CN112151400A - 一种解决smd管壳键合点金铝系统的方法 - Google Patents

一种解决smd管壳键合点金铝系统的方法 Download PDF

Info

Publication number
CN112151400A
CN112151400A CN202011011326.6A CN202011011326A CN112151400A CN 112151400 A CN112151400 A CN 112151400A CN 202011011326 A CN202011011326 A CN 202011011326A CN 112151400 A CN112151400 A CN 112151400A
Authority
CN
China
Prior art keywords
aluminum
copper
chip
copper sheet
tube shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011011326.6A
Other languages
English (en)
Other versions
CN112151400B (zh
Inventor
马建军
程梦莲
白艳
郭俊波
刘智慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinzhou 777 Microelectronic Co ltd
Original Assignee
Jinzhou 777 Microelectronic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinzhou 777 Microelectronic Co ltd filed Critical Jinzhou 777 Microelectronic Co ltd
Priority to CN202011011326.6A priority Critical patent/CN112151400B/zh
Publication of CN112151400A publication Critical patent/CN112151400A/zh
Application granted granted Critical
Publication of CN112151400B publication Critical patent/CN112151400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/431Pre-treatment of the preform connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4502Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

一种解决SMD管壳键合点金铝系统的方法,其特征是包含步骤如下:制作铜铝过渡片;在SMD管壳的芯片粘片区和键合点位置分别放置对应尺寸的铅铟银焊料片,在位于芯片粘片区的铅铟银焊料片上放置所需的芯片,在位于键合点的铅铟银焊料片上放置切割好的铜铝过渡片;将SMD管壳与芯片和铜铝过渡片放入共晶焊炉内焊接;焊接结束后通入氮气开始降温冷却,待温度降到70度以下时,打开共晶焊炉腔室门,取出焊接好的器件。该方法解决了SMD管壳键合点铝丝键合时的金铝系统问题;具有稳定性好、重复性好、均匀性好、成品率和可靠性高的特点;工艺合理、操作简单,适合工业化生产,大大提高了军工产品的质量可靠性和使用寿命。

Description

一种解决SMD管壳键合点金铝系统的方法
技术领域
本发明涉及电子元器件制造领域,特别涉及一种解决SMD管壳键合点金铝系统的方法。
背景技术
近年来,电子元器件作为整机质量可靠性的重要基础资源,其质量可靠性已得到了人们的高度重视。某些特殊用途的整机系统,由于其特殊的工作环境,对电子元器件长期质量可靠性的要求越来越高,越来越严格。电子元器件产品的内引线键合强度失效是半导体分立器件、单片集成电路、混合集成电路等常见的失效模式,是影响整机长期可靠性的主要因素之一。在军用电子元器件制造工艺中,金属外壳的引线键合点通常采用镀Au,键合丝材料一般是Al,Au-Al之间的键合在实际应用中较为普遍。Au-Al间键合点会随着电路工作环境温度的升高、时间的延长以及Al丝电流载荷的增大,其键合强度急剧下降,从而导致电路失效。
我们从电路互连系统的结构以及与键合线材料匹配入手,对原有不满足高可靠要求的键合系统进行了改进,SMD系列管壳键合点都是镀金层。引线互连采用的是金铝键合系统。金和铝接触时会发生两种物理过程:在200℃~250℃下,在金和铝界面处会生成金属化合物,它们是一种很脆的绝缘体,极易使键合断裂。当温度升高到250℃~300℃时,在金和铝界面处,金向铝中大量扩散,形成空洞,在显微镜下可见黑色环形孔,即所谓的科根戴尔效应。大功率器件长时间工作在温度高的环境中,金-铝键合易发生上述两种物理过程,导致铝丝脱焊,使器件失效。
发明内容
本发明所要解决的技术问题是提供一种解决SMD管壳键合点金铝系统的方法,该方法能够解决SMD管壳铝丝键合时的金铝系统问题,提高了军工产品的质量可靠性和使用寿命。
为了实现上述目的,本发明采用了如下技术方案:
一种解决SMD管壳键合点金铝系统的方法,包含步骤如下:
1、制作铜铝过渡片
1.1、选择厚度为0.25mm±0.05mm的铜片,放入无水乙醇中超声清洗10~15分钟,去除铜片表面的油污,吹干后备用;
1.2、采用磁控溅射或蒸发工艺在铜片的一面沉积铝层,铝层厚度控制在1~2μm之间;
1.3、按键合点尺寸切割沉积铝层后的铜片,得到与SMD管壳里的键合点大小一致的铜铝过渡片;
2、在SMD管壳的芯片粘片区和键合点位置分别放置对应尺寸的铅铟银焊料片,在位于芯片粘片区的铅铟银焊料片上放置所需的芯片,在位于键合点的铅铟银焊料片上放置切割好的铜铝过渡片;
3、将SMD管壳与芯片和铜铝过渡片放入共晶焊炉内焊接;
3.1、选用共晶焊炉,将摆放好铅铟银焊料片、芯片和铜铝过渡片的SMD管壳一起放入共晶焊炉内;先抽真空,时间为60~100s,使真空度小于5mbar;随后向共晶焊炉内充入氮气,时间为100~120s,控制充氮气量为20slm;如此反复进行二次;
3.2、开始加热,加热时间60s,使炉内温度达到200℃,同时控制充氮气量为10slm;到达200℃后恒温60s,此时通入甲酸,使甲酸分解产生氢气,使共晶焊接质量更好;
3.3、重新开始加热,加热120s升温到300℃;随后恒温40s,恒温结束后再次启动抽真空并加热升温,加热60s升温到380℃,使铅铟银焊料片开始熔化;然后再次恒温50~80s后便可完成共晶焊接;
3.4、焊接结束后通入氮气开始降温冷却,待温度降到70度以下时,打开共晶焊炉腔室门,取出焊接好的器件。
作为进一步优选,采用磁控溅射工艺在铜片的一面沉积铝层,步骤如下:
1、将铜片放在托盘中送入磁控溅射台的溅射腔室内,通入纯度为99.99%的氩气作为反应气体,反应气体流量13sccm~15sccm,控制溅射腔室的真空度为1×10-6~3×10- 7mbar;
2、加热衬底,温度为100±10℃;然后对铜片进行反溅射,在100±10W功率下轰击铜片,时间为100±10s,去除铜片表面的氧化层;
3、用硅铝合金靶在铜片上沉积一层铝,气压控制在5.5×10-3mbar~7.5×10- 3mbar;选用直流源溅射,功率700±50W,时间为300±50s;使溅射铝层厚度控制在1~2μm之间。
作为进一步优选,所述硅铝合金靶的Si含量为3%。
作为进一步优选,所述铜片为紫铜片。
本发明的有益效果为:
1、通过采用磁控溅射或蒸发工艺在铜片的一面沉积铝层制成铜铝过渡片,使铝层附着力强,厚度均匀,适合铝丝键合;通过铅铟银焊料采用共晶烧结的方法将铜铝过渡片共晶到SMD管壳的键合点上,解决了SMD管壳键合点铝丝键合时的金铝系统问题;具有稳定性好、重复性好、均匀性好、成品率和可靠性高的特点。
2、工艺合理、操作简单,解决了SMD管壳铝丝键合时的金铝系统问题,适合工业化生产,大大提高了军工产品的质量可靠性和使用寿命。
附图说明
图1是本发明的结构示意图;
图2是图1的A-A剖视图;
图中:
具体实施方式
实施例1
如图1-图2所示,本发明涉及的一种解决SMD管壳键合点金铝系统的方法,包含步骤如下:
1、制作铜铝过渡片
1.1、选择长度×宽度为60*60mm,厚度为0.25mm±0.05mm的紫铜片,放入无水乙醇中超声清洗10~15分钟,去除铜片表面的油污,吹干后备用;
1.2、采用磁控溅射或蒸发工艺在铜片的一面沉积铝层,铝层厚度控制在1~2μm之间;本实施例以采用磁控溅射工艺为例,具体操作如下:
1.2.1、将铜片放在托盘中送入磁控溅射台的溅射腔室内,通入纯度为99.99%的氩气作为反应气体,反应气体流量13sccm~15sccm,控制溅射腔室的真空度为1×10-6mbar;
1.2.2、加热衬底,使衬底温度达到100℃;然后对铜片进行反溅射,在100W功率下轰击铜片,时间为100s,以去除铜片表面的氧化层;
1.2.3、用Si含量为3%的硅铝合金靶在铜片上沉积一层铝,气压控制在5.5×10- 3mbar;选用直流源溅射,功率700W,时间为300s;使溅射铝层厚度控制在1~2μm之间;
1.3、按照SMD管壳1内的键合点2尺寸切割沉积铝层后的铜片,得到与键合点2大小一致的铜铝过渡片3;
2、在SMD管壳1的芯片粘片区和键合点2位置分别放置对应尺寸的铅铟银焊料片,在位于芯片粘片区的铅铟银焊料片上放置所需的芯片4,在位于键合点2的铅铟银焊料片上放置切割好的铜铝过渡片3;
3、将SMD管壳1与芯片4和铜铝过渡片3放入共晶焊炉内焊接;具体操作如下:
3.1、选用共晶焊炉,将摆放好铅铟银焊料片、芯片4和铜铝过渡片3的SMD管壳1一起放入共晶焊炉内;先抽真空,时间为60~100s,使真空度小于5mbar;随后向共晶焊炉内充入氮气,时间为100s,控制充氮气量为20slm;如此反复进行二次,将共晶焊炉内的空气置换为氮气;
3.2、开始加热,加热时间60s,使炉内温度达到200℃,同时控制充氮气量为10slm;炉内温度到达200℃后恒温60s,此时通入甲酸,使甲酸分解产生氢气,使共晶焊接质量更好;
3.3、重新开始加热,加热120s升温到300℃;随后恒温40s,恒温结束后再次启动抽真空并加热升温,加热60s升温到380℃,使铅铟银焊料片开始熔化,通过抽真空能够将铅铟银焊料片熔化过程中产生的气泡抽走,避免焊接时空洞的产生;然后再次恒温50~80s后便可完成共晶焊接;
3.4、焊接结束后通入氮气开始降温冷却,待温度降到70度以下时,打开共晶焊炉腔室门,取出焊接好的器件并摆放到管壳架上,完成了SMD管壳1与铜铝过渡片3和芯片4的共同烧结。
实施例2
如图1-图2所示,本发明涉及的一种解决SMD管壳键合点金铝系统的方法,包含步骤如下:
1、制作铜铝过渡片
1.1、选择长度×宽度为60*60mm,厚度为0.25mm±0.05mm的紫铜片,放入无水乙醇中超声清洗10~15分钟,去除铜片表面的油污,吹干后备用;
1.2、采用磁控溅射或蒸发工艺在铜片的一面沉积铝层,铝层厚度控制在1~2μm之间;本实施例以采用磁控溅射工艺为例,具体操作如下:
1.2.1、将铜片放在托盘中送入磁控溅射台的溅射腔室内,通入纯度为99.99%的氩气作为反应气体,反应气体流量13sccm~15sccm,控制溅射腔室的真空度为5×10-7mbar;
1.2.2、加热衬底,使衬底温度达到105℃;然后对铜片进行反溅射,在105W功率下轰击铜片,时间为105s,去除铜片表面的氧化层;
1.2.3、用Si含量为3%的硅铝合金靶在铜片上沉积一层铝,气压控制在7.5×10- 3mbar;选用直流源溅射,功率750W,时间为350s;使溅射铝层厚度控制在1~2μm之间。
1.3、按照SMD管壳1内的键合点2尺寸切割沉积铝层后的铜片,得到与键合点2大小一致的铜铝过渡片3;
2、在SMD管壳1的芯片粘片区和键合点2位置分别放置对应尺寸的铅铟银焊料片,在位于芯片粘片区的铅铟银焊料片上放置所需的芯片4,在位于键合点2的铅铟银焊料片上放置切割好的铜铝过渡片3;
3、将SMD管壳1与芯片4和铜铝过渡片3放入共晶焊炉内焊接;具体操作如下:
3.1、选用共晶焊炉,将摆放好铅铟银焊料片、芯片4和铜铝过渡片3的SMD管壳1一起放入共晶焊炉内;先抽真空,时间为60~100s,使真空度小于5mbar;随后向共晶焊炉内充入氮气,时间为120s,控制充氮气量为20slm;如此反复进行二次,将共晶焊炉内的空气置换为氮气;
3.2、开始加热,加热时间60s,使炉内温度达到200℃,同时控制充氮气量为10slm;炉内温度到达200℃后恒温60s,此时通入甲酸,使甲酸分解产生氢气,使共晶焊接质量更好;
3.3、重新开始加热,加热120s升温到300℃;随后恒温40s,恒温结束后再次启动抽真空并加热升温,加热60s升温到380℃,使铅铟银焊料片开始熔化,通过抽真空能够将铅铟银焊料片熔化过程中产生的气泡抽走,避免焊接时空洞的产生;然后再次恒温50~80s后便可完成共晶焊接;
3.4、焊接结束后通入氮气开始降温冷却,待温度降到70度以下时,打开共晶焊炉腔室门,取出焊接好的器件并摆放到管壳架上,完成了SMD管壳与铜铝过渡片3和芯片4的共同烧结。
实施例3
如图1-图2所示,本发明涉及的一种解决SMD管壳键合点金铝系统的方法,包含步骤如下:
1、制作铜铝过渡片
1.1、选择长度×宽度为60*60mm,厚度为0.25mm±0.05mm的紫铜片,放入无水乙醇中超声清洗10~15分钟,去除铜片表面的油污,吹干后备用;
1.2、采用磁控溅射或蒸发工艺在铜片的一面沉积铝层,铝层厚度控制在1~2μm之间;本实施例以采用磁控溅射工艺为例,具体操作如下:
1.2.1、将铜片放在托盘中送入磁控溅射台的溅射腔室内,通入纯度为99.99%的氩气作为反应气体,反应气体流量13sccm~15sccm,控制溅射腔室的真空度为3×10-7mbar;
1.2.2、加热衬底,使衬底温度达到110℃;然后对铜片进行反溅射,在105W功率下轰击铜片,时间为110s,去除铜片表面的氧化层;
1.2.3、用Si含量为3%的硅铝合金靶在铜片上沉积一层铝,气压控制在6.5×10- 3mbar;选用直流源溅射,功率730W,时间为320s;使溅射铝层厚度控制在1~2μm之间;
1.3、按照SMD管壳1内的键合点2尺寸切割沉积铝层后的铜片,得到与键合点2大小一致的铜铝过渡片3;
2、在SMD管壳1的芯片粘片区和键合点2位置分别放置对应尺寸的铅铟银焊料片,在位于芯片粘片区的铅铟银焊料片上放置所需的芯片4,在位于键合点2的铅铟银焊料片上放置切割好的铜铝过渡片3;
3、将SMD管壳1与芯片4和铜铝过渡片3放入共晶焊炉内焊接;具体操作如下:
3.1、选用共晶焊炉,将摆放好铅铟银焊料片、芯片4和铜铝过渡片3的SMD管壳1一起放入共晶焊炉内;先抽真空,时间为60~100s,使真空度小于5mbar;随后向共晶焊炉内充入氮气,时间为110s,控制充氮气量为20slm;如此反复进行二次,将共晶焊炉内的空气置换为氮气;
3.2、开始加热,加热时间60s,使炉内温度达到200℃,同时控制充氮气量为10slm;炉内温度到达200℃后恒温60s,此时通入甲酸,使甲酸分解产生氢气,使共晶焊接质量更好;
3.3、重新开始加热,加热120s升温到300℃;随后恒温40s,恒温结束后再次启动抽真空并加热升温,加热60s升温到380℃,使铅铟银焊料片开始熔化,通过抽真空能够将铅铟银焊料片熔化过程中产生的气泡抽走,避免焊接时空洞的产生;然后再次恒温50~80s后便可完成共晶焊接;
3.4、焊接结束后通入氮气开始降温冷却,待温度降到70度以下时,打开共晶焊炉腔室门,取出焊接好的器件并摆放到管壳架上,完成了SMD管壳1与铜铝过渡片3和芯片4的共同烧结。
对分别采用上述实施例制造出的3只完成共晶烧结铜铝过渡片3的SMD管壳1进行键合试验,用硅铝丝分别键合到SMD管壳1的铜铝过渡片3和芯片键合点2上,先分别测试三根连接在二个铜铝过渡片3上及一根连接在SMD管壳1上的键合丝5拉力强度试验;然后再测试芯片4和铜铝过渡片3与SMD管壳共晶烧结强度的剪切力试验。做完试验后的样品在30~60倍的显微镜下观察,键合丝5没有脱焊现象,剪切力后的焊料100%残留,完全合格。检测数据如表1所示:
Figure BDA0002697654680000081
表1
由表1可以看出,每根键合丝的键合拉力以及芯片和铜铝过渡片的剪切力数据,完全符合GJB 548B-2005《微电子器件试验方法和程序》的标准要求,因此试验结论为合格。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种解决SMD管壳键合点金铝系统的方法,其特征是包含步骤如下:
(1)制作铜铝过渡片
(1.1)选择厚度为0.25mm±0.05mm的铜片,放入无水乙醇中超声清洗10~15分钟,去除铜片表面的油污,吹干后备用;
(1.2)采用磁控溅射或蒸发工艺在铜片的一面沉积铝层,铝层厚度控制在1~2μm之间;
(1.3)按键合点尺寸切割沉积铝层后的铜片,得到与SMD管壳里的键合点大小一致的铜铝过渡片;
(2)在SMD管壳的芯片粘片区和键合点位置分别放置对应尺寸的铅铟银焊料片,在位于芯片粘片区的铅铟银焊料片上放置所需的芯片,在位于键合点的铅铟银焊料片上放置切割好的铜铝过渡片;
(3)将SMD管壳与芯片和铜铝过渡片放入共晶焊炉内焊接;
(3.1)选用共晶焊炉,将摆放好铅铟银焊料片、芯片和铜铝过渡片的SMD管壳一起放入共晶焊炉内;先抽真空,时间为60~100s,使真空度小于5mbar;随后向共晶焊炉内充入氮气,时间为100~120s,控制充氮气量为20slm;如此反复进行二次;
(3.2)开始加热,加热时间60s,使炉内温度达到200℃,同时控制充氮气量为10slm;到达200℃后恒温60s,此时通入甲酸,使甲酸分解产生氢气,使共晶焊接质量更好;
(3.3)重新开始加热,加热120s升温到300℃;随后恒温40s,恒温结束后再次启动抽真空并加热升温,加热60s升温到380℃,使铅铟银焊料片开始熔化;然后再次恒温50~80s后便可完成共晶焊接;
(3.4)焊接结束后通入氮气开始降温冷却,待温度降到70度以下时,打开共晶焊炉腔室门,取出焊接好的器件。
2.根据权利要求1所述的一种解决SMD管壳键合点金铝系统的方法,其特征是:采用磁控溅射工艺在铜片的一面沉积铝层,其步骤如下:
(1)将铜片放在托盘中送入磁控溅射台的溅射腔室内,通入纯度为99.99%的氩气作为反应气体,反应气体流量13sccm~15sccm,控制溅射腔室的真空度为1×10-6~3×10- 7mbar;
(2)加热衬底,温度为100±10℃;然后对铜片进行反溅射,在100±10W功率下轰击铜片,时间为100±10s,去除铜片表面的氧化层;
(3)用硅铝合金靶在铜片上沉积一层铝,气压控制在5.5×10-3mbar~7.5×10-3mbar;选用直流源溅射,功率700±50W,时间为300±50s;使溅射铝层厚度控制在1~2μm之间。
3.根据权利要求2所述的一种解决SMD管壳键合点金铝系统的方法,其特征是:所述硅铝合金靶的Si含量为3%。
4.根据权利要求1或2所述的一种解决SMD管壳键合点金铝系统的方法,其特征是:所述铜片为紫铜片。
CN202011011326.6A 2020-09-23 2020-09-23 一种解决smd管壳键合点金铝系统的方法 Active CN112151400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011011326.6A CN112151400B (zh) 2020-09-23 2020-09-23 一种解决smd管壳键合点金铝系统的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011011326.6A CN112151400B (zh) 2020-09-23 2020-09-23 一种解决smd管壳键合点金铝系统的方法

Publications (2)

Publication Number Publication Date
CN112151400A true CN112151400A (zh) 2020-12-29
CN112151400B CN112151400B (zh) 2023-04-21

Family

ID=73897826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011011326.6A Active CN112151400B (zh) 2020-09-23 2020-09-23 一种解决smd管壳键合点金铝系统的方法

Country Status (1)

Country Link
CN (1) CN112151400B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257691A (zh) * 2021-04-23 2021-08-13 天津工业大学 一种降低热应力的功率模块引线互连方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1644752A (zh) * 2005-01-15 2005-07-27 大连理工大学 黄铜件真空离子镀替代电镀方法
CN102528194A (zh) * 2010-12-15 2012-07-04 无锡华测电子系统有限公司 一种真空共晶焊接方法
CN103295918A (zh) * 2013-05-30 2013-09-11 江西联创特种微电子有限公司 一种大功率场效应晶体管铝-金键合过渡片的制备方法
CN203367260U (zh) * 2013-06-27 2013-12-25 北京新雷能科技股份有限公司 一种功率陶瓷外壳和功率芯片封装结构
CN104934336A (zh) * 2015-04-28 2015-09-23 华东光电集成器件研究所 一种芯片共晶焊接方法
JP2017112576A (ja) * 2015-12-18 2017-06-22 セイコーエプソン株式会社 電子デバイス、電子デバイスの製造方法、電子機器および移動体
CN108251800A (zh) * 2018-04-15 2018-07-06 山东建筑大学 一种Cu-Al梯度薄膜材料及其制备方法
CN108461380A (zh) * 2017-12-22 2018-08-28 中国电子科技集团公司第四十七研究所 一种大面积集成电路芯片烧结空洞率的控制结构和控制方法
CN111244041A (zh) * 2018-11-29 2020-06-05 英飞凌科技股份有限公司 包括两种不同导电材料的芯片接触元件的封装

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1644752A (zh) * 2005-01-15 2005-07-27 大连理工大学 黄铜件真空离子镀替代电镀方法
CN102528194A (zh) * 2010-12-15 2012-07-04 无锡华测电子系统有限公司 一种真空共晶焊接方法
CN103295918A (zh) * 2013-05-30 2013-09-11 江西联创特种微电子有限公司 一种大功率场效应晶体管铝-金键合过渡片的制备方法
CN203367260U (zh) * 2013-06-27 2013-12-25 北京新雷能科技股份有限公司 一种功率陶瓷外壳和功率芯片封装结构
CN104934336A (zh) * 2015-04-28 2015-09-23 华东光电集成器件研究所 一种芯片共晶焊接方法
JP2017112576A (ja) * 2015-12-18 2017-06-22 セイコーエプソン株式会社 電子デバイス、電子デバイスの製造方法、電子機器および移動体
CN108461380A (zh) * 2017-12-22 2018-08-28 中国电子科技集团公司第四十七研究所 一种大面积集成电路芯片烧结空洞率的控制结构和控制方法
CN108251800A (zh) * 2018-04-15 2018-07-06 山东建筑大学 一种Cu-Al梯度薄膜材料及其制备方法
CN111244041A (zh) * 2018-11-29 2020-06-05 英飞凌科技股份有限公司 包括两种不同导电材料的芯片接触元件的封装

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257691A (zh) * 2021-04-23 2021-08-13 天津工业大学 一种降低热应力的功率模块引线互连方法
CN113257691B (zh) * 2021-04-23 2024-01-02 天津工业大学 一种降低热应力的功率模块引线互连方法

Also Published As

Publication number Publication date
CN112151400B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
US8794498B2 (en) Electronic component device and method for producing the same
JP6088950B2 (ja) スタッドバンプ構造およびその製造方法
JP6050308B2 (ja) スタッドバンプとそのパッケージ構造、および、その製造方法
US7608485B2 (en) Highly reliable, cost effective and thermally enhanced AuSn die-attach technology
JP2020031238A (ja) 半導体装置用ボンディングワイヤ
JP2009110995A (ja) 3次元実装方法及び装置
US20230022285A1 (en) Copper/ceramic joined body and insulated circuit board
CN112151400A (zh) 一种解决smd管壳键合点金铝系统的方法
EP1266715A1 (en) Gold wire bonding at room temperature
JP2011243752A (ja) 半導体装置の製造方法、半導体内部接続部材および半導体内部接続部材群
CN117182226A (zh) 一种无封装载片电路焊接方法
JP2003197981A (ja) 熱電モジュール
CN112687555B (zh) 一种用于镀镍管基的芯片低真空合金焊接方法
CN111774682B (zh) 异形多孔印制板焊接方法
JP5310309B2 (ja) はんだコートリッド
CN108581168B (zh) 一种散热芯片的固体焊接工艺
CN113113364A (zh) 功率模块及其封装方法
JP5526997B2 (ja) Bi系はんだ接合用の電子部品と基板及び電子部品実装基板
CN115283774B (zh) 一种封装外壳用Cu-Cr-Zr合金引线的处理工艺
CN113327862A (zh) 无焊料共晶焊接方法及电子产品
JP2010205974A (ja) 半導体装置
CN105870313A (zh) 一种新型的led封装工艺方法
CN118629984A (zh) 新型集成电路功率器件
Zhang et al. Shear Performance and Accelerated Reliability of 6× 4 mm 2 FOWLP Solder Joints Using an ENIG PCB Electrode
JPH09246440A (ja) パッケージの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Ma Jianjun

Inventor after: Cheng Menglian

Inventor after: Bai Yan

Inventor after: Guo Junbo

Inventor after: Liu Zhihui

Inventor after: Liu Yang

Inventor after: Liu Li

Inventor after: Tian Jian

Inventor before: Ma Jianjun

Inventor before: Cheng Menglian

Inventor before: Bai Yan

Inventor before: Guo Junbo

Inventor before: Liu Zhihui

CB03 Change of inventor or designer information