CN112169842B - 新型高效负载型Au/GO催化剂及其制备方法和应用 - Google Patents

新型高效负载型Au/GO催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112169842B
CN112169842B CN202011162088.9A CN202011162088A CN112169842B CN 112169842 B CN112169842 B CN 112169842B CN 202011162088 A CN202011162088 A CN 202011162088A CN 112169842 B CN112169842 B CN 112169842B
Authority
CN
China
Prior art keywords
catalyst
supported
preparation
reaction
pph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011162088.9A
Other languages
English (en)
Other versions
CN112169842A (zh
Inventor
王大伟
叶冬冬
桑欣欣
朱观鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202011162088.9A priority Critical patent/CN112169842B/zh
Publication of CN112169842A publication Critical patent/CN112169842A/zh
Application granted granted Critical
Publication of CN112169842B publication Critical patent/CN112169842B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/46Oxygen atoms
    • C07D213/50Ketonic radicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/18Gold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种新型高效负载型Au/GO催化剂及其制备方法和应用,属于负载型催化剂的制备及应用领域。制备方法主要包括三个步骤:(1)制备PPh3AuCl(2)将PPh3AuCl与AgOTf混合于DCM中,制备吡啶咪唑金配合物(3)将步骤(2)得到的吡啶咪唑金配合物溶于无水乙醇中并加入到GO的无水乙醇溶液中,制备负载型Au/GO催化剂。通过本发明提供的制备方法得到的负载型Au/GO催化剂应用在双酚F合成工艺和取代酮类化合物的合成中,催化效率高,产物选择性高,而且催化剂可回收再利用,使用效率高,催化剂使用寿命长,催化反应产率高。

Description

新型高效负载型Au/GO催化剂及其制备方法和应用
技术领域
本发明属于负载型催化剂的制备及应用领域,具体涉及一种新型高效负载型Au/GO催化剂及其制备方法和应用。
背景技术
金属催化剂主要是指以金属为主要活性组分的固体催化剂。按催化剂的活性组分是否负载在载体上,催化剂可分为负载型金属催化剂和非负载型金属催化剂。将金属组分负载在载体上发挥催化作用即为负载型金属催化剂,传统的纳米金属催化剂一般都是用还原剂将金属盐还原成纳米粒子,但这种合成方法所用到的还原剂对环境来说并不是很友好,而且金属纳米催化剂存在催化性能低,金属颗粒易聚集,不易回收等问题。通过将金属纳米颗粒负载在载体上可以很好的解决这个问题,把金属组分负载在载体,可以提高金属组分的分散度和热稳定性。而且,相对非负载的金属催化剂而言,负载型金属催化剂具有很多优点,例如金属催化剂活性组分有更高的分散度和更好的粒度分布、载体与金属还可能存在着协同效应,表现出较高的催化活性,同时降低了催化活性组分金属的消耗量,降低了实验和生产成本。
另外,氧化石墨烯是一种性能优异的新型碳材料,具有较高的比表面积和表面丰富的官能团。本发明通过将贵金属与配体进行配位,并将之负载在氧化石墨烯上,制备得到目前尚未有研究报道的具有更高效催化性能的负载型金属催化剂Au/GO。
发明内容
本发明的目的是提供一种新型高效负载型Au/GO催化剂及其制备方法和应用,以解决现有金属纳米催化剂催化活性低,金属颗粒易团聚,对环境不友好,不易回收等技术问题。本发明提供的一个技术方案为:一种新型高效负载型Au/GO催化剂的制备方法,包括以下步骤:
(1)PPh3AuCl的制备:在圆底烧瓶中加入HAuCl4,随后加入无水乙醇得到混合液,然后将PPh3溶于无水乙醇并加热至50-70℃后缓慢加入到上述的混合液中,室温下搅拌,并将得到的产品减压过滤,过滤固体用DCM溶解稀释,并用石油醚重结晶得到纯固体PPh3AuCl;
(2)吡啶咪唑金配合物的制备:将步骤(1)得到的PPh3AuCl与AgOTf混合于DCM中,室温下加入苯并咪唑配体,4-5h后,反应液通过硅藻土过滤,将得到的滤液浓缩后,通过石油醚重结晶得到金配合物;
(3)Au/GO的制备:将步骤(2)得到的吡啶咪唑金配合物溶于无水乙醇中并加入到GO的无水乙醇溶液中,在80℃温度条件下,回流12~24h,反应液经离心,洗涤,干燥,得到负载型Au/GO催化剂。
进一步地,新型高效负载型Au/GO催化剂的制备方法,包括以下步骤:
(1)PPh3AuCl的制备:在50mL的圆底烧瓶中加入412mg,1.0mmol的HAuCl4,随后加入4~6mL的无水乙醇得到混合液,随后将524mg,2.0mmol的PPh3溶于8mL的无水乙醇并加热至50-70℃后缓慢加入到上述的混合液中,室温下搅拌30min,并观察到颜色的变化,将得到的产品减压过滤,过滤固体用5mL DCM溶解稀释,并用50mL石油醚重结晶得到纯固体PPh3AuCl;
(2)吡啶咪唑金配合物的制备:取494mg,1.0mmol步骤(1)得到的PPh3AuCl与1.0mmol AgOTf混合于5mL的DCM中,室温下,5min后加入苯并咪唑配体,4-5h后,反应液通过硅藻土过滤,将得到的滤液浓缩后,通过石油醚重结晶得到吡啶咪唑金配合物;
(3)Au/GO的制备:将10mg步骤(2)得到的吡啶咪唑金配合物溶于无水乙醇中并加入到100mg GO的无水乙醇溶液中回流12~24h,反应液经离心,洗涤,干燥,得到负载型Au/GO催化剂。
作为本发明的第二个方面,提供一种根据上述制备方法得到的新型高效负载型Au/GO催化剂。
作为本发明的第三个方面,提供一种上述新型高效负载型Au/GO催化剂在双酚F合成工艺中的应用。
进一步地,上述应用,具体包括以下步骤:
S1:将苯酚与负载型Au/GO催化剂加入到反应容器中,室温下搅拌均匀,加入甲苯,再慢慢的加入37%甲醛水溶液,加热至110~120℃,保温反应时间为4~6h,反应结束后将得到的反应液分层,油层为反应粗产品;
S2:通过过滤S1中的反应液回收得到负载型Au/GO催化剂,把所得粗产品旋蒸回收溶剂、减压蒸馏回收剩余的苯酚,剩余产品用回收的甲苯重新结晶,得到4,4二羟基二苯基甲烷。
更进一步地,上述应用,具体包括以下步骤:
S1:将0.5mmol苯酚、50mg负载型Au/GO催化剂加入到反应容器中,室温下搅拌均匀,加入100mL甲苯,再慢慢的加入0.1-0.2mmol的37%甲醛水溶液,加热至110~120℃,保温反应时间为4~6小时,反应结束后将得到的反应液分层,油层为反应粗产品;
S2:通过过滤S1中的反应液回收得到负载型Au/GO催化剂,把所得粗产品旋蒸回收溶剂、减压蒸馏回收剩余的苯酚,剩余产品用回收的甲苯重新结晶,得到4,4二羟基二苯基甲烷。
作为本发明的第四个方面,提供一种上述新型高效负载型Au/GO催化剂在合成取代酮类化合物中的应用。
与现有技术相比,本发明的有益效果是:
1.本发明提供的负载型Au/GO催化剂可以显著提高催化剂活性,而且催化剂可回收再利用,使用效率高,催化剂使用寿命长,催化反应产率高。
2.将负载型Au/GO催化剂应用于双酚F的高效催化合成工艺中,取得了较高的产率,产物的选择性较高,达到了94%。
3.该负载型Au/GO催化剂应用于取代酮类化合物的合成中,产率较高,而且产物的选择性很高,达到了99%。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是负载型Au/GO催化剂的SEM照片。
图2是负载型Au/GO催化剂EDS图谱。
图3是负载型Au/GO催化剂的XPS图谱。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
以下,申请人对本发明做了具体实验,并且详细描述了负载型催化剂应用在双酚F合成当中的实验过程。这些仅用于详尽说明本发明,并不以任何方式限制发明的范围。
实施例1
本实施例按以下方法制备新型高效负载型Au/GO催化剂:
(1)PPh3AuCl的制备:在50mL的圆底烧瓶中加入412mg,1.0mmol的HAuCl4,随后加入4~6mL的无水乙醇得到混合液,随后将524mg,2.0mmol的PPh3溶于8mL的无水乙醇并加热至50-70℃后缓慢加入到上述的混合液中,室温下搅拌30min,并观察到颜色的变化,将得到的产品减压过滤,过滤固体用5mL DCM溶解稀释,并用50mL石油醚重结晶得到纯固体PPh3AuCl;
(2)吡啶咪唑金配合物的制备:取494mg,1.0mmol步骤(1)得到的PPh3AuCl与1.0mmol AgOTf混合于5mL的DCM中,室温下,5min后加入苯并咪唑配体,4-5h后,反应液通过硅藻土过滤,将得到的滤液浓缩后,通过石油醚重结晶得到吡啶咪唑金配合物;
(3)负载型Au/GO催化剂的制备:将10mg步骤(2)得到的吡啶咪唑金配合物溶于无水乙醇中并加入到100mg GO的乙醇溶液中回流12~24h,反应液经离心,洗涤,干燥,得到负载型Au/GO催化剂。
如图1所示,是负载型Au/GO催化剂的SEM照片,可以显示出催化剂负载到载体的表面,催化剂分散的比较均匀。
如图2所示,是负载型Au/GO催化剂的EDS图谱,从EDS图谱可以观察到Au清晰的负载到了载体上,同时在EDS图谱中还观察到了其他元素的存在。
如图3所示,是负载型Au/GO催化剂的XPS图谱,XPS图谱中Au的特征信号峰是非常明显的,此外还发现了载体GO的信号峰。所以,从这些催化剂的表征可以清楚的证明了Au成功负载到了GO载体上。
本实施例还提供将上述方法得到的负载型Au/GO催化剂用于双酚F的合成工艺中,包括以下工艺步骤:
S1:将0.5mmol苯酚、50mg负载型Au/GO催化剂加入到反应容器中,室温下搅拌均匀,加入100mL甲苯,再慢慢的加入0.1mmol的37%甲醛水溶液,加热至110℃,保温反应时间为4小时,反应结束后将得到的反应液分层,油层为反应粗产品。
S2:通过过滤S1中的反应液回收得到负载型Au/GO催化剂,把所得粗产品旋蒸回收溶剂、减压蒸馏回收剩余的苯酚,剩余产品用回收的甲苯重新结晶两次,便可以得到4,4二羟基二苯基甲烷,即双酚F,产率:70%,产物选择性达到了93%。
实施例2
本实施例提供的新型高效负载型Au/GO催化剂的制备方法同实施例1。
本实施例还提供将上述负载型Au/GO催化剂用于双酚F的合成工艺中,包括以下工艺步骤:
S1:将0.5mmol苯酚、50mg上述负载型Au/GO催化剂加入到反应容器中,室温下搅拌均匀,加入100mL甲苯,再慢慢的加入0.2mmol的37%甲醛水溶液,加热至120℃,反应时间为4小时,反应结束后将得到的反应液分层,油层为反应粗产品。
S2:通过过滤S1中的反应液回收得到负载型Au/GO催化剂,把所得粗产品旋蒸回收溶剂、减压蒸馏回收剩余的苯酚,剩余产品用回收的甲苯重新结晶两次,便可以得到4,4二羟基二苯基甲烷,即双酚F,产率:75%。产物选择性达到了92%。
实施例3
本实施例提供的新型高效负载型Au/GO催化剂所用制备方法同实施例1。本实施例又提供将上述负载型Au/GO催化剂用于双酚F的合成工艺中,包括以下工艺步骤:
S1:将0.5mmol苯酚、50mg上述负载型Au/GO催化剂加入到反应容器中,室温下搅拌均匀,加入100mL甲苯,再慢慢的加入0.15mmol的37%甲醛水溶液,加热至120℃,反应时间为6小时,反应结束后将得到的反应液分层,油层为反应粗产品,
S2:通过过滤S1中的反应液回收得到负载型Au/GO催化剂,把所得粗产品旋蒸回收溶剂、减压蒸馏回收剩余的苯酚,剩余产品用回收的甲苯重新结晶两次,便可以得到4,4二羟基二苯基甲烷,即双酚F,产率:78%,产物选择性达到了94%。
实施例4
本实施例提供的新型高效负载型Au/GO催化剂所用制备方法同实施例1。本实施例还提供将上述负载型Au/GO催化剂用于酮和醇反应合成取代酮的方法中,包括以下步骤:
在氮气保护下,在25mL Schlenk管中加入苯乙酮(240mg),4-羟甲基吡啶(262mg),Au/GO催化剂(50mg),碳酸铯(326mg),加入3.0mL叔戊醇;反应液于110℃反应48h,产生的溶液用300~400目硅胶柱分离(洗脱液为1:20的乙酸乙酯/石油醚),旋转蒸发除去溶剂后,即得到对应产物,1-苯基-3(4-吡啶)-丙酮。产率:94%。产物选择性达到了98%。
实施例5
本实施例提供的新型高效负载型Au/GO催化剂所用制备方法同实施例1。本实施例还提供将上述负载型Au/GO催化剂用于酮和醇反应合成取代酮的方法中,包括以下步骤:
在氮气保护下,在25mL Schlenk管中加入苯乙酮(240mg),4-羟甲基吡啶(262mg),Au/GO催化剂(50mg),碳酸铯(326mg),加入3.0mL叔戊醇;反应液于80℃反应72h,产生的溶液用300~400目硅胶柱分离(洗脱液为1:20的乙酸乙酯/石油醚),旋转蒸发除去溶剂后,即得到对应产物,1-苯基-3(4-吡啶)-丙酮。产率:89%。产物选择性达到了99%。
实施例6
本实施例提供的新型高效负载型Au/GO催化剂所用制备方法同实施例1。本实施例还提供将上述负载型Au/GO催化剂用于酮和醇反应合成取代酮的方法中,包括以下步骤:
在氮气保护下,在25mL Schlenk管中加入苯乙酮(240mg),4-羟甲基吡啶(262mg),Au/GO催化剂(50mg),碳酸铯(326mg),加入3.0mL叔戊醇;反应液于130℃反应60h,产生的溶液用300~400目硅胶柱分离(洗脱液为1:20的乙酸乙酯/石油醚),旋转蒸发除去溶剂后,即得到对应产物,1-苯基-3(4-吡啶)-丙酮。产率:96%,产物选择性达到了99%。
实施例7
本实施例提供的新型高效负载型Au/GO催化剂所用制备方法同实施例1。本实施例还提供将上述负载型Au/GO催化剂用于酮和醇反应合成取代酮的方法中,包括以下步骤:
在氮气保护下,在25mL Schlenk管中加入苯乙酮(240mg),汴醇(2mL),Au/GO催化剂(50mg),碳酸铯(326mg);反应液于130℃反应60h,产生的溶液用300~400目硅胶柱分离(洗脱液为1:20的乙酸乙酯/石油醚),旋转蒸发除去溶剂后,即得到对应产物,1-苯基-3-苯基-1-丙酮。产率:91%,产物选择性达到了99%。

Claims (7)

1.一种高效负载型Au/GO催化剂的制备方法,其特征在于,包括以下步骤:
(1)PPh3AuCl的制备:在容器中加入HAuCl4,随后加入无水乙醇得到混合液,然后将PPh3溶于无水乙醇并加热至50-70℃后缓慢加入到所述混合液中,室温下搅拌,并将得到的产品减压过滤,过滤固体用DCM溶解稀释,并用石油醚重结晶得到纯固体PPh3AuCl;
(2)吡啶咪唑金配合物的制备:将步骤(1)得到的PPh3AuCl与AgOTf混合于DCM中,室温下加入吡啶咪唑配体,4-5h后,反应液通过硅藻土过滤,将得到的滤液浓缩后,通过石油醚重结晶得到吡啶咪唑金配合物;
(3)负载型Au/GO催化剂的制备:将步骤(2)得到的吡啶咪唑金配合物溶于无水乙醇中并加入到GO的无水乙醇溶液中,在80℃温度条件下,回流12~24h,反应液经离心,洗涤,干燥,得到负载型Au/GO催化剂。
2.根据权利要求1所述的高效负载型Au/GO催化剂的制备方法,其特征在于,包括以下步骤:
(1)PPh3AuCl的制备:在50mL的圆底烧瓶中加入412mg,1 .0mmol的HAuCl4,随后加入4~6mL的无水乙醇得到混合液,随后将524mg,2 .0mmol的PPh3溶于8mL的无水乙醇并加热至50-70℃后缓慢加入到上述的混合液中,室温下搅拌30min,将得到的产品减压过滤,过滤固体用5mL DCM溶解稀释,并用50mL石油醚重结晶得到纯固体PPh3AuCl;
(2)吡啶咪唑金配合物的制备:取494mg,1 .0mmol步骤(1)得到的PPh3AuCl与1 .0mmolAgOTf混合于5mL的DCM中,室温下,5min后加入吡啶咪唑配体,4-5h后,反应液通过硅藻土过滤,将得到的滤液浓缩后,通过石油醚重结晶得到吡啶咪唑金配合物;
(3)负载型Au/GO催化剂的制备:将10mg步骤(2)得到的吡啶咪唑金配合物溶于无水乙醇中并加入到100mg GO的无水乙醇溶液中回流12~24h,反应液经离心,洗涤,干燥,得到负载型Au/GO催化剂。
3.一种根据权利要求1或2所述制备方法得到的高效负载型Au/GO催化剂。
4.根据权利要求3所述高效负载型Au/GO催化剂在双酚F合成工艺中的应用。
5.根据权利要求4所述的高效负载型Au/GO催化剂在双酚F合成工艺中的应用,其特征在于,包括以下步骤:
S1:将苯酚与负载型Au/GO催化剂加入到反应容器中,室温下搅拌均匀,加入甲苯,再慢慢的加入37%甲醛水溶液,加热至110~120℃,保温反应时间为4~6h,反应结束后将得到的反应液分层,油层为反应粗产品;
S2:通过过滤S1中的反应液回收得到负载型Au/GO催化剂,把所得粗产品旋蒸回收溶剂、减压蒸馏回收剩余的苯酚,剩余产品用回收的甲苯重新结晶,便可以得到4,4二羟基二苯基甲烷。
6.根据权利要求4所述的高效负载型Au/GO催化剂在双酚F合成工艺中的应用,其特征在于,包括以下步骤:
S1:将0 .5mmol苯酚、50mg负载型Au/GO催化剂加入到反应容器中,室温下搅拌均匀,加入100mL甲苯,再慢慢的加入0 .1-0 .2mmol的37%甲醛水溶液,加热至110~120℃,保温反应时间为4~6小时,反应结束后将得到的反应液分层,油层为反应粗产品;
S2:通过过滤S1中的反应液回收得到负载型Au/GO催化剂,把所得粗产品旋蒸回收溶剂、减压蒸馏回收剩余的苯酚,剩余产品用回收的甲苯重新结晶,得到4,4二羟基二苯基甲烷。
7.根据权利要求4所述的高效负载型Au/GO催化剂在合成取代酮类化合物中的应用。
CN202011162088.9A 2020-10-27 2020-10-27 新型高效负载型Au/GO催化剂及其制备方法和应用 Active CN112169842B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011162088.9A CN112169842B (zh) 2020-10-27 2020-10-27 新型高效负载型Au/GO催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011162088.9A CN112169842B (zh) 2020-10-27 2020-10-27 新型高效负载型Au/GO催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112169842A CN112169842A (zh) 2021-01-05
CN112169842B true CN112169842B (zh) 2021-12-21

Family

ID=73922821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011162088.9A Active CN112169842B (zh) 2020-10-27 2020-10-27 新型高效负载型Au/GO催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112169842B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107626308B (zh) * 2017-08-30 2020-08-04 江南大学 一种用于co2环加成反应和合成双酚f的水滑石负载掺杂金催化剂及制备方法
CN107670663B (zh) * 2017-08-30 2020-07-03 江南大学 一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法
CN107552093B (zh) * 2017-08-30 2020-09-04 江南大学 一种用于双酚f和酯化反应的负载铱催化剂及制备方法

Also Published As

Publication number Publication date
CN112169842A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN111269086B (zh) 一种原子级分散钌催化剂在催化加氢上的应用方法
CN111995635B (zh) 壳聚糖负载铜膜材料催化制备有机硅化合物的方法
CN115646501B (zh) 熔融盐法合成的钴单原子催化剂及其应用
Qian et al. Synthesis of novel and room temperature-operable palladium complexes on graphene oxide: An efficient recyclable catalyst for Suzuki-Miyaura coupling reactions
Wang et al. Pd NPs encapsulated by COF in nitrogen-doped macroporous chitosan carbon microspheres act as an efficient and recyclable multifunctional catalyst
CN112169842B (zh) 新型高效负载型Au/GO催化剂及其制备方法和应用
CN107684921B (zh) 一种用于tmbq转化为tmhq的催化剂及其制备方法
Sarmah et al. Selective oxidation of alcohols catalysed by a cubane-like Co (III) oxo cluster immobilised on porous organomodified silica
CN112774690B (zh) 一种负载型单原子贵金属催化剂及其制备方法和应用
Liu et al. Bulky α-diimine palladium complexes supported graphene oxide as heterogeneous catalysts for Suzuki-Miyaura reaction
CN110152739B (zh) 原位负载钯纳米颗粒的多孔有机复合物、合成方法及应用
Wang et al. Selective transfer hydrogenation of nitrobenzaldehydes over an extremely active synergistic MOF@ Pt@ MOF catalyst
Song et al. Recent advance in selective hydrogenation reaction catalyzed by biomass-derived non-noble metal nanocomposites
CN114939438B (zh) 一种烯属不饱和羰基化合物选择性加氢的方法及其催化剂
CN112452324B (zh) 一种银钌双金属掺杂石墨烯催化剂及其制备方法与应用
CN107744834B (zh) 一种用于烯烃环氧化和双酚f合成的负载钯镍催化剂及制备方法
CN112973791B (zh) 席夫碱修饰的纤维素负载钯催化剂的制备方法
CN113856720B (zh) 一种非均相氢甲酰化催化剂及其制备方法和应用
CN110090648B (zh) 一种还原氧化石墨烯负载的铜钯氧化物纳米颗粒及其制备方法和应用
Naghshbandi et al. Graphene quantum dots incorporated ZIF‐67 for stabilization of Au nanoparticles: Efficient catalyst for A3‐coupling and nitroarenes reduction reactions
CN112774662B (zh) 一种单原子催化剂及其制备方法和应用
CN102372745A (zh) 一种氢甲酰化催化剂前体的制备方法
CN107827693B (zh) 石墨烯负载钯/铂催化sp3C-H键偶联合成1,2-二苯乙烷衍生物的方法
CN114105901B (zh) 基于Cd(Ⅱ)的金属有机框架、复合催化剂及其制备方法与应用
CN105149000A (zh) 一种负载型环状金属铱催化剂及其制备方法和在二氢吲哚类化合物脱氢反应中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant