CN107670663B - 一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法 - Google Patents

一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法 Download PDF

Info

Publication number
CN107670663B
CN107670663B CN201710765039.6A CN201710765039A CN107670663B CN 107670663 B CN107670663 B CN 107670663B CN 201710765039 A CN201710765039 A CN 201710765039A CN 107670663 B CN107670663 B CN 107670663B
Authority
CN
China
Prior art keywords
catalyst
auagpd
stirring
nanoparticles
etoh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710765039.6A
Other languages
English (en)
Other versions
CN107670663A (zh
Inventor
王大伟
叶冬冬
夏晓峰
冷炎
黄荣辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201710765039.6A priority Critical patent/CN107670663B/zh
Publication of CN107670663A publication Critical patent/CN107670663A/zh
Application granted granted Critical
Publication of CN107670663B publication Critical patent/CN107670663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/26Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydration of carbon-to-carbon triple bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种新型的负载型多金属纳米催化剂AuAgPd@HT并将其应用于双酚F的合成工艺和炔醇的水解反应中。分步制备了Au纳米颗粒,Au@HT,AuAg@HT,AuAgPd@HT。本发明的优点在于,负载型多金属催化剂的活性较高,可回收再利用,使用寿命长。因此,该负载型多金属纳米催化剂的设计合成具有较好的工业应用前景。

Description

一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备 方法
技术领域
本发明公布了一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法。传统的单金属催化剂具有催化性能低,金属颗粒易聚集,不易回收等问题,通过将金属还原成纳米颗粒并负载在载体上可以很好的解决这个问题。本专利通过对多个贵金属还原成纳米颗粒并成功负载在水滑石上进行了阐述,成功制备了高效,简单易回收,使用寿命长的新型负载型多金属催化剂。属化学材料与药物领域。
背景技术
金属催化剂主要是指以金属为主要活性组分的固体催化剂。按催化剂的活性组分是否负载在载体上,催化剂可分为负载型金属催化剂和非负载型金属催化剂。把金属组分负载在载体,可以提高金属组分的分散度和热稳定性。按照催化剂的组分是几种催化剂又可以把催化剂分为单金属和多金属催化剂;相对非负载的金属催化剂而言,负载型金属催化剂具有很多优点,例如金属催化剂活性组分有更高的分散度和更好的粒度分布、载体与金属还可能存在着协同效应,表现出较高的催化活性,同时降低了催化活性组分金属的消耗量,降低了实验和生产成本。
天然的水滑石矿物早在十九世纪四十年代被瑞典人发现,并于一百年后,科学家将金属盐和碱金属氢氧化物合成层状双氢氧化合物,同时提出了双层结构的构想。随着科学家对水滑石的深入研究,发现水滑石(HT)是一种特性很好的催化剂和催化剂载体,并在碱催化,氧化还原催化中起着重要的作用。我们通过将贵金属还原成纳米颗粒,并负载在水滑石上,可以制备负载型多金属催化剂。相比于其他的单金属催化剂,该催化剂具有更高效的催化性能。本发明在大量的理论基础上,设计合成了一种用于炔醇水解和氧化反应的复合AuAgPd催化剂。该负载型催化剂AuAgPd@HT目前尚未报道。
发明内容
本发明公开了一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法。在我们的研究中发现,这种负载型纳米催化剂对于双酚F合成和炔醇水解的催化性能较好。
本发明提供了一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法。其特征在于,包括如下步骤:(1)AuPPh2MeCl的制备:在50mL的圆底烧瓶中加入适量的HAuCl4(412mg,1.0mmol),随后加入适量的EtOH(4~6mL)。随后将PPh2Me(400mg,2.0mmol)溶于1~20mL的EtOH于60~100℃下,并缓慢加入到上述的混合液中。室温下搅拌1~24h,并观察到颜色的变化。将粗产品减压过滤。最后,固体用1~20mL二氯甲烷溶解稀释,并用1~100mL石油醚重结晶得到纯固体。(2)Au纳米颗粒的制备:将AuPPh2MeCl(432mg,1.0mmol)和十二硫醇(0.5~10mL)混合于1~100mL的甲苯中,并形成澄清的溶液。将t-BuOH(741mg,10mmol)加入到上述溶液中。混合物在50~200℃下搅拌1~24h并冷却至室温。随后,将1~100mL的EtOH加入到上述溶液中,析出Au纳米颗粒,并用EtOH洗涤五次,得到纯产品并置于真空下干燥。(3)Au/HT负载型纳米催化剂的制备:室温下,将600mg的水滑石,1~200mg的Au纳米颗粒与1~50mL的甲苯混合并搅拌1~12h,随后通过离心离去溶剂,并将固体洗涤三遍。最后将固体置于冷冻干燥器中过夜,得到目标产物。(4)Au-Ag/HT负载型纳米催化剂的制备:取AgBF4(195mg,1.0mmol)和十二硫醇(0.5~10mL)混合于1~100mL的甲苯中,并形成澄清的溶液。将t-BuOH(741mg,10mmol)加入到上述溶液中。混合物在50~120℃下搅拌0.5~12h并冷却至室温。随后,将1~200mL的EtOH加入到上述溶液中,析出Ag纳米颗粒,并用EtOH洗涤五次,得到纯产品并置于真空下干燥。取1~50mg的Ag纳米颗粒与上述的Au/HT催化剂置于1~50mL的甲苯中混合并搅拌0.5~24h,随后通过离心离去溶剂,并将固体洗涤三遍。最后将固体置于冷冻干燥器中过夜,得到目标产物。(5)Au-Ag-Pd/HT负载型纳米催化剂的制备:取PdCl2(177mg,1.0mmol)和十二硫醇(0.5~10mL)混合于1~150mL的甲苯中,并形成澄清的溶液。将t-BuOH(741mg,10mmol)加入到上述溶液中。混合物在50~150℃下搅拌1~48h并冷却至室温。随后,将1~200mL的EtOH加入到上述溶液中,析出Pd纳米颗粒,并用EtOH洗涤五次,得到纯产品并置于真空下干燥。取1~20mg的Pd纳米颗粒与上述的Au-Ag/HT催化剂置于1~50mL的甲苯中混合并搅拌1~24h,随后通过离心离去溶剂,并将固体洗涤三遍。最后将固体置于冷冻干燥器中过夜,得到目标产物AuAgPd@HT。
将所得催化剂AuAgPd@HT应用在双酚F合成中:将苯酚(5mmol)、AuAgPd@HT(50mg)加入到反应容器中,加入20-100mL四氢呋喃,室温下搅拌,慢慢的加入37%甲醛水溶液,搅拌均匀后再加入一定量的10%的盐酸溶液,加热至30-50℃。反应时间为2-12小时。反应结束后将得到的反应液分层,油层为反应粗产品。同时通过过滤可回收得到复合催化剂AuAgPd@HT。把所得粗产品旋蒸回收溶剂、减压蒸馏回收剩余的苯酚,便可以得到4,4二羟基二苯基甲烷。
将所得催化剂AuAgPd@HT应用在炔醇水解中:将苯基炔醇(1mmol)、AuAgPd@HT(50mg)加入到反应容器中,加入10-20mL四氢呋喃,室温下搅拌10分钟,之后加入1mL水,然后加热反应40-60℃。反应时间为2-12小时。反应结束后,得到粗产物。
附图说明
图1本发明制备的复合负催化剂AuAgPd@HT的红外光谱图。
具体实施方式
将上述所述的复合负催化剂AuAgPd@HT应用与双酚F的合成和炔醇水解的反应工艺中。本发明提供的这种负载型催化剂可以显著提高催化剂活性,而且催化剂可回收再利用,使用效率高,催化剂使用寿命长。
以下,申请人对本发明做了具体实验,并且详细描述了负载型催化剂应用在双酚F合成和炔醇水解当中的实验过程。这些仅用于详尽说明本发明,并不以任何方式限制发明的范围。
实施例一:一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法,包括以下工艺步骤:(1)AuPPh2MeCl的制备:在50mL的圆底烧瓶中加入适量的HAuCl4(412mg,1.0mmol),随后加入适量的EtOH(6mL)。随后将PPh2Me(400mg,2.0mmol)溶于20mL的EtOH于60℃下,并缓慢加入到上述的混合液中。室温下搅拌24h,并观察到颜色的变化。将粗产品减压过滤。最后,固体用20mL二氯甲烷溶解稀释,并用100mL石油醚重结晶得到纯固体。(2)Au纳米颗粒的制备:将AuPPh2MeCl(432mg,1.0mmol)和十二硫醇(10mL)混合于100mL的甲苯中,并形成澄清的溶液。将t-BuOH(741mg,10mmol)加入到上述溶液中。混合物在200℃下搅拌24h并冷却至室温。随后,将100mL的EtOH加入到上述溶液中,析出Au纳米颗粒,并用EtOH洗涤五次,得到纯产品并置于真空下干燥。(3)Au/HT负载型纳米催化剂的制备:室温下,将600mg的水滑石,200mg的Au纳米颗粒与50mL的甲苯混合并搅拌12h,随后通过离心离去溶剂,并将固体洗涤三遍。最后将固体置于冷冻干燥器中过夜,得到目标产物。(4)Au-Ag/HT负载型纳米催化剂的制备:取AgBF4(195mg,1.0mmol)和十二硫醇(10mL)混合于100mL的甲苯中,并形成澄清的溶液。将t-BuOH(741mg,10mmol)加入到上述溶液中。混合物在120℃下搅拌12h并冷却至室温。随后,将200mL的EtOH加入到上述溶液中,析出Ag纳米颗粒,并用EtOH洗涤五次,得到纯产品并置于真空下干燥。取50mg的Ag纳米颗粒与上述的Au/HT催化剂置于50mL的甲苯中混合并搅拌24h,随后通过离心离去溶剂,并将固体洗涤三遍。最后将固体置于冷冻干燥器中过夜,得到目标产物。(5)Au-Ag-Pd/HT负载型纳米催化剂的制备:取PdCl2(177mg,1.0mmol)和十二硫醇(10mL)混合于150mL的甲苯中,并形成澄清的溶液。将t-BuOH(741mg,10mmol)加入到上述溶液中。混合物在150℃下搅拌48h并冷却至室温。随后,将200mL的EtOH加入到上述溶液中,析出Pd纳米颗粒,并用EtOH洗涤五次,得到纯产品并置于真空下干燥。取20mg的Pd纳米颗粒与上述的Au-Ag/HT催化剂置于50mL的甲苯中混合并搅拌24h,随后通过离心离去溶剂,并将固体洗涤三遍。最后将固体置于冷冻干燥器中过夜,得到目标产物AuAgPd@HT。
实施例二:将所得催化剂AuAgPd@HT应用在双酚F合成中:将苯酚(5mmol)、AuAgPd@HT(50mg)加入到反应容器中,加入20mL四氢呋喃,室温下搅拌,慢慢的加入37%甲醛水溶液,搅拌均匀后再加入一定量的10%的盐酸溶液,加热至50℃。反应时间为12小时。反应结束后将得到的反应液分层,油层为反应粗产品。同时通过过滤可回收得到复合催化剂AuAgPd@HT。把所得粗产品旋蒸回收溶剂、减压蒸馏回收剩余的苯酚,便可以得到4,4二羟基二苯基甲烷。
实施例三:将所得催化剂AuAgPd@HT应用在炔醇水解中:将苯基炔醇(1mmol)、AuAgPd@HT(50mg)加入到反应容器中,加入10mL四氢呋喃,室温下搅拌10分钟,之后加入1mL水,然后加热反应60℃。反应时间为12小时。反应结束后,得到产物,产率98%。
实施例四:催化剂的循环使用:
将所得催化剂AuAgPd@HT应用在炔醇水解中:将苯基炔醇(1mmol)、回收的AuAgPd@HT(50mg)加入到反应容器中,加入10mL四氢呋喃,室温下搅拌10分钟,之后加入1mL水,然后加热反应60℃。反应时间为12小时。反应结束后,得到产物,产率96%。

Claims (4)

1.一种用于炔醇水解和氧化反应的AuAgPd@HT催化剂的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)AuPPh2MeCl的制备:在50mL的圆底烧瓶中加入摩尔量为1.0mmol、质量为412mg的HAuCl4,随后加入4~6mL EtOH;随后将摩尔量为2.0mmol、质量为400mg的PPh2Me于60~100℃下溶于1~20mL的EtOH中,并加入到上述的混合液中;室温下搅拌1~24h,并观察到颜色的变化;将粗产品减压过滤;最后,固体用1~20mL二氯甲烷溶解稀释,并用1~100mL石油醚重结晶得到纯固体;
(2)Au纳米颗粒的制备:将摩尔量为1.0mmol、质量为432mg的AuPPh2MeCl和0.5~10mL十二硫醇混合于1~100mL的甲苯中,并形成澄清的溶液;将摩尔量为10mmol、质量为741mg的t-BuOH加入到上述溶液中;混合物在50~200℃下搅拌1~24h并冷却至室温;随后,将1~100mL的EtOH加入到上述溶液中,析出Au纳米颗粒,并用EtOH洗涤五次,得到纯产品并置于真空下干燥;
(3)Au/HT负载型纳米催化剂的制备:室温下,将600mg的水滑石,1~200mg的Au纳米颗粒与1~50mL的甲苯混合并搅拌1~12h,随后通过离心离去溶剂,并将固体洗涤三遍;最后将固体置于冷冻干燥器中过夜,得到目标产物;
(4)Au-Ag/HT负载型纳米催化剂的制备:取摩尔量为1.0mmol、质量为195mg的AgBF4和0.5~10mL十二硫醇混合于1~100mL的甲苯中,并形成澄清的溶液;将摩尔量为10mmol、质量为741mg的t-BuOH加入到上述溶液中;混合物在50~120℃下搅拌0.5~12h并冷却至室温;随后,将1~200mL的EtOH加入到上述溶液中,析出Ag纳米颗粒,并用EtOH洗涤五次,得到纯产品并置于真空下干燥;取1~50mg的Ag纳米颗粒与上述的Au/HT催化剂置于1~50mL的甲苯中混合并搅拌0.5~24h,随后通过离心离去溶剂,并将固体洗涤三遍;最后将固体置于冷冻干燥器中过夜,得到目标产物;
(5)Au-Ag-Pd/HT负载型纳米催化剂的制备:取摩尔量为1.0mmol、质量为177mg的PdCl2和0.5~10mL十二硫醇混合于1~150mL的甲苯中,并形成澄清的溶液;将摩尔量为10mmol、质量为741mg的t-BuOH加入到上述溶液中;混合物在50~150℃下搅拌1~48h并冷却至室温;随后,将1~200mL的EtOH加入到上述溶液中,析出Pd纳米颗粒,并用EtOH洗涤五次,得到纯产品并置于真空下干燥;取1~20mg的Pd纳米颗粒与上述的Au-Ag/HT催化剂置于1~50mL的甲苯中混合并搅拌1~24h,随后通过离心离去溶剂,并将固体洗涤三遍;最后将固体置于冷冻干燥器中过夜,得到目标产物AuAgPd@HT。
2.根据权利要求1所述的制备方法制备得到的AuAgPd@HT催化剂。
3.权利要求2中所述AuAgPd@HT催化剂应用在双酚F合成中:将5mmol苯酚、50mgAuAgPd@HT加入到反应容器中,加入20-100mL四氢呋喃,室温下搅拌,慢慢的加入37wt%甲醛水溶液,搅拌均匀后再加入一定量的10wt%的盐酸溶液,加热至30-50℃;反应时间为2-12小时;反应结束后将得到的反应液分层,油层为反应粗产品;同时通过过滤可回收得到复合催化剂AuAgPd@HT;把所得粗产品旋蒸回收溶剂、减压蒸馏回收剩余的苯酚,便可以得到4,4二羟基二苯基甲烷。
4.权利要求2中所述AuAgPd@HT催化剂应用在炔醇水解中:将1mmol苯基炔醇、50mgAuAgPd@HT加入到反应容器中,加入10-20mL四氢呋喃,室温下搅拌10分钟,之后加入1mL水,然后加热反应40-60℃;反应时间为2-12小时;反应结束后,得到粗产物。
CN201710765039.6A 2017-08-30 2017-08-30 一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法 Active CN107670663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710765039.6A CN107670663B (zh) 2017-08-30 2017-08-30 一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710765039.6A CN107670663B (zh) 2017-08-30 2017-08-30 一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN107670663A CN107670663A (zh) 2018-02-09
CN107670663B true CN107670663B (zh) 2020-07-03

Family

ID=61134155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710765039.6A Active CN107670663B (zh) 2017-08-30 2017-08-30 一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN107670663B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169842B (zh) * 2020-10-27 2021-12-21 江南大学 新型高效负载型Au/GO催化剂及其制备方法和应用
CN112371193B (zh) * 2020-11-20 2021-12-21 江南大学 水滑石负载金镍催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102139212A (zh) * 2011-01-14 2011-08-03 北京化工大学 一种水滑石负载银催化剂的制备方法及其应用
CN103203232A (zh) * 2013-04-16 2013-07-17 北京化工大学 一种高分散负载型纳米贵金属催化剂及其制备方法和应用
CN104437621A (zh) * 2014-12-08 2015-03-25 中国科学院化学研究所 用于炔醇水合反应合成α-羟基酮的催化体系
JP2016163879A (ja) * 2015-02-28 2016-09-08 株式会社フルヤ金属 担持触媒の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102139212A (zh) * 2011-01-14 2011-08-03 北京化工大学 一种水滑石负载银催化剂的制备方法及其应用
CN103203232A (zh) * 2013-04-16 2013-07-17 北京化工大学 一种高分散负载型纳米贵金属催化剂及其制备方法和应用
CN104437621A (zh) * 2014-12-08 2015-03-25 中国科学院化学研究所 用于炔醇水合反应合成α-羟基酮的催化体系
JP2016163879A (ja) * 2015-02-28 2016-09-08 株式会社フルヤ金属 担持触媒の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as catalysts for the Selective Hydrodation of Substituted Alkynes at Room Temperature without Acidic Promoters";Antonio Leyva et al.;《JOC Article》;20090126;第74卷(第5期);2、4 *
"双酚类化合物的合成及应用进展研究";陈小芳等;《广州化工》;20160308;第44卷(第5期);第26-28页 *
"金属纳米颗粒的生长和表面结构调孔的研究";黄元元;《中国博士学位论文全文数据库工程科技I辑》;20150215(第02期);B020-21 *
Antonio Leyva et al.."Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as catalysts for the Selective Hydrodation of Substituted Alkynes at Room Temperature without Acidic Promoters".《JOC Article》.2009,第74卷(第5期),第2067-2074页. *

Also Published As

Publication number Publication date
CN107670663A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
Gholinejad et al. Magnesium oxide supported bimetallic Pd/Cu nanoparticles as an efficient catalyst for Sonogashira reaction
Jiang et al. Two-dimensional graphene-directed formation of cylindrical iron carbide nanocapsules for Fischer–Tropsch synthesis
Zhai et al. Bimetal Co8Ni2 catalyst supported on chitin-derived N-containing carbon for upgrade of biofuels
Jia et al. The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation
CN107670663B (zh) 一种用于炔醇水解和氧化反应的复合AuAgPd催化剂及制备方法
CN111514938B (zh) 一种二氧化碳加氢制甲醇的催化剂及其制备方法
CN113070089B (zh) 一种氮铁共掺杂碳负载的Ni基催化剂的制备方法和应用
CN108993485A (zh) 一种原位负载金属介孔碳微球催化剂的制备方法与应用
Borah et al. On-water synthesis of phenols using biogenic Cu 2 O nanoparticles without using H 2 O 2
CN114829004A (zh) 一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用
CN106795064A (zh) 某些过渡金属超累积性植物用于通过绿色途径还原有机化合物的用途
CN110420662A (zh) 一种可在低温下高效降解秸秆纤维素的复合催化材料及其制备方法与应用
CN101733103B (zh) 一种用羰基镍制备负载型镍系催化剂的方法
CA2020092A1 (en) Transition metal tris-dithiolene and related complexes as precursors to active catalysts
Gholinejad et al. Gold nanoparticles supported on NiO and CuO: The synergistic effect toward enhanced reduction of nitroarenes and A3-coupling reaction
CN108014782A (zh) 一种催化解聚木质素的方法
CN112044473A (zh) 一种高活性双功能催化剂、制备方法及其应用
CN103897166B (zh) 以硅烷化改性分子筛为载体的高分散性戊二酸锌催化剂的制备及其催化行为
CN112452324B (zh) 一种银钌双金属掺杂石墨烯催化剂及其制备方法与应用
CN114082438B (zh) 一种负载型氮掺杂金属基介孔分子筛催化剂及其制备方法和应用
Gholinejad et al. Bimetallic AuNi nanoparticles supported on mesoporous MgO as catalyst for Sonogashira-Hagihara cross-coupling reaction
Pathak et al. Green synthesis of Pd@ rGO nanocomposite using Piper (Piper nigrum) leaf extract and its catalytic activity towards alcohol oxidation in water at room temperature
Tao et al. Arginine-mediated synthesis of highly efficient catalysts for transfer hydrogenations of ketones
Tai et al. In situ hydrodeoxygenation of guaiacol using magnetic catalysts and heterogeneous hydrogen producer
CN116899605B (zh) 一种Co@NCNTs催化剂的制备方法及其在酚类加氢中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant