CN112125696A - 一种3-3型pvdf/水泥压电复合材料及其制备方法 - Google Patents

一种3-3型pvdf/水泥压电复合材料及其制备方法 Download PDF

Info

Publication number
CN112125696A
CN112125696A CN202011027283.0A CN202011027283A CN112125696A CN 112125696 A CN112125696 A CN 112125696A CN 202011027283 A CN202011027283 A CN 202011027283A CN 112125696 A CN112125696 A CN 112125696A
Authority
CN
China
Prior art keywords
cement
pvdf
type
ceramic
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011027283.0A
Other languages
English (en)
Other versions
CN112125696B (zh
Inventor
刘炜
董英鸽
曹玉
阴建能
王建宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN202011027283.0A priority Critical patent/CN112125696B/zh
Publication of CN112125696A publication Critical patent/CN112125696A/zh
Application granted granted Critical
Publication of CN112125696B publication Critical patent/CN112125696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63436Halogen-containing polymers, e.g. PVC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种3‑3型PVDF/水泥压电复合材料,是以3‑3型多孔压电陶瓷骨架为功能体,在其孔隙中浇注水泥浆料形成基体,并在水泥基体与多孔压电陶瓷骨架结合处的孔隙及多孔压电陶瓷骨架内部的微米级孔隙内填充具有压电性的PVDF构成。本发明的3‑3型PVDF/水泥压电复合材料致密度高,可以阻止在微米级孔隙和水泥压电相结合处形成漏电流,减少空间电荷极化对材料耐电强度的影响,压电性能优良,稳定性和灵敏度高,且与混凝土结构相容性好、耐久性强。

Description

一种3-3型PVDF/水泥压电复合材料及其制备方法
技术领域
本发明属于水泥基压电智能复合材料技术领域,涉及3-3型水泥压电复合材料,特别是涉及一种利用PVDF进行加强的3-3型水泥压电复合材料及其制备方法。
背景技术
土木工程结构在长期的使用过程中,受过度使用、超载、环境侵蚀等因素的影响,容易随时间推移产生缺陷而劣化。因此,通过采用土木结构健康监测系统实时诊断缺陷(裂纹、锈蚀等)的位置和损坏程度,可以使结构得到及时修复和加固,从而确保其的完整性和安全性。
水泥基压电智能复合材料以水泥材料作为基体,压电陶瓷材料作为功能体,一方面利用压电陶瓷的机电耦合特性,产生环境激励信号和结构响应信号,可以监测检查结构内部应力和应变的分布情况,另一方面利用水泥材料与混凝土结构材料较好的界面粘结强度和声阻抗匹配性,在土木工程结构健康监测中有着巨大的应用潜力。
根据陶瓷相与基体相的不同联通方式,水泥基压电智能复合材料一般可以分为十种基本类型,即0-0、0-1、0-2、0-3、1-1、1-2、1-3、2-2、2-3、3-3型,前面的一个数字指压电陶瓷相的联通方式,后面的一个数字指基体相的联通方式。其中,3-3型水泥压电复合材料的压电陶瓷相处于三维联通状态,非常有利于提高压电复合材料的极化效率,实现饱和极化,有效提高复合材料的压电性能和机电耦合性能。
CN 105552212A公开了一种3-3型压电陶瓷/水泥压电复合材料及其制备方法,其以颗粒稳泡技术和凝胶注模成型工艺相结合,先制备3-3型多孔压电陶瓷,再以压电陶瓷为基体浇注水泥浆料。该压电复合材料中,多孔压电陶瓷的孔隙率和孔径分布集中,而且不易控制,难以根据不同使用环境任意调节其性能。
CN 111187073A则是采用3D打印技术打印用于注射多孔压电陶瓷骨架结构的空腔牺牲模板,注入陶瓷浆料并固化成型,经高温烧结除去空腔牺牲模板得到多孔压电陶瓷骨架结构,浇注水泥浆体得到3-3型压电陶瓷/水泥复合材料。但是,水泥浆料在浇注过程中难以填充多孔压电陶瓷内部的微米级孔隙,以及在水泥压电相结合处产生新的孔隙,这都将导致压电复合材料在极化或使用时,材料内部的气孔出现空间电荷极化而击穿破坏,使材料的耐电强度显著降低。
发明内容
本发明的目的是提供一种3-3型PVDF/水泥压电复合材料,该水泥压电复合材料不仅压电性能优良,稳定性和灵敏度高,而且与混凝土结构的相容性好、耐久性强。
提供所述3-3型PVDF/水泥压电复合材料的制备方法,是本发明的另一发明目的。
本发明所述的3-3型PVDF/水泥压电复合材料是以3-3型多孔压电陶瓷骨架作为功能体,向所述多孔压电陶瓷骨架功能体的孔隙中浇注水泥浆料形成基体,并在水泥基体与多孔压电陶瓷骨架结合处的孔隙以及多孔压电陶瓷骨架内部的微米级孔隙内填充具有压电性的聚偏氟乙烯(PVDF),所构成的3-3型PVDF/水泥压电复合材料。
其中,优选地,所述的3-3型多孔压电陶瓷骨架是采用颗粒稳泡法结合温度诱导絮凝成型工艺,在陶瓷浆料中加入分散剂和发泡剂得到陶瓷泡沫浆料,低温下使分散剂的分散功能失效,陶瓷泡沫浆料固化成型,冷冻干燥去除溶剂、升温除去分散剂后,高温烧结得到的具有高孔隙率的多孔压电陶瓷。
进一步地,本发明是采用下述制备方法,制备得到所述3-3型PVDF/水泥压电复合材料的。
1)在有机溶剂中加入压电陶瓷粉体和分散剂进行混合球磨,得到分散均匀的陶瓷浆料。
2)向所述陶瓷浆料中加入发泡剂,高速搅拌发泡,得到稳定存在的陶瓷泡沫浆料。
3)将所述陶瓷泡沫浆料置于-20~-30℃低温环境下,使分散剂的溶解度下降,分散能力失效,陶瓷泡沫浆料原位低温固化成型得到多孔陶瓷湿坯。
4)真空冷冻干燥去除多孔陶瓷湿坯中的有机溶剂,再升温排胶除去分散剂,经高温烧结得到具有高孔隙率的3-3型多孔压电陶瓷骨架。
5)向所述3-3型多孔压电陶瓷骨架浇注水泥浆料,经养护凝固,得到3-3型水泥压电复合材料。
6)以PVDF的可溶性溶剂溶解PVDF,反复涂刷3-3型水泥压电复合材料表面,并置于真空环境中除气,促进PVDF填充至水泥压电复合材料内部的孔隙内,得到3-3型PVDF/水泥压电复合材料。
本发明用于组成所述陶瓷浆料的原料中,所述压电陶瓷粉体为锆钛酸铅、铌镁锆钛酸铅或钛酸钡等常规压电陶瓷材料中的一种,且所述压电陶瓷粉体优选占陶瓷浆料总质量的35~80wt%。
所述的分散剂为阳离子型分散剂,包括但不限于英国Croda公司生产的阳离子型分散剂Hypermer KD-2、Hypermer KD-3中的一种。
进一步地,所述阳离子型分散剂的用量为压电陶瓷粉体质量的1~5wt%。
进而,用于悬浮所述压电陶瓷粉体的有机溶剂包括但不限于是正丁醇、异丁醇、正戊醇、异戊醇、叔戊醇中的任意一种。
本发明优选采用短链两亲分子活性剂作为发泡剂,用于对陶瓷浆料进行发泡,以使陶瓷浆料产生稳定的泡沫。
所述短链两亲分子活性剂包括但不限于丙酸、丁酸、戊酸、正己胺、正戊胺或没食子酸丙酯中的一种,其加入量为陶瓷浆料体积的0.5~2vol%。
具体地,所述陶瓷泡沫浆料的低温固化成型时间优选为0.5~2h。
本发明所述方法中,针对所述多孔陶瓷湿坯的真空冷冻干燥条件优选为在-40~-55℃和100~1000Pa压力下冷冻干燥12~48h。
进而,本发明优选将去除有机溶剂后的多孔陶瓷湿坯升温至420~550℃进行排胶,以除去其中的分散剂。所述排胶时间一般为24~36h。
将所述多孔陶瓷湿坯在1100~1250℃的烧结温度下烧结15~30h,得到3-3型多孔压电陶瓷骨架。
具体地,在向所述3-3型多孔压电陶瓷骨架浇注水泥浆料的过程中,应不断振动3-3型多孔压电陶瓷骨架,以减少得到的3-3型水泥压电复合材料的孔隙率。
本发明中,所述水泥浆料所使用的水泥为硅酸盐水泥、硫铝酸盐水泥或磷酸盐水泥等各种常规水泥产品。本发明将所述水泥以0.3~0.5的水灰质量比配制成水泥浆料使用。
进而,本发明向所述3-3型多孔压电陶瓷骨架中浇注水泥浆料后,将其置于标准养护箱中养护7~28天。
优选的养护条件是控制养护温度为20±1℃,相对湿度≥90%。
所述PVDF的可溶性溶剂包括但不限于是N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、二甲基乙酰胺(DMAc)等各种对PVDF具有较大溶解度的有机溶剂。
进而,本发明优选将所述PVDF配制成浓度5~25wt%的溶液,以得到流动性良好的溶液。
优选地,本发明将涂刷有PVDF溶液的3-3型水泥压电复合材料置于真空环境中除气0.5~2h。
本发明采用颗粒稳泡法结合温度诱导絮凝成型工艺制备3-3型多孔压电陶瓷骨架作为功能体。其中,陶瓷浆料搅拌发泡后,在表面张力作用下,陶瓷泡沫存在尺寸逐渐变大直至破裂的趋势,因此,尽量延长陶瓷泡沫长大的时间,并在短时间内使泡沫固化成型,是制备高孔隙率多孔压电陶瓷的关键。
本发明在陶瓷颗粒表面修饰短链两亲分子活性剂,得到颗粒稳泡型泡沫,可在长时间内保持泡沫体系的稳定。此外,本发明采用温度诱导絮凝成型工艺制备多孔陶瓷湿坯,陶瓷泡沫浆料在发泡后1h内即可原位固化成型,最大程度地保持了泡沫的尺寸和形状,确保了水泥浆料与多孔压电陶瓷骨架的有效结合。
本发明将PVDF渗透进入3-3型水泥压电复合材料的内部,同时填充水泥基体与多孔压电陶瓷骨架结合处的孔隙和多孔压电陶瓷骨架内部的微米级孔隙,以得到3-3型PVDF/水泥压电复合材料。PVDF材料作为压电绝缘型填充体,不仅通过填充孔隙而提高材料的致密度,而且可以阻止在微米级孔隙和水泥压电相结合处形成漏电流,并减少空间电荷极化对材料耐电强度的影响,从而有效提高压电复合材料的极化效果。
同时,由于PVDF材料自身具有压电性能,通过改变PVDF的加入量,可以实现压电复合材料与混凝土母材的谐振频率及声阻抗匹配。
最后,PVDF材料的加入,还可以增加压电复合材料的塑性,提高压电复合材料与混凝土母材的强度一致性和界面粘结性。
附图说明
图1是实施例1制备3-3型多孔压电陶瓷骨架的SEM图。
图2是实施例1制备3-3型水泥压电复合材料的SEM图。
图3是实施例1制备3-3型PVDF/水泥压电复合材料的SEM图。
图4是实施例1制备3-3型PVDF/水泥压电复合材料的阻抗相位图。
具体实施方式
下面结合实施例对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不是限制本发明的保护范围。本领域普通技术人员在不脱离本发明原理和宗旨的情况下,针对这些实施例进行的各种变化、修改、替换和变型,均应包含在本发明的保护范围之内。
实施例1。
称取0.55g分散剂Hypermer KD-2,55g锆钛酸铅压电陶瓷粉体,一起加入到100ml正戊醇中,混合球磨8h,得到分散均匀的陶瓷浆料。
向陶瓷浆料中加入0.5ml发泡剂丙酸,迅速搅拌发泡。将得到的陶瓷泡沫浆料快速倒入尼龙模具中,置于-20℃的低温恒温冷冻槽中,冷冻1h成型,得到多孔陶瓷湿坯。
取出多孔陶瓷湿坯,于-50℃、100Pa下冷冻干燥24h,去除掉有机溶剂正戊醇,再升温至425℃保温12h,排胶去除分散剂Hypermer KD-2后,以1.5℃/min的升温速度升温至1150℃,保温烧结2h,得到3-3型多孔压电陶瓷骨架。
从图1可以看出,利用颗粒稳定泡沫结合温度絮凝成型工艺制得的3-3型多孔压电陶瓷骨架具有孔径分布均匀,开孔气孔率高的特点,有利于下一步利用水泥材料对多孔陶瓷内部孔隙的充分填充。
在100g硅酸盐水泥中加入40ml水,充分搅拌形成水泥浆料。不断振动下,将水泥浆料浇注至3-3型多孔压电陶瓷骨架中,置于标准养护箱中,于20℃、相对湿度100%下养护7天,得到3-3型水泥压电复合材料。
根据图2的3-3型水泥压电复合材料SEM图,可以看出硅酸盐水泥材料已经填充至多孔压电陶瓷的内部孔隙,并且在压电陶瓷颗粒间隙形成水化产物,如水化硅酸钙、氢氧化钙及少量的针状钙矾石。
将3g PVDF溶于20ml NMP中配制PVDF溶液。以PVDF溶液涂刷养护好的3-3型水泥压电复合材料表面,并真空除气0.5h。重复上述操作5次,得到3-3型PVDF/水泥压电复合材料。
图3给出了3-3型PVDF/水泥压电复合材料的SEM图,可以看出,PVDF聚合物通过进一步填充至水泥压电复合材料内部的间隙,将压电陶瓷颗粒与水泥水化产物紧密连接在一起,有效提高了压电复合材料的致密度。
用磨片机对3-3型PVDF/水泥压电复合材料的上下两个平行表面分别进行打磨,使两面完全露出压电陶瓷相,抛光处理后,均匀地涂上低温导电银胶,再经过高压极化,即可用于检测其相关的介电、压电及机电耦合性能。
本实施例制备3-3型PVDF/水泥压电复合材料的阻抗谱图如图4所示。在0~1MHz频率范围内,复合材料除在48.7kHz处有一较弱的平面模外,仅有单一的厚度模,谐振频率为238.5kHz,材料的平面模与厚度模之间几乎不存在耦合,并且带宽高达189.8kHz。
因此,本实施例3-3型梯度结构PVDF/水泥压电复合材料的频带变宽,平面模与厚度模间耦合减小,可降低信号干扰,有效提高传感器的接收灵敏度。
本实施例3-3型PVDF/水泥压电复合材料的其他性能参数如表1所示。
实施例2。
称取1.4g分散剂Hypermer KD-3,70g铌镁锆钛酸铅压电陶瓷粉体,一起加入100ml正丁醇中,混合球磨10h,得到分散均匀的陶瓷浆料。
向陶瓷浆料中加入1ml发泡剂戊酸,迅速搅拌发泡。将得到的陶瓷泡沫浆料快速倒入尼龙模具中,置于-25℃的低温恒温冷冻槽中,冷冻1h成型,得到多孔陶瓷湿坯。
取出多孔陶瓷湿坯,于-50℃、300Pa下冷冻干燥36h,去除掉有机溶剂正丁醇,再升温至525℃保温30h,排胶去除分散剂Hypermer KD-3后,以1.5℃/min的升温速度升温至1200℃,保温烧结2h,得到3-3型多孔压电陶瓷骨架。
在100g硫铝酸盐水泥中加入50ml水,充分搅拌形成水泥浆料。不断振动下,将水泥浆料浇注至3-3型多孔压电陶瓷骨架中,置于标准养护箱中,于20℃、相对湿度100%下养护7天,得到3-3型水泥压电复合材料。
将2.5g PVDF溶于20ml DMF中,配制成PVDF溶液,以其涂刷养护好的3-3型水泥压电复合材料表面,并真空除气0.5h。重复上述操作5次,得到3-3型PVDF/水泥压电复合材料。
本实施例制备3-3型PVDF/水泥压电复合材料的性能参数如表1所示。
实施例3。
称取1.7g分散剂Hypermer KD-3,85g钛酸钡压电陶瓷粉体,加入100ml异戊醇中混合球磨12h,得到分散均匀的陶瓷浆料。
向陶瓷浆料中加入1.5ml发泡剂丁酸,迅速搅拌发泡。将得到的陶瓷泡沫浆料快速倒入尼龙模具中,置于-25℃的低温恒温冷冻槽中,冷冻1h成型,得到多孔陶瓷湿坯。
取出多孔陶瓷湿坯,于-50℃、100Pa下冷冻干燥48h,去除掉有机溶剂异戊醇,再升温至525℃保温36h,排胶去除分散剂Hypermer KD-3后,以1.5℃/min的升温速度升温至1250℃,保温烧结2h,得到3-3型多孔压电陶瓷骨架。
在100g磷铝酸盐水泥中加入50ml水,充分搅拌形成水泥浆料。不断振动下,将水泥浆料浇注至3-3型多孔压电陶瓷骨架中,置于标准养护箱中,于20℃、相对湿度100%下养护7天,得到3-3型水泥压电复合材料。
将2g PVDF溶于20ml DMAc中,配制成PVDF溶液,以其涂刷养护好的3-3型水泥压电复合材料表面,并真空除气0.5h。重复上述操作5次,得到3-3型PVDF/水泥压电复合材料。
本实施例制备3-3型PVDF/水泥压电复合材料的性能参数如表1所示。
Figure 60833DEST_PATH_IMAGE001
如表1所示,以3-3型多孔压电陶瓷骨架为基体制备PVDF/水泥压电复合材料,材料具有较高的介电常数和压电电压常数,显著提高了材料的压电性能。与此同时,材料展示出良好的声阻抗匹配和机电耦合效应,以及较低的机械品质因数,适用于土木工程结构健康监测。

Claims (10)

1.一种3-3型PVDF/水泥压电复合材料,是以3-3型多孔压电陶瓷骨架为功能体,向所述多孔压电陶瓷骨架的孔隙中浇注水泥浆料形成基体,并在水泥基体与多孔压电陶瓷骨架结合处的孔隙以及多孔压电陶瓷骨架内部的微米级孔隙内填充具有压电性的PVDF,所构成的3-3型PVDF/水泥压电复合材料。
2.根据权利要求1所述的3-3型PVDF/水泥压电复合材料,其特征是所述3-3型多孔压电陶瓷骨架是采用颗粒稳泡法结合温度诱导絮凝成型工艺,在陶瓷浆料中加入分散剂和发泡剂得到陶瓷泡沫浆料,低温下使分散剂的分散功能失效,陶瓷泡沫浆料固化成型,冷冻干燥去除溶剂、升温除去分散剂后,高温烧结得到的具有高孔隙率的多孔压电陶瓷。
3.权利要求1所述3-3型PVDF/水泥压电复合材料的制备方法,包括:
1)在有机溶剂中加入压电陶瓷粉体和分散剂进行混合球磨,得到分散均匀的陶瓷浆料;
2)向所述陶瓷浆料中加入发泡剂,高速搅拌发泡,得到稳定存在的陶瓷泡沫浆料;
3)将所述陶瓷泡沫浆料置于-20~-30℃低温环境下,使分散剂的溶解度下降,分散能力失效,陶瓷泡沫浆料原位低温固化成型得到多孔陶瓷湿坯;
4)真空冷冻干燥去除多孔陶瓷湿坯中的有机溶剂,再升温排胶除去分散剂,经高温烧结得到具有高孔隙率的3-3型多孔压电陶瓷骨架;
5)向所述3-3型多孔压电陶瓷骨架浇注水泥浆料,经养护凝固,得到3-3型水泥压电复合材料;
6)以PVDF的可溶性溶剂溶解PVDF,反复涂刷3-3型水泥压电复合材料表面,并置于真空环境中除气,促进PVDF填充至水泥压电复合材料内部的孔隙内,得到3-3型PVDF/水泥压电复合材料。
4.根据权利要求3所述的3-3型PVDF/水泥压电复合材料的制备方法,其特征是所述陶瓷浆料中的分散剂为阳离子型分散剂Hypermer KD-2或Hypermer KD-3,用量为压电陶瓷粉体质量的1~5wt%,有机溶剂为正丁醇、异丁醇、正戊醇、异戊醇、叔戊醇中的任意一种。
5.根据权利要求3所述的3-3型PVDF/水泥压电复合材料的制备方法,其特征是所述陶瓷泡沫浆料中的发泡剂为短链两亲分子活性剂丙酸、丁酸、戊酸、正己胺、正戊胺或没食子酸丙酯中的一种,加入量为陶瓷浆料体积的0.5~2vol%。
6.根据权利要求3所述的3-3型PVDF/水泥压电复合材料的制备方法,其特征是所述陶瓷泡沫浆料的低温固化成型时间为0.5~2h。
7.根据权利要求3所述的3-3型PVDF/水泥压电复合材料的制备方法,其特征是将所述多孔陶瓷湿坯在-40~-55℃和100~1000Pa压力下真空冷冻干燥12~48h去除有机溶剂后,于420~550℃排胶24~36h,再升温至1100~1250℃烧结15~30h,得到3-3型多孔压电陶瓷骨架。
8.根据权利要求3所述的3-3型PVDF/水泥压电复合材料的制备方法,其特征是将浇注水泥浆料的3-3型多孔压电陶瓷骨架置于标准养护箱中,在养护温度20±1℃、相对湿度≥90%条件下养护7~28天。
9.根据权利要求3所述的3-3型PVDF/水泥压电复合材料的制备方法,其特征是所述PVDF的可溶性溶剂为N-甲基吡咯烷酮、二甲基甲酰胺或二甲基乙酰胺,以其配制浓度5~25wt%的PVDF溶液。
10.根据权利要求3所述的3-3型PVDF/水泥压电复合材料的制备方法,其特征是将涂刷有PVDF溶液的3-3型水泥压电复合材料置于真空环境中除气0.5~2h。
CN202011027283.0A 2020-09-26 2020-09-26 一种3-3型pvdf/水泥压电复合材料及其制备方法 Active CN112125696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011027283.0A CN112125696B (zh) 2020-09-26 2020-09-26 一种3-3型pvdf/水泥压电复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011027283.0A CN112125696B (zh) 2020-09-26 2020-09-26 一种3-3型pvdf/水泥压电复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112125696A true CN112125696A (zh) 2020-12-25
CN112125696B CN112125696B (zh) 2022-08-12

Family

ID=73840179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011027283.0A Active CN112125696B (zh) 2020-09-26 2020-09-26 一种3-3型pvdf/水泥压电复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112125696B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640586A (zh) * 2021-08-24 2021-11-12 中国科学院地球化学研究所 一种高温高压条件下固体材料介电常数的阻抗谱原位测量装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552212A (zh) * 2015-12-16 2016-05-04 中北大学 一种3-3型压电陶瓷/水泥压电复合材料及其制备方法
CN111187073A (zh) * 2020-01-22 2020-05-22 中北大学 一种3-3型压电陶瓷/水泥复合材料及其制备方法
CN111646745A (zh) * 2020-05-13 2020-09-11 河南理工大学 一种全有机无金属钙钛矿水泥基压电材料、制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552212A (zh) * 2015-12-16 2016-05-04 中北大学 一种3-3型压电陶瓷/水泥压电复合材料及其制备方法
CN111187073A (zh) * 2020-01-22 2020-05-22 中北大学 一种3-3型压电陶瓷/水泥复合材料及其制备方法
CN111646745A (zh) * 2020-05-13 2020-09-11 河南理工大学 一种全有机无金属钙钛矿水泥基压电材料、制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WITTINANON, THANYAPON,ET AL: "Effect of polyvinylidene fluoride on the acoustic impedance matching, poling enhancement and piezoelectric properties of 0–3 smart lead-free piezoelectric Portland cement composites", 《JOURNAL OF ELECTROCERAMICS》 *
王迎军: "《新型材料科学与技术 无机材料卷 中》", 31 October 2016, 华南理工大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640586A (zh) * 2021-08-24 2021-11-12 中国科学院地球化学研究所 一种高温高压条件下固体材料介电常数的阻抗谱原位测量装置及方法

Also Published As

Publication number Publication date
CN112125696B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN107200599B (zh) 多孔氧化铝陶瓷及其制备方法和应用
CN111187073B (zh) 一种3-3型压电陶瓷/水泥复合材料及其制备方法
CN100424034C (zh) 一种磷石膏复合砖及其生产方法
CN111393181B (zh) 基于直接凝固注模成型的全闭孔多孔莫来石陶瓷制备方法
CN112125696B (zh) 一种3-3型pvdf/水泥压电复合材料及其制备方法
CN110093588B (zh) 一种细晶粒铝钪合金靶材及其制备方法和应用
CN105552212B (zh) 一种3‑3型压电陶瓷/水泥压电复合材料及其制备方法
CN111196704B (zh) 一种预制构件用混凝土及其制备方法
Liu et al. Effects of sintering behavior on piezoelectric properties of porous PZT ceramics
CN107742671B (zh) 3-1-2型聚合物/水泥压电复合材料及其制备方法
CN102951922B (zh) 一种冷冻浇注法制备钛酸钡多孔陶瓷的方法
CN103508714A (zh) 一种压电复合材料与水泥复合的智能阻尼材料及其制备方法
CN102299254B (zh) 一种流延法制备大尺寸厚膜压电复合材料的方法
CN103739285B (zh) 氧化物增韧多孔锆钛酸铅压电陶瓷的制备方法
CN105347846A (zh) 一种陶瓷/树脂压电复合物的制备方法
Huafang et al. Improve the humidity resistance of sodium silicate sands by ester-microwave composite hardening
CN115724625A (zh) 一种建筑固废免烧砖复合固化剂及其制成的免烧砖
CN113149671B (zh) 轻质莫来石-氧化铝空心球-钛酸铝匣钵浇注成型工艺
CN115557777A (zh) 一种自发凝固成型的氧化铝陶瓷料及陶瓷基板的制备方法
CN111517727B (zh) 一种用于水下工程的混凝土及其制备方法
CN108863435B (zh) 一种由铝溶胶自凝胶成型制备氧化铝泡沫陶瓷的方法
CN106565248A (zh) 一种分散剂水解失效固化陶瓷悬浮体的方法及陶瓷成型方法
CN103180259B (zh) 用含超级增塑剂的砂浆制造高压电隔离器的制造方法
CN114227885B (zh) 一种大空隙水泥混凝土试件的简便高效养护方法
JP3290171B2 (ja) ポーラスコンクリートの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant