3)生成甲烷、乙烷、正戊烷、正己烷(气化反应)
在这些反应中,1)为最期望的反应,次期望的反应为2)的反应。另一方面,若引起3)的反应,则生成甲烷等气态产物,精制油的收率减少了甲烷等的生成量,因此,是不期望的反应。
催化剂为Ni-Pd/氧化铝催化剂与Y、β等细孔径较大的沸石的复合体((表3b)的No.3及No.4),作为模型化合物,使用了庚烷。在反应温度为240℃、反应压力为2.0MPa的条件下进行反应。
将该试验中的产物的选择率示于表12及图8。
[表12]
Figure BDA0002774557610000221
如表12及图8所示可知,β型沸石和Y型沸石作为异构化催化剂均优异。
(实施例8)
[反应压力的研究]
进行了使反应压力变化时的对于异构化反应的活性的比较评价试验。
原料与上述同样地使用了庚烷。反应温度为240℃,压力为1.0、2.0、3.0MPa,催化剂使用了Ni-Pd/氧化铝催化剂与沸石的复合体。
将该试验中的产物的选择率示于表13和图9。
[表13]
Figure BDA0002774557610000222
在任意压力下作为期望的反应的异构化反应的选择率均明显高。由此,即使在1.0~3.0MPa的低压下也进行充分的异构化反应。
(实施例9、10)
[由粗制油得到的精制油的性状]
原料使用由废食用油得到的粗制油(粗制油2以及粗制油3),反应温度为240℃,压力为2.0MPa,利用与实施例8相同的催化剂得到精制油。
对于所得的精制油而言,进行了利用GC分析结果的碳原子数分布的计算、利用了GC/MS的成分分布的计算、总酸值以及倾点的测定。精制油性状的各结果示于表14~15、以及图10~13。
[表14]
Figure BDA0002774557610000231
表14及图10、图11示出了精制油的碳原子数分布。由结果可知,实施例9及10中,作为喷气馏分的C9-15均增加。
[表15]
Figure BDA0002774557610000232
表15示出了精制油的成分分布、酸值、倾点,进而,图12及图13示出了精制油的成分分布图。需要说明,表15中的环状化合物是指环烷烃、环烯烃、芳香族化合物等全部的环状化合物。
精制油的环烷烃及芳香族在实施例9中分别为7.3%和0%,在实施例10中分别为4.4%和0%。ASTM标准中的环烷烃和芳香族的标准值分别为Max.15质量%和Max.0.5质量%,因此,实施例9及10均满足标准值。另外,酸值的ASTM标准值规定为Max.0.015mgKOH/g-oil,倾点的ASTM标准值规定为-40℃。如表15所示,精制油的酸值在实施例9及10中均为0mgKOH/g-oil,倾点在实施例9中为-50~-45℃,在实施例10中为-55~-50℃,满足酸值及倾点的ASTM的标准值。
产业上的可利用性
本发明是提供能够以高收率得到高品质生物喷气燃料的生物喷气燃料制造方法的有意义的发明。
附图标记的说明
1 氢气质量流量控制器
2 原料油罐
3 输送泵
3a 预热器
4 压力计
5 固定床式反应槽
6 加热器
7 氢化异构化分解催化剂层
8 外部温度控制器
9 内部温度控制器
10 冷却器
11 生物喷气燃料贮存部
12 保压阀
13 流出部

Claims (9)

1.生物喷气燃料的制造方法,其特征在于,具有:
粗制油调制工序,使用包含镁的氢氧化物、氧化物及碳酸盐中任一者的油脂脱羧分解催化剂于350℃~475℃对含有甘油三酯和/或游离脂肪酸的原料油进行脱羧处理而得到粗制油,和
反应工序,在反应温度为180℃~350℃、压力为0.1MPa~30MPa的条件下,使用包含Ni及Pd的氢化催化剂及包含沸石的异构化催化剂在氢气氛下对所述粗制油进行氢化、异构化、分解,以液态馏分的形式得到精制油,
所述对含有甘油三酯和/或游离脂肪酸的原料油进行脱羧处理而得到的粗制油满足以下的a.~e.的要件,
a.包含碳原子数为16个以上的烃化合物;
b.倾点为-15℃以上;
c.芳香族烃含有率为1~15质量%;
d.酸值的值为0~20mg-KOH/g-oil;
e.环状化合物含有率为15质量%以下。
2.根据权利要求1所述的生物喷气燃料的制造方法,其特征在于,在所述反应工序中,使用包含氢化催化剂及异构化催化剂的氢化异构化催化剂进行氢化、异构化、分解。
3.根据权利要求2所述的生物喷气燃料的制造方法,其特征在于,在所述反应工序中,使用包含氢化催化剂及异构化催化剂的氢化异构化催化剂同时进行氢化、异构化、分解。
4.根据权利要求1所述的生物喷气燃料的制造方法,其特征在于,在所述反应工序中,在0.5MPa~3MPa的条件下进行反应。
5.根据权利要求2所述的生物喷气燃料的制造方法,其特征在于,所述氢化异构化催化剂为由氢化催化剂:异构化催化剂=5:95~95:5的质量混合比构成的混合催化剂。
6.根据权利要求2所述的生物喷气燃料的制造方法,其特征在于,所述氢化异构化催化剂为氢化催化剂及异构化催化剂的复合体。
7.根据权利要求2所述的生物喷气燃料的制造方法,其特征在于,所述氢化催化剂的粒径被粉化为比所述异构化催化剂的粒径小,且附着或担载于所述异构化催化剂的表面。
8.根据权利要求1所述的生物喷气燃料的制造方法,其特征在于,在所述反应工序中,催化剂相中的液体空间速度为0.1~10h-1
9.根据权利要求1所述的生物喷气燃料的制造方法,其特征在于,所述反应工序中得到的精制油满足以下的A.~E.的要件,
A.包含60质量%以上的碳原子数为9~15个的烃化合物;
B.倾点为-40℃以下;
C.芳香族烃含有率为0.5质量%以下;
D.酸值的值为0.015mg-KOH/g-oil以下;
E.环烷烃含有率为15质量%以下。
CN201980032001.5A 2018-05-18 2019-05-17 生物喷气燃料的制造方法 Active CN112189046B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018-096478 2018-05-18
JP2018096478 2018-05-18
PCT/JP2019/019756 WO2019221287A1 (ja) 2018-05-18 2019-05-17 バイオジェット燃料の製造方法

Publications (2)

Publication Number Publication Date
CN112189046A CN112189046A (zh) 2021-01-05
CN112189046B true CN112189046B (zh) 2023-03-28

Family

ID=68540161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980032001.5A Active CN112189046B (zh) 2018-05-18 2019-05-17 生物喷气燃料的制造方法

Country Status (9)

Country Link
US (1) US11603501B2 (zh)
EP (1) EP3795657A4 (zh)
JP (2) JP6635362B1 (zh)
KR (1) KR102487444B1 (zh)
CN (1) CN112189046B (zh)
BR (1) BR112020022177B1 (zh)
PH (1) PH12020551965A1 (zh)
SG (1) SG11202011450RA (zh)
WO (1) WO2019221287A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4431584A1 (en) * 2021-11-09 2024-09-18 National University Corporation Tokyo University of Agriculture and Technology Bio-jet fuel production method and bio-jet fuel production catalyst used in said method
WO2023126586A1 (en) * 2021-12-30 2023-07-06 Neste Oyj Middle distillate fuel from organic material of biological origin
WO2024071264A1 (ja) * 2022-09-27 2024-04-04 国立大学法人東京農工大学 バイオジェット燃料製造用触媒及びバイオジェット燃料製造用触媒を用いたバイオジェット燃料製造方法
FI130833B1 (en) * 2022-10-14 2024-04-16 Neste Oyj Process for making a jet fuel component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203218A (zh) * 2008-10-31 2011-09-28 财团法人北九州产业学术推进机构 生物柴油燃料的制备方法及其制备装置、用于该方法的油脂脱羧分解催化剂
CN102482595A (zh) * 2009-08-31 2012-05-30 吉坤日矿日石能源株式会社 航空燃料油基材的制造方法及航空燃料油组合物

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2503302C3 (de) 1975-01-28 1978-07-20 Gestra-Ksb-Vertriebsgesellschaft Mbh & Co Kg, 2800 Bremen Ventil, insbesondere schwimmergesteuerter Kondensatableiter
JPS62279854A (ja) * 1986-05-30 1987-12-04 Tomoe Kogyo Kk 燃料油清浄装置
US7540838B2 (en) 2005-10-18 2009-06-02 Varco I/P, Inc. Centrifuge control in response to viscosity and density parameters of drilling fluid
EP2097496B1 (en) * 2006-12-01 2010-12-29 The North Carolina State University Process for conversion of biomass to fuel
US20080163543A1 (en) * 2007-01-05 2008-07-10 Ramin Abhari Process for producing bio-derived fuel with alkyl ester and iso-paraffin components
CN101230291B (zh) * 2007-01-23 2012-02-29 中国石油化工股份有限公司 一种低能耗的费托合成产物的加工方法
WO2008124607A1 (en) * 2007-04-06 2008-10-16 Syntroleum Corporation Process for co-producing jet fuel and lpg from renewable sources
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8198492B2 (en) 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
PL2141217T3 (pl) 2008-07-01 2015-08-31 Neste Oil Oyj Sposób wytwarzania paliwa lotniczego lub mieszanek surowcowych do paliwa lotniczego pochodzenia organicznego
EP2651557A4 (en) * 2010-12-16 2014-07-02 En Technologies Inc CATALYSTS, PROCESSES FOR PREPARING CATALYST, DEOXYGENATION METHODS, AND SYSTEMS FOR FUEL PRODUCTION
US20120203040A1 (en) 2011-02-03 2012-08-09 University Of Louisville Research Foundation, Inc. Process for the Production of Paraffinic Hydrocarbons
DK2679657T3 (en) * 2012-06-27 2016-03-21 Alfa Laval Corp Ab A method of separating FINE CATALYST material from an oil stream
DE102012112026A1 (de) * 2012-12-10 2014-06-12 Gea Mechanical Equipment Gmbh Verfahren zur Aufbereitung von Schweröl
US9162938B2 (en) 2012-12-11 2015-10-20 Chevron Lummus Global, Llc Conversion of triacylglycerides-containing oils to hydrocarbons
CN110218577A (zh) 2013-03-13 2019-09-10 巴斯夫公司 基于含fe的分子筛的加氢异构化催化剂
US20140275670A1 (en) 2013-03-14 2014-09-18 Ted R. Aulich Process for low-hydrogen-consumption conversion of renewable feedstocks to alkanes
US9283572B2 (en) 2013-09-09 2016-03-15 Derrick Corporation Centrifuge with automatic sampling and control and method thereof
WO2015107487A1 (en) 2014-01-20 2015-07-23 Eni S.P.A. Process for the production of hydrocarbon fractions from mixtures of a biological origin
US9771523B2 (en) * 2014-07-11 2017-09-26 Triton Emission Solutions Inc. Fuel cleaning system and method for a ship
KR101607868B1 (ko) 2014-10-14 2016-03-31 한국에너지기술연구원 비식용 유지를 이용한 고품질 바이오항공유 제조방법 및 이에 의해 제조된 바이오항공유
US9914880B2 (en) 2015-12-04 2018-03-13 Uop Llc Method of increasing the yield of aviation fuel from renewable feedstocks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203218A (zh) * 2008-10-31 2011-09-28 财团法人北九州产业学术推进机构 生物柴油燃料的制备方法及其制备装置、用于该方法的油脂脱羧分解催化剂
CN102482595A (zh) * 2009-08-31 2012-05-30 吉坤日矿日石能源株式会社 航空燃料油基材的制造方法及航空燃料油组合物

Also Published As

Publication number Publication date
CN112189046A (zh) 2021-01-05
KR102487444B1 (ko) 2023-01-10
US11603501B2 (en) 2023-03-14
JP2020090660A (ja) 2020-06-11
JPWO2019221287A1 (ja) 2020-05-28
BR112020022177A2 (pt) 2021-02-02
EP3795657A1 (en) 2021-03-24
PH12020551965A1 (en) 2021-09-13
BR112020022177B1 (pt) 2024-02-06
EP3795657A4 (en) 2021-06-23
JP6635362B1 (ja) 2020-01-22
KR20200141087A (ko) 2020-12-17
WO2019221287A1 (ja) 2019-11-21
SG11202011450RA (en) 2020-12-30
US20210171844A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
CN112189046B (zh) 生物喷气燃料的制造方法
JP7532487B2 (ja) 脂肪酸の前分画法による再生可能なベースオイルおよびディーゼルの製造
Lin et al. The production of bio-jet fuel from palm oil derived alkanes
US9458396B2 (en) Process for conversion of feedstocks obtained from renewable sources based on marine fuels
US8324439B2 (en) Method of converting feedstocks from renewable sources to good-quality diesel fuel bases using a zeolite type catalyst
KR101673597B1 (ko) 니켈 및 몰리브덴에 기초한 촉매를 사용하며, 탈카르복실화 전환이 제한되는, 재생 가능한 공급원으로부터 유래하는 공급물의 수소화탈산소화 방법
EP2177587B1 (en) Deoxygenation of materials of biological origin
CA2669538C (en) Process for producing hydrocarbon fractions from mixtures of a biological origin
US8282815B2 (en) Method of converting feedstocks from renewable sources to good-quality diesel fuel bases using a zeolite catalyst without intermediate gas-liquid separation
US8329970B2 (en) Deoxygenation of materials of biological origin
US20150068109A1 (en) Hydrocarbon composition useful as a fuel and fuel oil containing a petroleum component and a component of a biological origin
EP2612900B1 (en) Method for producing renewable fuel using supercritical fluid
KR101607868B1 (ko) 비식용 유지를 이용한 고품질 바이오항공유 제조방법 및 이에 의해 제조된 바이오항공유
Kasza et al. Isomerization of paraffin mixtures produced from sunflower oil
US20140275670A1 (en) Process for low-hydrogen-consumption conversion of renewable feedstocks to alkanes
US10457875B2 (en) H2 and bio-fuels production from renewable feedstocks
JP7530097B2 (ja) 液体炭化水素燃料の製造方法
US9353319B2 (en) Methods for producing diesel range materials having improved cold flow properties
EP2918660A1 (en) Process for low-hydrogen-consumption conversion of renewable feedstocks to alkanes
Andrade et al. Research Article Vegetable Oil and Derivates Hydroprocessing Using Ni as Catalyst for the Production of Hydrocarbons
CN118126741A (zh) 一种由生物质原料生产轻烃和轻油的方法
Pore Dia 900 dE2o

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant