CN112133567A - 一种高度规则排列Mn掺杂Ni-MOF超薄纳米片阵列超级电容器电极材料的制备方法 - Google Patents

一种高度规则排列Mn掺杂Ni-MOF超薄纳米片阵列超级电容器电极材料的制备方法 Download PDF

Info

Publication number
CN112133567A
CN112133567A CN202010648665.9A CN202010648665A CN112133567A CN 112133567 A CN112133567 A CN 112133567A CN 202010648665 A CN202010648665 A CN 202010648665A CN 112133567 A CN112133567 A CN 112133567A
Authority
CN
China
Prior art keywords
mof
mmol
ldh
mnni
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010648665.9A
Other languages
English (en)
Inventor
姚亚东
郑登超
文豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202010648665.9A priority Critical patent/CN112133567A/zh
Publication of CN112133567A publication Critical patent/CN112133567A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种高度规则排列Mn掺杂Ni‑MOF超薄纳米片阵列超级电容器电极材料(Mn0.1‑Ni‑MOF/NF)的制备方法。以六水合硝酸镍为镍源,四水合氯化锰为锰源,采用氟化铵为氟源并和尿素共同调控前驱体溶液的pH值,泡沫镍为导电基底,采用水热法制备MnNi‑LDH/NF前驱,通过溶剂热法处理MnNi‑LDH/NF制备Mn0.1‑Ni‑MOF/NF,将其用于超级电容器自支撑电极材料,在6 M KOH电解质中电流密度为2 mA cm‑2表现出极高的面积比电容(16.2 F cm‑2),该性能远高于未掺杂的Ni‑MOF纳米片阵列材料。本发明充分利用了纳米阵列结构的高比表面积和多种金属间的协同作用,构建了一种面积比电容高、循环寿命长、成本低的新型储能材料。

Description

一种高度规则排列Mn掺杂Ni-MOF超薄纳米片阵列超级电容器 电极材料的制备方法
技术领域
本发明涉及金属掺杂和三维高度规则排列纳米阵列结构的材料制备和应用于超级电容器电极材料的方法,特别是涉及在泡沫镍(NF)上原位生长超薄纳米片阵列结构的MnNi-LDH/NF前驱,再通过溶剂热法处理制备Mn0.1-Ni-MOF/NF,以及该材料在电化学储能领域中的应用。仅采用简单,可控,经济的合成方法便可制备高性能超级电容器电极材料。
背景技术
即将到来的化石燃料枯竭和日益严重的环境问题推动了对高能量输出的绿色和可再生能源的探索(Chem. Soc. Rev.,2015, 44, 5148–5180)。然而,典型的清洁能源,例如太阳能,风能和潮汐能,实际上是断断续续的,需要高效的能量存储/转换系统才能进一步扩大规模(Nano Energy, 2018, 45, 420-431)。超级电容器(SC)储存的能量密度比传统的介电电容器高几个数量级并且具有长循环寿命,和工业二次电池相比可实现数十倍的功率密度(Science, 2014, 343, 1210-1211)。能量密度是另一个关键指标,对于用于规模化应用的现有SC来说,能量密度相对较低,需要制备高性能电极材料来实现该目标(ACS Nano, 2015, 9, 5310-5317; Energy Environ. Sci., 2016, 9, 1299-1307)。然而,提高超级电容器的能量密度需要设计满足优异的电化学性能,高的电导率和大的可与电解质接触的比表面积条件的超级电容器。因此,为了满足超级电容器的要求,设计和发展高电容,高化学稳定性的新型电极材料是迫切需求的。
金属有机框架(MOF)是一类新兴的有机-无机杂化超分子材料,具有独特的周期性多孔结构,为容纳电解质离子提供了丰富的开孔和通道,并为氧化还原反应提供了统一的金属中心,是具有发展前景的材料(Nat. Mater., 2017, 16, 220-224; Chem. Commun.,2018, 54, 10499-10502)。然而低电导率,随机取向和缺乏化学稳定性是将大多数MOF直接进行电化学应用的三个障碍(Chem, 2017, 2, 791–802; J. Mater. Chem. A, 2019, 7,3815-3827; Adv. Energy Mater., 2018, 8, 1702294)。将MOF作为前驱体来制备所需目标产品和多孔模板似乎是一种理想的解决方案,在之前已经有科研工作者进行了广泛的研究(Chem. Soc. Rev., 2017, 46, 2660-2677)。然而将MOF作为前驱体制备材料通常需要耗费大量能量,而且可能损害MOF周期性的多孔结构(J. Mater. Chem. A, 2019, 7,8771-8776)。2018年,Zheng的研究小组首先报道了用Co(OH)2纳米阵列制备垂直取向的CoNi-MOF,然后用作不对称超级电容器电极材料,测试其性能得到CoNi-MOF在2 A g-1处实现了1044 F g-1的高比电容(Adv. Energy Mater., 2018, 8, 1702294)。牺牲具有独特纳米结构的目标材料可能是探索MOF材料用于超级电容器的另一个更好的选择。层状双金属氢氧化物(LDHs)作为一种经典的金属氢氧化物,可以与可交换的正离子和层间电荷平衡阴离子分层和重新堆叠(J. Am. Chem. Soc., 2013, 135, 8452-8455; J. Mater. Chem. A, 2016, 4, 167-172)。将LDHs作为模板转变成MOF,保留LDHs的层状结构,从而获得具有高能量密度的卓越超级电容器性能的电极材料,但迄今为止尚未得到证明。因此,我们期望在导电基底上设计一个三维高度规则排列Mn掺杂的Ni-MOF纳米阵列结构作为高性能的赝电容器电极。
本发明的目的是提供一种三维高度规则排列Mn掺杂Ni-MOF纳米片阵列结构的简单,可控,经济的合成方法,并将其用作高性能的超级电容器电极材料。
本发明的基本构思是:以四水合氯化锰为锰源,六水合硝酸镍为镍源,采用氟化铵为氟源并和尿素共同调控前驱体溶液的pH值,泡沫镍为导电基底,采用水热法制备MnNi-LDH/NF前驱,再以四水合氯化锰和六水合硝酸镍为辅助络合剂,对苯二甲酸为有机配体,氮,氮二甲基甲酰胺(DMF)为有机溶剂,无水乙醇和去离子水分别作为弱配位体溶剂和强配位体溶剂调控金属中心和有机配体的配位形式,采用溶剂热法以MnNi-LDH/NF为前驱和模板制备三维高度规则排列Mn掺杂Ni-MOF纳米阵列结构,并将其用作超级电容器电极材料。
发明内容
本发明提出一种简单易控的水热法和溶剂热法以原位制备三维高度规则排列Mn掺杂Ni-MOF纳米片阵列结构,并将其作为高性能的超级电容器电极材料。
本发明主要解决的技术问题是克服一般电极材料所带来较大的接触电阻,繁琐的制备电极过程,小的可与电解质接触的比表面积,低的循环稳定性等缺陷,并且避免一般MOFs基材料由于取向度和导电性较差而导致的活性位点利用率不高和催化活性降低的缺点,将Mn掺杂Ni-MOF材料直接原位生长在导电基底上以制备三维高度规则排列纳米阵列结构的电极材料,利用其超薄纳米片结构和多种金属间的协同效应,作为超级电容器电极材料,显示出极高的电化学储能性质。具体来讲,本发明是以四水合氯化锰为锰源,六水合硝酸镍为镍源,锰镍摩尔比为1:9,采用氟化铵为氟源并和尿素共同调控前驱体溶液的pH值,泡沫镍为导电基底,采用水热法制备MnNi-LDH/NF前驱,再以四水合氯化锰和六水合硝酸镍为辅助络合剂,对苯二甲酸为有机配体,氮,氮二甲基甲酰胺(DMF)为有机溶剂,无水乙醇和去离子水分别作为弱配位体溶剂和强配位体溶剂调控金属中心和有机配体的配位形式,采用溶剂热法以MnNi-LDH/NF为前驱和模板制备三维纳米片阵列结构的Mn0.1-Ni-MOF/NF超级电容器电极材料,展现出高的面积比电容和优异的循环稳定性。
本发明具体工序步骤如下:
(1)备料:MnCl2 4H2O(0.45 mmol),Ni(NO3)2 6H2O(4.05 mmol),CO(NH2)2(20 mmol)和NH4F(8 mmol),溶解于80 mL超纯水中,搅拌均匀,取一片尺寸为4×6 cm2的泡沫镍(NF),用无水乙醇,5%稀盐酸和去离子水分别超声10 min对其进行预处理;
(2)水热反应:将步骤(1)中的溶液和处理好的NF移至100 mL聚四氟乙烯衬里不锈高压釜中,并密封高压釜,将其放置在烘箱中,于120 ℃下反应6 h;
(3)洗涤干燥:待步骤(2)的反应完成后,放置聚四氟乙烯高压釜于空气中冷却至室温,取出被产物均匀覆盖的NF,用去离子水和乙醇多次洗涤后放置在烘箱中于70℃下干燥3 h,制得MnNi-LDH/NF前驱;
(4)备料:C8H4O4(3.5 mmol),Ni(NO3)2 6H2O(4.725 mmol),MnCl2 4H2O(0.525 mmol),溶解于70 mL DMF后,搅拌中滴加5 mL C2H5OH和5 mL H2O,一片步骤(3)所获得的MnNi-LDH/NF前驱;
(5)溶剂热反应:将步骤(4)中的溶液和步骤(3)所制备的MnNi-LDH/NF前驱移至100 mL聚四氟乙烯高压釜中,并密封高压釜,将其放置在烘箱中,于120 ℃下反应12~13 h;
(6)洗涤干燥:待步骤(5)的反应完成后,放置聚四氟乙烯高压釜于空气中冷却至室温,取出被产物均匀覆盖的NF,用去离子水和乙醇多次洗涤后放置在烘箱中于70 ℃下干燥3h,即可得到Mn0.1-Ni-MOF/NF;
(7)表征及测量:采用XRD,FT-IR,Raman Scattering,SEM,TEM和XPS等测试方法表征Mn0.1-Ni-MOF/NF材料的结构和微观形貌,并使用DH7000电化学工作站,表征Mn0.1-Ni-MOF/NF的面积比电容,倍率性能以及循环稳定性,评价结果见表一。
附图说明
本发明所需的制备装置简单,仅需聚四氟乙烯高压反应釜,烘箱即可;所涉及的原料来源广泛,价格低廉;操作步骤简单,制备周期短,直接通过水热反应和模板法转换即可得到所需的电极材料(图1,图2,图3,图4分别是Mn0.1-Ni-MOF/NF的XRD谱图,FT-IR谱图,Raman谱图,XPS谱图),如此设计的Mn-Ni-MOF具有超薄纳米片的三维阵列结构(图5和图6分别是Mn0.1-Ni-MOF/NF的SEM和TEM图),将其用作超级电容器自支撑电极材料,在6 M KOH电解质中表现出极高的面积比电容(16.2 F cm-2,图7和图8分别是Mn0.1-Ni-MOF/NF的循环伏安曲线和恒电流充放电曲线)和优异的循环稳定性(图9是Mn0.1-Ni-MOF/NF的循环稳定性曲线)。
本发明与现有技术及合成路线相比,具有如下的优点和有益效果:
1.Mn0.1-Ni-MOF/NF制备过程简单可控,反应条件温和,反应周期短;
2.原位合成的Mn-Ni-MOF纳米阵列表现出高度规则排列超薄纳米片结构,可避免引入其他额外添加剂,有效减小其接触电阻,简化工作电极的制备过程,以及具有大的可与电解质接触的比表面积,更强的缓和体积改变能力和更多的电活性位点等优点;
3.三维高度规则排列超薄纳米片结构的Mn0.1-Ni-MOF/NF超级电容器电极材料表现出极好的电化学储能性质,拥有高的面积比电容(16.2 F cm-2)和优异的循环稳定性。
具体实施方式
实例一
(1)备料:MnCl2 4H2O(0.45 mmol),Ni(NO3)2 6H2O(4.05 mmol),CO(NH2)2(20 mmol)和NH4F(8 mmol),溶解于80 mL超纯水中,搅拌均匀,取一片尺寸为4×6 cm2的泡沫镍(NF),用无水乙醇,5%稀盐酸和去离子水分别超声10 min对其进行预处理;
(2)水热反应:将步骤(1)中的溶液和处理好的NF移至100 mL聚四氟乙烯衬里不锈高压釜中,并密封高压釜,将其放置在烘箱中,于120 ℃下反应6 h;
(3)洗涤干燥:待步骤(2)的反应完成后,放置聚四氟乙烯高压釜于空气中冷却至室温,取出被产物均匀覆盖的NF,用去离子水和乙醇多次洗涤后放置在烘箱中于70 ℃下干燥3h,制得MnNi-LDH/NF前驱;
(4)备料:C8H4O4(3.5 mmol),Ni(NO3)2 6H2O(4.725 mmol),MnCl2 4H2O(0.525 mmol),溶解于70 mL DMF后,搅拌中滴加5 mL C2H5OH和5 mL H2O,一片步骤(3)所获得的MnNi-LDH/NF前驱;
(5)溶剂热反应:将步骤(4)中的溶液和步骤(3)所制备的MnNi-LDH/NF前驱移至100 mL聚四氟乙烯高压釜中,并密封高压釜,将其放置在烘箱中,于120 ℃下反应12 h;
(6)洗涤干燥:待步骤(5)的反应完成后,放置聚四氟乙烯高压釜于空气中冷却至室温,取出被产物均匀覆盖的NF,用去离子水和乙醇多次洗涤后放置在烘箱中于70 ℃下干燥3h,即可得到Mn0.1-Ni-MOF/NF;
(7)表征及测量:采用XRD,FT-IR,Raman Scattering,SEM,TEM和XPS等测试方法表征Mn0.1-Ni-MOF/NF材料的结构和微观形貌,并使用DH7000电化学工作站,表征Mn0.1-Ni-MOF/NF的面积比电容,倍率性能以及循环稳定性,评价结果见表一。
实例二
(1)备料:MnCl2 4H2O(0.225 mmol),Ni(NO3)2 6H2O(2.025 mmol),CO(NH2)2(10 mmol)和NH4F(4 mmol),溶解于40 mL超纯水中,搅拌均匀,取一片尺寸为2×3 cm2的泡沫镍(NF),用无水乙醇,5%稀盐酸和去离子水分别超声10 min对其进行预处理;
(2)水热反应:将步骤(1)中的溶液和处理好的NF移至50 mL聚四氟乙烯衬里不锈高压釜中,并密封高压釜,将其放置在烘箱中,于120 ℃下反应6 h;
(3)洗涤干燥:待步骤(2)的反应完成后,放置聚四氟乙烯高压釜于空气中冷却至室温,取出被产物均匀覆盖的NF,用去离子水和乙醇多次洗涤后放置在烘箱中于70 ℃下干燥3h,制得MnNi-LDH/NF前驱;
(4)备料:C8H4O4(1.75 mmol),Ni(NO3)2 6H2O(2.3625 mmol),MnCl2 4H2O(0.2625mmol),溶解于35 mL DMF后,搅拌中滴加2.5 mL C2H5OH和2.5 mL H2O,一片步骤(3)所获得的MnNi-LDH/NF前驱;
(5)溶剂热反应:将步骤(4)中的溶液和步骤(3)所制备的MnNi-LDH/NF前驱移至100 mL聚四氟乙烯高压釜中,并密封高压釜,将其放置在烘箱中,于120 ℃下反应12 h;
(6)洗涤干燥:待步骤(5)的反应完成后,放置聚四氟乙烯高压釜于空气中冷却至室温,取出被产物均匀覆盖的NF,用去离子水和乙醇多次洗涤后放置在烘箱中于70 ℃下干燥3h,即可得到Mn0.1-Ni-MOF/NF;
(7)表征及测量:采用XRD,FT-IR,Raman Scattering,SEM,TEM和XPS等测试方法表征Mn0.1-Ni-MOF/NF材料的结构和微观形貌,并使用DH7000电化学工作站,表征Mn0.1-Ni-MOF/NF的面积比电容,倍率性能以及循环稳定性,评价结果见表一。
实例三
(1)备料:MnCl2 4H2O(0.45 mmol),Ni(NO3)2 6H2O(4.05 mmol),CO(NH2)2(20 mmol)和NH4F(8 mmol),溶解于80 mL超纯水中,搅拌均匀,取一片尺寸为4×6 cm2的泡沫镍(NF),用无水乙醇,5%稀盐酸和去离子水分别超声10 min对其进行预处理;
(2)水热反应:将步骤(1)中的溶液和处理好的NF移至100 mL聚四氟乙烯衬里不锈高压釜中,并密封高压釜,将其放置在烘箱中,于120 ℃下反应6 h;
(3)洗涤干燥:待步骤(2)的反应完成后,放置聚四氟乙烯高压釜于空气中冷却至室温,取出被产物均匀覆盖的NF,用去离子水和乙醇多次洗涤后放置在烘箱中于70 ℃下干燥3h,制得MnNi-LDH/NF前驱;
(4)备料:C8H4O4(3.5 mmol),Ni(NO3)2 6H2O(4.725 mmol),MnCl2 4H2O(0.525 mmol),溶解于70 mL DMF后,搅拌中滴加5 mL C2H5OH和5 mL H2O,一片步骤(3)所获得的MnNi-LDH/NF前驱;
(5)溶剂热反应:将步骤(4)中的溶液和步骤(3)所制备的MnNi-LDH/NF前驱移至100 mL聚四氟乙烯高压釜中,并密封高压釜,将其放置在烘箱中,于120 ℃下反应13 h;
(6)洗涤干燥:待步骤(5)的反应完成后,放置聚四氟乙烯高压釜于空气中冷却至室温,取出被产物均匀覆盖的NF,用去离子水和乙醇多次洗涤后放置在烘箱中于70 ℃下干燥3h,即可得到Mn0.1-Ni-MOF/NF;
(7)表征及测量:采用XRD,FT-IR,Raman Scattering,SEM,TEM和XPS等测试方法表征Mn0.1-Ni-MOF/NF材料的结构和微观形貌,并使用DH7000电化学工作站,表征Mn0.1-Ni-MOF/NF的面积比电容,倍率性能以及循环稳定性,评价结果见表一。
表一 各实例Mn0.1-Ni-MOF/NF的储能性能评价
Figure 30891DEST_PATH_IMAGE001

Claims (3)

1.一种基于在泡沫镍(NF)上原位合成高度规则排列Mn掺杂Ni-MOF超薄纳米片阵列的超级电容器电极材料的方法,其特征在于,以四水合氯化锰为锰源,六水合硝酸镍为镍源,锰镍摩尔比为1:9,氟化铵作为氟源并和尿素共同调控前驱体溶液的pH值,氟化铵和尿素的摩尔比为2:5,采用水热法合成MnNi-LDH/NF,再以四水合氯化锰和六水合硝酸镍为辅助络合剂,锰镍元素的摩尔比为1:9,对苯二甲酸为有机配体,氮,氮二甲基甲酰胺(DMF)为有机溶剂,无水乙醇和去离子水分别作为弱配位体溶剂和强配位体溶剂调控金属中心和有机配体的配位形式,无水乙醇和去离子水的摩尔比为1:1,采用溶剂热法以MnNi-LDH/NF为前驱和模板制备纳米片阵列结构的Mn0.1-Ni-MOF/NF超级电容器电极材料。
2.根据权利要求1所述Mn0.1-Ni-MOF/NF的制备方法,其特征在于包含以下工序和步骤:
(1) 备料:MnCl2 4H2O(0.45 mmol),Ni(NO3)2 6H2O(4.05 mmol),CO(NH2)2(20 mmol)和NH4F(8 mmol),溶解于80 mL超纯水中,搅拌均匀,取一片尺寸为4×6 cm2的泡沫镍(NF),用无水乙醇,5%稀盐酸和去离子水分别超声10 min对其进行预处理;
(2) 水热反应:将步骤(1)中的溶液和处理好的NF移至100 mL聚四氟乙烯衬里不锈高压釜中,并密封高压釜,将其放置在烘箱中,于120 ℃下反应6 h;
(3) 洗涤干燥:待步骤(2)的反应完成后,放置聚四氟乙烯高压釜于空气中冷却至室温,取出被产物均匀覆盖的NF,用去离子水和乙醇多次洗涤后放置在烘箱中于70 ℃下干燥3 h,制得MnNi-LDH/NF前驱;
(4) 备料:C8H4O4(3.5 mmol),Ni(NO3)2 6H2O(4.725 mmol),MnCl2 4H2O(0.525 mmol),溶解于70 mL DMF后,搅拌中滴加5 mL C2H5OH和5 mL H2O,一片步骤(3)所获得的MnNi-LDH/NF前驱;
(5) 溶剂热反应:将步骤(4)中的溶液和步骤(3)所制备的MnNi-LDH/NF前驱移至100mL聚四氟乙烯高压釜中,并密封高压釜,将其放置在烘箱中,于120 ℃下反应12~13 h;
(6) 洗涤干燥:待步骤(5)的反应完成后,放置聚四氟乙烯高压釜于空气中冷却至室温,取出被产物均匀覆盖的NF,用去离子水和乙醇多次洗涤后放置在烘箱中于70 ℃下干燥3 h,即可得到Mn0.1-Ni-MOF/NF;
(7) 表征及测量:采用XRD,FT-IR,Raman Scattering,SEM,TEM和XPS等测试方法表征Mn0.1-Ni-MOF/NF材料的结构和微观形貌,并使用DH7000电化学工作站,表征Mn0.1-Ni-MOF/NF的面积比电容,倍率性能以及循环稳定性。
3.根据权利要求2所述Mn0.1-Ni-MOF/NF电极材料的制备方法,其特征在于:电极材料具有高度规则排列超薄的纳米片阵列结构,且如此设计的三维纳米阵列结构用作超级电容器电极材料表现出在2 mA cm-2电流密度下16.2 F cm-2的面积比电容和优异的循环稳定性。
CN202010648665.9A 2020-07-07 2020-07-07 一种高度规则排列Mn掺杂Ni-MOF超薄纳米片阵列超级电容器电极材料的制备方法 Pending CN112133567A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010648665.9A CN112133567A (zh) 2020-07-07 2020-07-07 一种高度规则排列Mn掺杂Ni-MOF超薄纳米片阵列超级电容器电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010648665.9A CN112133567A (zh) 2020-07-07 2020-07-07 一种高度规则排列Mn掺杂Ni-MOF超薄纳米片阵列超级电容器电极材料的制备方法

Publications (1)

Publication Number Publication Date
CN112133567A true CN112133567A (zh) 2020-12-25

Family

ID=73851217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010648665.9A Pending CN112133567A (zh) 2020-07-07 2020-07-07 一种高度规则排列Mn掺杂Ni-MOF超薄纳米片阵列超级电容器电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN112133567A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927357A (zh) * 2022-06-09 2022-08-19 安徽大学 一种CoNi复合硫化物电极材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110243820A1 (en) * 2010-04-02 2011-10-06 Mcgrail B Peter Methods for Associating or Dissociating Guest Materials with a Metal Organic Framework, Systems for Associating or Dissociating Guest Materials Within a Series of Metal Organic Frameworks, and Gas Separation Assemblies
CN104992848A (zh) * 2015-06-30 2015-10-21 中国地质大学(武汉) 一种应用于超级电容器的二元金属有机骨架材料及其制备方法
CN109553779A (zh) * 2018-11-20 2019-04-02 三峡大学 一种三维纳米花金属有机框架材料的制备方法及应用
CN109652822A (zh) * 2018-12-18 2019-04-19 四川大学 以ldh为模板制备层状金属有机框架材料纳米阵列水氧化电催化剂
CN110157006A (zh) * 2019-06-03 2019-08-23 贵阳学院 双金属磷化物材料的制备及含双金属磷化物材料的电极材料的制备和应用
CN110921721A (zh) * 2019-12-03 2020-03-27 西北师范大学 一种基于金属有机框架衍生的双金属氢氧化物的制备及应用
CN110957146A (zh) * 2019-11-12 2020-04-03 洛阳师范学院 超级电容器复合电极材料的制备方法及电极
CN111009421A (zh) * 2019-11-22 2020-04-14 中国矿业大学 一种层片状双金属有机骨架化合物及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110243820A1 (en) * 2010-04-02 2011-10-06 Mcgrail B Peter Methods for Associating or Dissociating Guest Materials with a Metal Organic Framework, Systems for Associating or Dissociating Guest Materials Within a Series of Metal Organic Frameworks, and Gas Separation Assemblies
CN104992848A (zh) * 2015-06-30 2015-10-21 中国地质大学(武汉) 一种应用于超级电容器的二元金属有机骨架材料及其制备方法
CN109553779A (zh) * 2018-11-20 2019-04-02 三峡大学 一种三维纳米花金属有机框架材料的制备方法及应用
CN109652822A (zh) * 2018-12-18 2019-04-19 四川大学 以ldh为模板制备层状金属有机框架材料纳米阵列水氧化电催化剂
CN110157006A (zh) * 2019-06-03 2019-08-23 贵阳学院 双金属磷化物材料的制备及含双金属磷化物材料的电极材料的制备和应用
CN110957146A (zh) * 2019-11-12 2020-04-03 洛阳师范学院 超级电容器复合电极材料的制备方法及电极
CN111009421A (zh) * 2019-11-22 2020-04-14 中国矿业大学 一种层片状双金属有机骨架化合物及其制备方法和应用
CN110921721A (zh) * 2019-12-03 2020-03-27 西北师范大学 一种基于金属有机框架衍生的双金属氢氧化物的制备及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927357A (zh) * 2022-06-09 2022-08-19 安徽大学 一种CoNi复合硫化物电极材料及其制备方法
CN114927357B (zh) * 2022-06-09 2023-10-27 安徽大学 一种CoNi复合硫化物电极材料及其制备方法

Similar Documents

Publication Publication Date Title
CN109652822B (zh) 以ldh为模板制备层状金属有机框架材料纳米阵列水氧化电催化剂
Bai et al. Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors
CN108346522B (zh) 一种四氧化三钴分级结构纳米阵列材料、制备方法及其应用
Wang et al. Advances and perspectives of ZIFs-based materials for electrochemical energy storage: Design of synthesis and crystal structure, evolution of mechanisms and electrochemical performance
Zhu et al. Vanadium‐based metal‐organic frameworks and their derivatives for electrochemical energy conversion and storage
Hussain et al. Recent advances in oriented metal–organic frameworks for supercapacitive energy storage
Sun et al. Multi-metal–organic frameworks and their derived materials for Li/Na-ion batteries
Wang et al. Metal–organic frameworks for energy storage: Batteries and supercapacitors
Qiu et al. NiO/Co3O4 nanoheterostructure derived from nickelocene filled ZIF-67 for supercapacitors
Chen et al. Emerging two-dimensional nanostructured manganese-based materials for electrochemical energy storage: recent advances, mechanisms, challenges, and prospects
Yao et al. Nanostructured transition metal vanadates as electrodes for pseudo-supercapacitors: a review
Du et al. Uniform MnCo 2 O 4.5 porous nanowires and quasi-cubes for hybrid supercapacitors with excellent electrochemical performances
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
Wang et al. Nanostructured hexaazatrinaphthalene based polymers for advanced energy conversion and storage
CN109767925B (zh) 用于锂离子超级电容器的T-Nb2O5/蛋清碳复合材料及其制备方法
Zhu et al. Dual-defect site regulation on MOF-derived P-Co 3 O 4@ NC@ O v-NiMnLDH carbon arrays for high-performance supercapacitors
CN112103092B (zh) 金属阳离子掺杂多硫化钴/氢氧化钴复合材料及其制备方法与应用
Li et al. Fabricated Ga (III) heterovalent substituted NiCo layered double hydroxides (NiCoGa-LDHs) electrode material for designed hybrid supercapacitor
Shen et al. Electrochemical performance of zinc carbodiimides based porous nanocomposites as supercapacitors
CN104299793A (zh) 一种氧化镍/多壁碳纳米管电极材料的制备方法
CN112133567A (zh) 一种高度规则排列Mn掺杂Ni-MOF超薄纳米片阵列超级电容器电极材料的制备方法
Fayaz et al. Prussian blue analogues and their derived materials for electrochemical energy storage: Promises and Challenges
CN114628672B (zh) 一种基于五氧化二钒的有机无机杂化材料及制备和应用
Fu et al. Chain-tailed dodecahedron structure derived from Zn/Co-ZIFs/CNTs with excellent rate capability as an anode for lithium-ion batteries
Farzinpour et al. Synthesis of vanadium metal-organic framework, characterization, and study of electrochemical properties for using in supercapacitor and oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201225

WD01 Invention patent application deemed withdrawn after publication