CN112159516B - 一种无需掺杂和退火的空穴传输材料制备和应用 - Google Patents

一种无需掺杂和退火的空穴传输材料制备和应用 Download PDF

Info

Publication number
CN112159516B
CN112159516B CN202010840684.1A CN202010840684A CN112159516B CN 112159516 B CN112159516 B CN 112159516B CN 202010840684 A CN202010840684 A CN 202010840684A CN 112159516 B CN112159516 B CN 112159516B
Authority
CN
China
Prior art keywords
copolymer
dibromo
bis
hole transport
p3ht
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010840684.1A
Other languages
English (en)
Other versions
CN112159516A (zh
Inventor
宋波
马慧
周祎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010840684.1A priority Critical patent/CN112159516B/zh
Publication of CN112159516A publication Critical patent/CN112159516A/zh
Application granted granted Critical
Publication of CN112159516B publication Critical patent/CN112159516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3244Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing only one kind of heteroatoms other than N, O, S
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种无需掺杂和退火的双空穴传输材料的制备,及其在钙钛矿太阳能电池的应用,属于可持续绿色能源领域。本发明设计和合成了三种全共轭嵌段聚合物,并在其表面引入聚甲基丙烯酸甲酯苯磺酸甜菜碱。这两类材料配合使用,组成p‑i‑n钙钛矿太阳能电池中的双空穴传输层。该空穴传输材料不需要掺杂添加剂,其薄膜的制备过程也不需要退火处理。基于本发明的空穴传输材料的钙钛矿太阳能电池光电转换效率分别高达20.16%,20.05%和17.60%。在25℃的相对湿度为20%的空气中存储1500h后,电池效率可以保持初始效率的90%以上。在85℃氮气环境下存储400小时以后,依然能够保持初始效率的80%以上。

Description

一种无需掺杂和退火的空穴传输材料制备和应用
技术领域
本发明涉及一种无需掺杂和退火的空穴传输材料的制备和应用,及其在钙钛矿太阳能电池的应用,属于可持续绿色能源领域。
背景技术
过去十年,有机-无机杂化钙钛矿太阳能电池光电转换效率迅速攀升;与商业化的硅基太阳能电池相比,钙钛矿太阳能电池在制备工艺和成本控制方面都显示出非常大的优势,从而引起了科学界和商业圈的广泛关注。钙钛矿材料本身具有良好的光电转换性能以及较强的电荷分离能力,但是为了获得高性能稳定的太阳能电池,仍然需要与之相匹配的界面传输层材料。电池的传输层材料不仅要与相邻材料能级匹配,并具备良好的电荷分离和传输能力,还需要其具有钝化钙钛矿薄膜,提高太阳能电池整体稳定性的能力。这些功能同时体现在同一种材料中,对传输层材料提出了非常高的要求。
目前已发展的传输层材料,不能同时满足高光电转换效率和稳定性的太阳能电池的要求。无机空穴传输材料(如NiOx、CuOx,CoO、CuSCN和NiCo2O4等)在稳定性方面有比较大的优势,但是这些材料电导率较低,并且其薄膜需要高温烧制成型,这些不利于太阳能电池的效率提高和成本控制。有机空穴传输材料在成膜性和传输性能方面具有较大的优势。例如,聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(俗称PEDOT:PSS)具有良好的电导率和光透过率,但是该材料酸性和吸湿性较强,容易导致钙钛矿薄膜的分解,从而降低电池的稳定性。目前,科学研究中常用的代表性空穴传输材料是聚[双(4-苯基)(2,4,6-三甲基苯基)胺](俗称PTAA)。 PTAA可以湿法成膜,容易制备;但是这类材料与钙钛矿前驱体溶液表面能不匹配,而且空穴迁移率较低,往往需要有机锂盐添加剂配合使用。这些因素一方面不利于获得高的光电转换效率,另一方面添加剂的使用容易导致钙钛矿薄膜的分解,从而降低电池的使用寿命。从钙钛矿太阳能电池的光电转换效率和稳定性两方面考虑,急需发展成膜性好、制备过程无需掺杂和退火、且具有良好的电荷分离和传输能力的空穴传输层材料。
发明内容
本发明的目的是提供一种无需掺杂和退火的空穴传输材料的制备方法,并将材料应用于钙钛矿太阳能电池,在保持较高的光电转换效率的基础上,进一步提高电池的稳定性。为钙钛矿太阳能电池的大面积制备和规模化生产提供薄膜制备工艺简单、成本低廉的空穴传输材料。
本发明设计和合成了三种全共轭嵌段聚合物,简便起见,分别命名为copolymer1、 copolymer 2和copolymer 3。为了使这三种嵌段聚合物薄膜与钙钛矿前驱体溶液的表面能相匹配,在其表面引入了一种两性离子聚合物,聚甲基丙烯酸甲酯苯磺酸甜菜碱(简称为 PSBMA)。这两类材料配合使用,组成p-i-n钙钛矿太阳能电池中的双空穴传输层。该空穴传输材料不需要掺杂添加剂,其薄膜的制备过程也不需要退火处理。基于copolymer 1、copolymer 2和copolymer 3空穴传输材料的钙钛矿太阳能电池光电转换效率分别高达20.16%, 20.05%和17.60%。同时,相应的电池器件表现出优异的稳定性能。在25℃的相对湿度为 20%的空气中存储1500h后,电池效率可以保持初始效率的90%以上。在85℃氮气环境下存储400小时以后,依然可以保持初始效率的80%以上。这一发明为高效稳定的钙钛矿太阳能电池提供了一种各方面性能优良的空穴传输材料。
本发明的目的是通过下述技术方案实现的。
(1)三种全共轭嵌段聚合物的合成与制备:
copolymer 1、copolymer 2、copolymer 3,其化学结构式为:
Figure BDA0002641270190000021
copolymer 1:R1=C6H13,R2=Si-(C8H17)2
copolymer 2:R1=C6H13,R2=C-(C8H17)2
copolymer 3:R1=C6H13,R2=N-C8H17
两个嵌段长度的比值n:m=5~20。
三种全共轭嵌段共聚物copolymer 1、copolymer 2、copolymer 3的合成方法,包括如下步骤:
制备copolymer 1的方法:2,5-二溴-3-己基噻吩以四氢呋喃(THF)为溶剂,在叔丁基氯化镁(t-BuMgCl)和1,3-双(二苯基膦丙烷)二氯化镍(Ni(dppp)Cl2)为催化剂的条件下合成聚噻吩(P3HT),其中Ni(dppp)Cl2、t-BuMgCl和2,5-二溴-3-己基噻吩的摩尔比为1:98:98 ~1:98:157;再通过P3HT、5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5] 噻二唑、2,6-二溴-4,4-双(2-乙基己基)-4H-硅杂环戊二烯并[3,2-b:4,5-b']二噻吩以氯苯为溶剂,在四(三苯基膦)钯(Pd(PPh3)4)为催化剂的条件下合成copolymer 1,其中Pd(PPh3)4、 P3HT、5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑、2,6-二溴-4,4- 双(2-乙基己基)-4H-硅杂环戊二烯并[3,2-b:4,5-b']二噻吩的摩尔比为1:2:53:50~1:5: 106:100。
制备copolymer 2的方法:2,5-二溴-3-己基噻吩以THF为溶剂,在t-BuMgCl和Ni(dppp)Cl2为催化剂的条件下合成P3HT,其中Ni(dppp)Cl2、t-BuMgCl和2,5-二溴-3-己基噻吩的摩尔比为1:98:98~1:98:157;再通过P3HT、5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基) 苯并[c][1,2,5]噻二唑、2,6-二溴-4,4-双(2-乙基己基)-4H-环戊并[1,2-b:5,4-b]二噻吩以氯苯为溶剂,在Pd(PPh3)4为催化剂的条件下合成copolymer 2,其中Pd(PPh3)4、P3HT、5,6-二氟-4,7- 双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑、2,6-二溴-4,4-双(2-乙基己基)-4H- 环戊并[1,2-b:5,4-b]二噻吩的摩尔比为1:2:53:50~1:5:106:100。
制备copolymer3的方法:2,5-二溴-3-己基噻吩以THF为溶剂,在t-BuMgCl和Ni(dppp)Cl2为催化剂的条件下合成P3HT,其中Ni(dppp)Cl2、t-BuMgCl和2,5-二溴-3-己基噻吩的摩尔比为1:98:98~1:98:157;再通过P3HT、5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基) 苯并[c][1,2,5]噻二唑、2,6-二溴-4,4-(2-辛基)-4H-吡咯并[3,2-B:4,5-B’]二噻吩以氯苯为溶剂,在Pd(PPh3)4为催化剂的条件下合成copolymer 3,其中Pd(PPh3)4、P3HT、5,6-二氟-4,7-双(5- (三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑、2,6-二溴-4,4-(2-辛基)-4H-吡咯并 [3,2-B:4,5-B’]二噻吩的摩尔比为1:2:53:50~1:5:106:100。
(2)钙钛矿太阳能电池的制备,包括如下步骤:
步骤一、前驱体溶液的配制
(a)空穴传输材料的配制
在N2的手套箱中,分别制备一系列不同浓度的copolymer 1、copolymer 2、copolymer 3 氯苯溶液;即分别将copolymer 1、copolymer 2、copolymer 3完全溶解在氯苯中,分别制备出一系列浓度为0.25、0.50、0.10、2.0mg/ml的溶液;
再将PSBMA溶解在三氟乙醇(TFE)中,得到一系列浓度为0.10、0.25、0.50mg/ml 的溶液。
(b)MAPbI3前驱体溶液的配制
将碘化铅(PbI2)溶解在N,N-二甲基甲酰胺(DMF)中,得到浓度为1、1.2、1.3、1.5mol L-1的钙钛矿前驱体溶液1;
将碘甲胺(MAI)和氯甲胺(MACl)混合溶解在异丙醇溶液中,得到钙钛矿前驱体溶液2;所述碘甲胺(MAI)和氯甲胺(MACl)的质量比为9:1、10:1、11:1;
将上述的钙钛矿前驱体溶液1和2用0.45μm孔径的聚四氟滤头过滤获得钙钛矿前驱体溶液。
步骤二、双空穴传输层的制备
在N2的手套箱中,将步骤一制的copolymer 1、copolymer 2或copolymer 3溶液旋涂在氧化铟锡(ITO)上,然后再旋涂PSBMA的TFE溶液,得到光滑的ITO/HTL薄膜。
步骤三、MAPbI3薄膜的制备
在N2的手套箱中,将步骤一的MAPbI3前驱体溶液采用两步法旋涂在ITO/HTL薄膜上,干燥后得到钙钛矿薄膜。
步骤四、电子传输层的制备
C60电子传输层的制备使用真空蒸镀方法,在低于1×10-5Pa真空度下,C60受热后以
Figure BDA0002641270190000041
的速率被缓慢蒸镀到步骤三得到薄膜上,形成一定厚度(20nm~30nm)的致密层,接着蒸镀一层(6nm~8nm)的浴铜灵(BCP)。
步骤五、电极的蒸镀
蒸镀时的真空室压的压强保持小于1×10-4Pa,以
Figure BDA0002641270190000042
的速率蒸镀(80nm~100nm) 的Ag。
有益效果
1、基于copolymer 1/PSBMA、copolymer 2/PSBMA、copolymer 3/PSBMA双空穴传输层制备的钙钛矿太阳能电池的最高光电转换效率为20.16%、20.05%、17.60%,J-V曲线如图1 所示;
2、基于copolymer 1/PSBMA和copolymer 2/PSBMA制备的器件效率明显高于基于copolymer 3/PSBMA的器件效率,原因在于copolymer 1/PSBMA和copolymer 2/PSBMA可以增大钙钛矿的晶粒尺寸,减少晶界,获得更加平整光滑的钙钛矿薄膜(如图2),提高器件的光伏性能;
3、基于copolymer 1/PSBMA和copolymer 2/PSBMA制备的钙钛矿晶体结晶强度明显高于基于copolymer 3/PSBMA的钙钛矿晶体结晶强度(如图3);
4、基于copolymer 1/PSBMA、copolymer 2/PSBMA、copolymer 3/PSBMA未封装的器件表现出良好的湿、热稳定性(如图4)。基于copolymer 1/PSBMA、copolymer 2/PSBMA、copolymer 3/PSBMA空穴传输材料的器件在湿度为20%温度为25℃的大气环境条件下放置1500h仍能维持初始效率的90%以上,在85℃氮气环境下存储400h以后,依然可以保持初始效率的80%以上。
附图说明
图1钙钛矿太阳能电池的J-V曲线图;
图2基于copolymer 1/PSBMA、copolymer 2/PSBMA、copolymer 3/PSBMA钙钛矿薄膜的扫描电子显微镜图(a,b,c)和原子力显微镜图(d,e,f);
图3基于copolymer 1/PSBMA、copolymer 2/PSBMA、copolymer 3/PSBMA钙钛矿薄膜的X射线衍射谱(XRD)图;
图4基于一系列未封装器件的稳定性测试图,其中,a为钙钛矿太阳能电池的湿度稳定性图,b为钙钛矿太阳能电池的热稳定性图。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
下述实施例中所用材料,试剂等,如无特殊说明,均可从商业途径获得。
实施例1
制备基于copolymer 1/PSBMA空穴传输层的钙钛矿太阳能电池。
(a)copolymer 1的合成
将50mL两颈烧瓶,抽真空换氩气后,在无水无氧条件下加入重蒸无水30mL THF,2,5- 二溴-3-己基噻吩(0.80mL,3.77mmol)。室温搅拌下缓慢滴加溶于THF溶剂的t-BuMgCl(1.20mL,2.36mmol,),升温至40℃反应1.5h。冷却到室温后,加入催化剂Ni(dppp)Cl2(13mg,0.024mmol),在室温下继续搅拌1h。用稀盐酸淬灭反应,然后加入200mL甲醇,沉降过夜,过滤得到粗产物。在索氏提取器中依次用甲醇、正己烷、丙酮提纯粗产物,得到黑褐色P3HT固体。
P3HT(110mg,0.01mmol),5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5] 噻二唑(131mg,0.21mmol),然后将Pd(PPh3)4(4.6mg,0.004mmol)加入带有侧臂的10 mL烘焙Schlenk管中,然后用氮气脱气3次。通过注射器加入在5.0mL氯苯中的2,6-二溴-4,4- 双(2-乙基己基)-4H-硅杂环戊二烯并[3,2-b:4,5-b']二噻吩,然后将混合物在150℃下搅拌 24h。冷却至室温后,向溶液中加入200mL甲醇,并搅拌12h以使聚合物沉淀。收集沉淀物,并通过用甲醇,己烷,丙酮进行索氏提取法进一步洗涤/分离,得到深绿色固体copolymer 1。
(b)双空穴传输层钙钛矿太阳能电池的制备
称量0.5mg的copolymer 1,将其溶解在1mL氯苯(最优浓度)中,0.25mg的PSBMA 溶解在1mL三氟乙醇中并搅拌过夜。配置MAPbI3钙钛矿前驱体溶液。其中1mol的PbI2溶解在1mL的N,N-二甲基甲酰胺(DMF)中,即溶液浓度为1mol/L并将其在70℃热台上加热搅拌过夜。碘甲胺(MAI)、氯甲胺(MACl)以质量浓度为50:5mg/mL混合溶解在异丙醇中。ITO透明衬底依次用去离子水、丙酮、乙醇、异丙醇超声清洗20分钟,用氮气吹干后臭氧等离子处理15分钟,将衬底放置于氮气手套箱内制备器件。首先采用旋涂法将30uL 的copolymer 1前驱体溶液旋涂在ITO衬底上,转速为2000转每分钟,时间为60s,然后旋涂40uL的PSBMA溶液,转速为5000转每分钟,时间为20s,得到致密的双空穴传输层薄膜。接着采用两步法在copolymer 1/PSBMA薄膜上旋涂钙钛矿前驱体溶液,首先旋涂40uL 的PbI2溶液,转速为4500转每分钟,时间为45s,在第20s时迅速滴加40uL的MAI、MACl 混合溶液,旋涂结束后将其放在100℃热台上退火5分钟后得到致密的钙钛矿活性层。接着转移到真空蒸镀仪中依次蒸镀厚度约20nm的电子传输层C60,8nm的电极修饰层浴铜灵 (BCP),80nm的Ag电极。
器件制备完成后测光电转换效率(图1)得到的器件效率为20.16%;用扫描电子显微镜(图2a)、原子力显微镜(图2d)对copolymer 1/PSBMA/钙钛矿薄膜形貌进行观察得出在copolymer 1/PSBMA基底上生长的钙钛矿晶粒尺寸较大;对copolymer 1/PSBMA/钙钛矿薄膜进行XRD(图3)测试表明在copolymer 1/PSBMA基底上生长的钙钛矿衍射强度强,结晶度高;最后将未封装的器件放置在湿度为20%的空气中测试器件的湿度稳定性(图4a)基于copolymer 1/PSBMA的器件在63天之后仍能维持在初始效率的96%;将未封装的器件放置在85℃的氮气中测试器件的热稳定性(图4b)基于copolymer 1/PSBMA的器件在390h之后仍能维持在初始效率的89%,因此基于无掺杂不退火copolymer 1/PSBMA双空穴传输层制备的钙钛矿太阳能电池为商业化的发展开辟道路。
实施例2
制备基于copolymer 2/PSBMA空穴传输层的钙钛矿太阳能电池。
(a)copolymer 2的合成
将装有双向旋塞的50mL圆底烧瓶在减压下加热,然后在氩气气氛下冷却至室温。通过注射器将2,5-二溴-3-己基噻吩(0.80mL,3.77mmol)的无水THF(20mL)溶液加入烧瓶中。通过注射器向该溶液中加入叔丁基氯化镁(1.20mL,2.36mmol),并将该混合物在40℃下搅拌1.5h。冷却至室温后,通过注射器将Ni(dppp)Cl2(13.0mg,0.024mmol)在THF(10 mL)中的悬浮液加入混合物中。将反应混合物在室温搅拌1h后,用稀盐酸淬灭反应,然后加入200mL甲醇,沉降过夜,过滤得到粗产物。在索氏提取器中依次用甲醇、正己烷、丙酮提纯粗产物,得到黑褐色P3HT固体。
P3HT(110mg,0.01mmol),5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5] 噻二唑(131mg,0.21mmol),然后将Pd(PPh3)4(4.6mg,0.004mmol)加入带有侧臂的 10mL烘焙Schlenk管中,然后用氮气脱气3次。通过注射器加入在5.0mL氯苯中的2,6-二溴-4,4-双(2-乙基己基)-4H-环戊[1,2-b:4,5-b']二噻吩,然后将混合物在150℃下搅拌24h。冷却至室温后,向溶液中加入200mL甲醇,并搅拌12h以使聚合物沉淀。收集沉淀物,并通过用甲醇,己烷,丙酮进行索氏提取法进一步洗涤/分离,得到深绿色固体copolymer 2。
(b)双空穴传输层钙钛矿太阳能电池的制备
称量0.5mg的copolymer 2,将其溶解在1mL氯苯(最优浓度)中,0.25mg的PSBMA 溶解在1mL三氟乙醇中并搅拌过夜。配置MAPbI3钙钛矿前驱体溶液。其中1mol的PbI2溶解在1mL的N,N-二甲基甲酰胺(DMF)中,即溶液浓度为1mol/L并将其在70℃热台上加热搅拌过夜。碘甲胺(MAI)、氯甲胺(MACl)以质量浓度为50:5mg/mL混合溶解在异丙醇中。ITO透明衬底依次用去离子水、丙酮、乙醇、异丙醇超声清洗20分钟,用氮气吹干后臭氧等离子处理15分钟,将衬底放置于氮气手套箱内制备器件。首先采用旋涂法将30uL 的copolymer 2前驱体溶液旋涂在ITO衬底上,转速为2000转每分钟,时间为60s,然后旋涂40uL的PSBMA溶液,转速为5000转每分钟,时间为20s,得到致密的双空穴传输层薄膜。接着采用两步法在copolymer 2/PSBMA薄膜上旋涂钙钛矿前驱体溶液,首先旋涂40uL 的PbI2溶液,转速为4500转每分钟,时间为45s,在第20s时迅速滴加40uL的MAI、MACl 混合溶液,旋涂结束后将其放在100℃热台上退火5分钟后得到致密的钙钛矿活性层。接着转移到真空蒸镀仪中依次蒸镀厚度约20nm的电子传输层C60,8nm的电极修饰层浴铜灵 (BCP),80nm的Ag电极。
器件制备完成后测光电转换效率(图1)得到的器件效率为20.05%;用扫描电子显微镜 (图2b)、原子力显微镜(图2e)对copolymer 2/PSBMA/钙钛矿薄膜形貌进行观察得出在 copolymer 2/PSBMA基底上生长的钙钛矿晶粒尺寸较在copolymer 1/PSBMA基底上生长的钙钛矿晶粒尺寸小,但是仍能观察到完整的钙钛矿晶粒;对copolymer 2/PSBMA/钙钛矿薄膜进行XRD(图3)测试表明在copolymer 2/PSBMA基底上生长的钙钛矿衍射强度较copolymer 1/PSBMA基底上生长的钙钛矿衍射强度相差甚小,结晶度几乎无差别;最后将未封装的器件放置在湿度为20%的空气中测试器件的湿度稳定性(图4a)基于copolymer 2/PSBMA的器件在63天之后仍能维持在初始效率的95%;将未封装的器件放置在85℃的氮气中测试器件的热稳定性(图4b)基于copolymer 2/PSBMA的器件在390h之后仍能维持在初始效率的82%,因此基于无掺杂不退火copolymer 2/PSBMA双空穴传输层可以制备出高性能且稳定的钙钛矿太阳能电池。
实施例3
制备基于copolymer 3/PSBMA空穴传输层的钙钛矿太阳能电池。
(a)copolymer 3的合成
将50mL的两颈烧瓶抽真空换氩气后,在无水无氧条件下加入重蒸无水30mL THF,2,5- 二溴-3-己基噻吩(0.80mL,3.77mmol)。室温搅拌下缓慢滴加溶于THF溶剂的t-BuMgCl(1.20mL,2.36mmol,),升温至40℃反应1.5h。冷却到室温后,加入催化剂Ni(dppp)Cl2(13mg,0.024mmol),在室温下继续搅拌1h。用稀盐酸淬灭反应,然后加入200mL甲醇,沉降过夜,过滤得到粗产物。在索氏提取器中依次用甲醇、正己烷、丙酮提纯粗产物,得到黑褐色P3HT固体。
在一个干燥带有侧臂的10mL烘焙Schlenk管中加入P3HT(110mg,0.01mmol),5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑(131mg,0.21mmol),Pd(PPh3)4(4.6mg,0.004mmol),抽真空换氮气3次。然后通过注射器加入在5mL氯苯中的2,6-二溴-4-(2-辛基)-4H-吡咯并[3,2-B:4,5-B’]二噻吩,然后将混合物在150℃下搅拌24h。冷却至室温后,向溶液中加入200mL甲醇,并搅拌12h以使聚合物沉淀。收集沉淀物,并通过用甲醇,己烷,丙酮进行索氏提取法进一步洗涤/分离,得到深绿色固体copolymer 3。
(b)双空穴传输层钙钛矿太阳能电池的制备
称量0.5mg的copolymer 3,将其溶解在1mL氯苯(最优浓度)中,0.25mg的PSBMA 溶解在1mL三氟乙醇中并搅拌过夜。配置MAPbI3钙钛矿前驱体溶液。其中1mol的PbI2溶解在1mL的N,N-二甲基甲酰胺(DMF)中,即溶液浓度为1mol/L并将其在70℃热台上加热搅拌过夜。碘甲胺(MAI)、氯甲胺(MACl)以质量浓度为50:5mg/mL混合溶解在异丙醇中。ITO透明衬底依次用去离子水、丙酮、乙醇、异丙醇超声清洗20分钟,用氮气吹干后臭氧等离子处理15分钟,将衬底放置于氮气手套箱内制备器件。首先采用旋涂法将30uL 的copolymer 3前驱体溶液旋涂在ITO衬底上,转速为2000转每分钟,时间为60s,然后旋涂40uL的PSBMA溶液,转速为5000转每分钟,时间为20s,得到致密的双空穴传输层薄膜。接着采用两步法在copolymer 3/PSBMA薄膜上旋涂钙钛矿前驱体溶液,首先旋涂40uL 的PbI2溶液,转速为4500转每分钟,时间为45s,在第20s时迅速滴加40uL的MAI、MACl 混合溶液,旋涂结束后将其放在100℃热台上退火5分钟后得到致密的钙钛矿活性层。接着转移到真空蒸镀仪中依次蒸镀厚度约20nm的电子传输层C60,8nm的电极修饰层浴铜灵 (BCP),80nm的Ag电极。
器件制备完成后测光电转换效率(图1)得到的器件效率为17.60%;用扫描电子显微镜 (图2c)、原子力显微镜(图2f)对copolymer 3/PSBMA/钙钛矿薄膜形貌进行观察得出在 copolymer 3/PSBMA基底上生长的钙钛矿没有完整的晶粒;对copolymer 3/PSBMA/钙钛矿薄膜进行XRD(图3)测试表明在copolymer 3/PSBMA基底上生长的钙钛矿衍射强度较在copolymer 1/PSBMA和copolymer 2/PSBMA基底上生长的钙钛矿衍射强度都弱,结晶度弱;最后将未封装的器件放置在湿度为20%的空气中测试器件的湿度稳定性(图4a)基于copolymer 3/PSBMA的器件在63天之后仍能维持在初始效率的94%;将未封装的器件放置在85℃的氮气中测试器件的热稳定性(图4b)基于copolymer 3/PSBMA的器件在390h之后仍能维持在初始效率的80%,因此基于无掺杂不退火copolymer 3/PSBMA双空穴传输层制备的钙钛矿太阳能电池具有高稳定性为商业化的发展奠定基础。
以上实施例详细阐述了基于copolymer 1/PSBMA、copolymer 2/PSBMA、copolymer3/PSBMA作为双空穴传输层的设计以及钙钛矿太阳能电池的详细制备方法。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.无需掺杂和退火的空穴传输材料,其特征在于:全共轭嵌段聚合物copolymer 1、copolymer 2、copolymer 3,其化学结构式为:
Figure FDA0003570362250000011
copolymer 1:R1=C6H13,R2=Si-(C8H17)2
copolymer 2:R1=C6H13,R2=C-(C8H17)2
copolymer 3:R1=C6H13,R2=N-C8H17
两个嵌段长度的比值n:m=5~20。
2.制备如权利要求1所述材料的方法,其特征在于:包括如下步骤:
制备copolymer 1的方法:2,5-二溴-3-己基噻吩以四氢呋喃(THF)为溶剂,在叔丁基氯化镁(t-BuMgCl)和1,3-双(二苯基膦丙烷)二氯化镍(Ni(dppp)Cl2)为催化剂的条件下合成聚噻吩(P3HT),其中Ni(dppp)Cl2、t-BuMgCl和2,5-二溴-3-己基噻吩的摩尔比为1:98:98~1:98:157;再通过P3HT、5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑、2,6-二溴-4,4-双(2-乙基己基)-4H-硅杂环戊二烯并[3,2-b:4,5-b']二噻吩以氯苯为溶剂,在四(三苯基膦)钯(Pd(PPh3)4)为催化剂的条件下合成copolymer 1,其中Pd(PPh3)4、P3HT、5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑、2,6-二溴-4,4-双(2-乙基己基)-4H-硅杂环戊二烯并[3,2-b:4,5-b']二噻吩的摩尔比为1:2:53:50~1:5:106:100。
3.制备如权利要求1所述材料的方法,其特征在于:包括如下步骤:
制备copolymer 2的方法:2,5-二溴-3-己基噻吩以THF为溶剂,在t-BuMgCl和Ni(dppp)Cl2为催化剂的条件下合成P3HT,其中Ni(dppp)Cl2、t-BuMgCl和2,5-二溴-3-己基噻吩的摩尔比为1:98:98~1:98:157;再通过P3HT、5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑、2,6-二溴-4,4-双(2-乙基己基)-4H-环戊并[1,2-b:5,4-b]二噻吩以氯苯为溶剂,在Pd(PPh3)4为催化剂的条件下合成copolymer 2,其中Pd(PPh3)4、P3HT、5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑、2,6-二溴-4,4-双(2-乙基己基)-4H-环戊并[1,2-b:5,4-b]二噻吩的摩尔比为1:2:53:50~1:5:106:100。
4.制备如权利要求1所述材料的方法,其特征在于:包括如下步骤:
制备copolymer 3的方法:2,5-二溴-3-己基噻吩以THF为溶剂,在t-BuMgCl和Ni(dppp)Cl2为催化剂的条件下合成P3HT,其中Ni(dppp)Cl2、t-BuMgCl和2,5-二溴-3-己基噻吩的摩尔比为1:98:98~1:98:157;再通过P3HT、5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑、2,6-二溴-4,4-(2-辛基)-4H-吡咯并[3,2-B:4,5-B’]二噻吩以氯苯为溶剂,在Pd(PPh3)4为催化剂的条件下合成copolymer 3,其中Pd(PPh3)4、P3HT、5,6-二氟-4,7-双(5-(三甲基锡烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑、2,6-二溴-4,4-(2-辛基)-4H-吡咯并[3,2-B:4,5-B’]二噻吩的摩尔比为1:2:53:50~1:5:106:100。
5.采用如权利要求1所述材料制备钙钛矿太阳能电池的方法,其特征在于:包括如下步骤:
步骤一、前驱体溶液的配制
(a)空穴传输材料的配制
在N2的手套箱中,分别将copolymer 1、copolymer 2或copolymer 3完全溶解在氯苯中,分别制备出浓度为0.25、0.50、0.10、2.0mg/ml的溶液;
再将聚甲基丙烯酸甲酯苯磺酸甜菜碱(PSBMA)溶解在三氟乙醇(TFE)中,得到浓度为0.10、0.25、0.50mg/ml的溶液;
(b)MAPbI3前驱体溶液的配制
将碘化铅(PbI2)溶解在N,N-二甲基甲酰胺(DMF)中,得到浓度为1、1.2、1.3、1.5mol L-1的钙钛矿前驱体溶液1;
将碘甲胺(MAI)和氯甲胺(MACl)混合溶解在异丙醇溶液中,得到钙钛矿前驱体溶液2;所述碘甲胺(MAI)和氯甲胺(MACl)的质量比为9:1、10:1、11:1;
将上述的钙钛矿前驱体溶液1和2用0.45μm孔径的聚四氟滤头过滤获得钙钛矿前驱体溶液;
步骤二、双空穴传输层的制备
在N2的手套箱中,将步骤一制的copolymer 1、copolymer 2或copolymer 3溶液旋涂在氧化铟锡(ITO)上,然后再旋涂PSBMA的TFE溶液,得到光滑的ITO/HTL薄膜;
步骤三、MAPbI3薄膜的制备
在N2的手套箱中,将步骤一的MAPbI3前驱体溶液采用两步法旋涂在ITO/HTL薄膜上,干燥后得到钙钛矿薄膜;
步骤四、电子传输层的制备
C60电子传输层的制备使用真空蒸镀方法,在低于1×10-5Pa真空度下,C60受热后以
Figure FDA0003570362250000021
Figure FDA0003570362250000022
的速率被缓慢蒸镀到步骤三得到薄膜上,形成一定厚度为20nm~30nm的致密层,接着蒸镀一层6nm~8nm的浴铜灵(BCP);
步骤五、电极的蒸镀
蒸镀时的真空室压的压强保持小于1×10-4Pa,以
Figure FDA0003570362250000023
的速率蒸镀80nm~100nm的Ag。
CN202010840684.1A 2020-08-20 2020-08-20 一种无需掺杂和退火的空穴传输材料制备和应用 Active CN112159516B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010840684.1A CN112159516B (zh) 2020-08-20 2020-08-20 一种无需掺杂和退火的空穴传输材料制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010840684.1A CN112159516B (zh) 2020-08-20 2020-08-20 一种无需掺杂和退火的空穴传输材料制备和应用

Publications (2)

Publication Number Publication Date
CN112159516A CN112159516A (zh) 2021-01-01
CN112159516B true CN112159516B (zh) 2022-09-20

Family

ID=73859608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010840684.1A Active CN112159516B (zh) 2020-08-20 2020-08-20 一种无需掺杂和退火的空穴传输材料制备和应用

Country Status (1)

Country Link
CN (1) CN112159516B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343119A (zh) * 2019-07-10 2019-10-18 华南理工大学 一种含苯并噻二唑单元的非掺杂空穴传输材料及制备与应用
CN110635043A (zh) * 2019-09-26 2019-12-31 河南理工大学 一种新型有机空穴传输层钙钛矿太阳能电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115917B2 (en) * 2015-05-19 2018-10-30 Northwestern University Dopant-free polymeric hole-transporting materials for perovskite solar cell
US20190272960A1 (en) * 2016-10-27 2019-09-05 Curators Of The University Of Missouri Dopant-free inexpensive hole transporting materials for highly efficient and stable perovskite solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343119A (zh) * 2019-07-10 2019-10-18 华南理工大学 一种含苯并噻二唑单元的非掺杂空穴传输材料及制备与应用
CN110635043A (zh) * 2019-09-26 2019-12-31 河南理工大学 一种新型有机空穴传输层钙钛矿太阳能电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Dopant-free polymeric hole transport materials for efficient CsPbI2Br perovskite cells with a fill factor exceeding 84%";Pang Wang et al.;《Journal of Materials Chemistry C: Materials for Optical and Electronic Device》;20200512;第8卷(第25期);第8507-8514页 *
"Revealing the Importance of Energetic and Entropic Contributions to the Driving Force for Charge Photogeneration";Melissa P. Aplan et al.;《ACS Appl. Mater. Interfaces》;20181015(第10期);第39933-39941页 *

Also Published As

Publication number Publication date
CN112159516A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
JP2011530808A (ja) 新規な光活性コポリマー
CN110752298B (zh) 一种基于羟基嘧啶衍生物添加剂的有机太阳能电池活性层及其制备方法
CN109802041A (zh) 一种非富勒烯钙钛矿平面异质结太阳能电池及制备方法
KR20180022734A (ko) 그래핀을 전도성 투명전극으로 사용하는 페로브스카이트 기반 태양전지
CN106953014A (zh) 一种以酞菁铜作为空穴传输层的杂化太阳能电池结构与制备方法
CN114975795A (zh) 一种对倒置钙钛矿太阳电池中空穴提取界面的修饰方法及其应用
Yan et al. Naphthalene-diimide selenophene copolymers as efficient solution-processable electron-transporting material for perovskite solar cells
JP5701975B2 (ja) 電気的活性層を含みかつ垂直分離を有する有機バルクヘテロ接合太陽電池
CN110392939B (zh) 基于温度依赖性聚集的共轭聚合物的高效有机太阳能电池的顺序加工制造工艺
KR101447281B1 (ko) 싸이오펜 중합체 조성물 및 그를 포함하는 유기태양전지의 제조방법
CN112159516B (zh) 一种无需掺杂和退火的空穴传输材料制备和应用
CN112802967A (zh) 一种基于n-苯烷基酰胺衍生物添加剂的有机太阳能电池活性层及其制备方法
KR101709199B1 (ko) 싸이오펜 중합체 조성물, 및 이를 포함하는 유기광전자소자
KR101091179B1 (ko) 모폴로지 컨트롤러를 이용한 유기 태양전지 및 그 제조방법
US20120168728A1 (en) Organic Electronic Devices Prepared Using Decomposable Polymer Additives
KR101952815B1 (ko) 광활성층 첨가제용 화합물 및 그의 제조방법 및 그를 포함하는 고분자-고분자 유기태양전지
KR102218763B1 (ko) 불소화 나프탈렌 다이이미드 유도체를 포함하는 조성물, 그를 포함하는 유기 태양전지 및 그의 제조방법
CN112552489A (zh) 一种非对称非富勒烯化合物及其制备方法与应用
JP5701453B2 (ja) ジフルオロベンゾトリアゾリル太陽電池材料、調合法、およびその使用方法
Ren et al. Novel swivel-cruciform 5, 5′-bibenzothiadiazole based small molecule donors for efficient organic solar cells
CN113666927B (zh) 一种化合物及其制备方法和应用
CN110739400B (zh) 一种基于盘状液晶柱的有机太阳能电池结构及其制备方法
CN110194775B (zh) 基于引达省并二噻吩类非富勒烯有机太阳能电池受体材料
CN118239979A (zh) 自组装单分子层材料及其制备方法、应用
CN117202747A (zh) 一种基于叶绿素衍生物的有机太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant