CN112106312A - 多光纤接口自动功率降低系统和方法 - Google Patents

多光纤接口自动功率降低系统和方法 Download PDF

Info

Publication number
CN112106312A
CN112106312A CN202080002075.7A CN202080002075A CN112106312A CN 112106312 A CN112106312 A CN 112106312A CN 202080002075 A CN202080002075 A CN 202080002075A CN 112106312 A CN112106312 A CN 112106312A
Authority
CN
China
Prior art keywords
ports
module
port
optical
fiber cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080002075.7A
Other languages
English (en)
Other versions
CN112106312B (zh
Inventor
切多尔·保罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HILLER
Original Assignee
HILLER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HILLER filed Critical HILLER
Publication of CN112106312A publication Critical patent/CN112106312A/zh
Application granted granted Critical
Publication of CN112106312B publication Critical patent/CN112106312B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/08Shut-down or eye-safety

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

一种光学模块(10),其包括多个端口(12),所述端口被配置为连接到多光纤电缆,所述光纤电缆中包括用于多个端口(12)的发射光纤和接收光纤;用于所述多个端口中的每一个端口的检测器,所述检测器被配置为检测端口级别的信号丢失;以及处理器(24),其被配置为仅对检测到信号丢失的多光纤电缆的受影响端口执行自动功率降低。多光纤电缆能够是MPO电缆。

Description

多光纤接口自动功率降低系统和方法
技术领域
本公开总体上涉及光学网络领域。更具体地,本公开涉及基于频谱特定波长选择开关(WSS)响应的多光纤接口自动功率降低(APR)系统和方法。
背景技术
自动功率降低(APR)是在激光安全背景中使用的术语。系统光纤通常具有比开放接口可接受的功率更多的功率。因此,系统必须检测到开放连接,然后在一定时间内降低功率,以限制暴露以及潜在的眼睛损伤。例如,这是由IEC60825规定的。
无色无向(CD)、无色无向添加(CDA)和无色无向无内容(CDC)可重构光分插复用器(ROADM)体系结构持续流行。这些ROADM类型通常利用多光纤推接(MPO)样式的电缆等来保持节点内光纤的可管理性。粗略地说,从激光安全的角度来看,这些多光纤电缆被视为单点源。因此,基于某些条件,例如,所有子光纤的发射功率之和不能超过IEC 60825的1M级(“1M”)约21.3dBm的限值。因此,如果每根电缆有四根有源子光纤,则每个子光纤的最大值约15.3dBm。
在以前的ROADM设计中,可以在不需要任何反应机制的情况下遵守这个限制。信道数量、其频谱占用率和系统功率谱密度(PSD)的目标导致总功率低于所需为1M的每个子光纤最大值。一般而言,信道的PSD目标无论其频谱占用率如何都保持不变。因此,无色信道Mux/Demux(CCMD)的功率需求不仅与信道数量有关,还与其频谱占有率有关。
结合不断发展的技术,增加容量的动力导致了有效地增加总频谱且相应地增加功率的变化,波长选择开关(WSS)必须将该功率导向给定的CCMD(即,每个子光纤)。波特率的增加(例如56、75、90+GBaud)导致这些信道的频谱占用率更高。此外,每个CCMD的添加/丢弃信道的数量也在增加(例如,12到24+)。而且,信道预组合用作每个CCMD的信道数量(例如,4x24)的端口倍增器。
这些变化共同导致给定CCMD可能包括96个信道,每个信道的频谱超过90GHz。实际上,这已经足够填充多度的C或L波段。这样,对于没有主动响应的电缆,不再可能保持在1M的限制以下。特别的挑战是避免对其他端口上的信号造成附带损害。因此,所需要的是对一个或更多个相对应的APR触发的频谱选择性响应。
在过去,保持机制或基于背反射的APR经常被用来维持激光的安全要求。由于频谱量,功率因此被路由到给定的CCMD端口,不再可能将放大器保持到低于眼睛安全限制的功率。由于单模MPO电缆的有角度物理接触(APC)终端,基于背反射的APR不再可用。
发明内容
在各种示例性实施例中,本公开提供了一种频谱/端口特定的APR系统和方法,该系统和方法依赖于基于相应的输入信号丢失(LOS)的WSS硅基液晶(LCoS)或类似光栅图案的快速变化。因此,利用频谱特定的WSS响应。应该注意的是,LCoS在这里仅是示例性技术。
在一个示例性实施例中,本公开提供了一种用于光学网络模块的自动功率降低(APR)系统,该系统包括:多光纤接口,其包括适于耦合到一个或更多个多光纤连接器的多个端口;卡式处理器,其可操作用于检测多个端口的输入端口上的信号丢失,并将相关联的输出端口的功率与卡式处理器接收到的激活阈值进行比较;以及模块处理器,其可操作用于在输入端口上检测到信号丢失并且输出端口的功率超过激活阈值的情况下,触发光学网络模块执行APR程序,并并且使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱。可选地,卡式处理器和模块处理器是同一处理器的各自功能部分。模块处理器还可操作用于在输入端口上检测到信号丢失但输出端口的功率未超过激活阈值的情况下,拒绝触发光学网络模块执行APR程序,并且使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱。触发光学网络模块以执行APR程序包括使用硬件线路使光学网络模块以高于其他程序的优先级执行APR程序。使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱包括将与受影响端口相关联的频谱衰减为由模块处理器接收的预定量。可替代地,使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱包括用可变量来衰减与受影响端口相关联的频谱,所述可变量取决于输出端口的功率与模块处理器接收到的激活阈值之间的差。
在另一个示例性实施例中,本公开提供了一种用于光学网络模块的自动功率降低(APR)方法,该方法包括:给定多光纤接口,该多光纤接口包括适于耦合到一个或更多个多光纤连接器的多个端口,在卡式处理器处检测多个端口的输入端口上的信号丢失,并将相关联的输出端口的功率与卡式处理器接收到的激活阈值进行比较;以及在输入端口上检测到信号丢失并且输出端口的功率超过激活阈值的情况下,在模块处理器处触发光学网络模块以执行APR程序并使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱。可选地,卡式处理器和模块处理器是同一处理器的各自功能部分。该方法还包括,在输入端口上检测到信号丢失但输出端口的功率未超过激活阈值的情况下,在模块处理器处拒绝触发光学网络模块执行APR程序并且使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱。触发光学网络模块以执行APR程序包括使用硬件线路使光学网络模块以高于其他程序的优先级执行APR程序。使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱包括将与受影响端口相关联的频谱衰减为由模块处理器接收的预定量。可替代地,使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱包括用可变量来衰减与受影响端口相关联的频谱,所述可变量取决于输出端口的功率与模块处理器接收到的激活阈值之间的差。
在另一个示例性实施例中,本公开提供了一种存储计算机可执行指令的计算机可读介质,该计算机可读介质被配置为使得以下步骤发生:给定多光纤接口,该多光纤接口包括适于耦合到一个或更多个多光纤连接器的多个端口,在卡式处理器处检测多个端口的输入端口上的信号丢失,并将相关联的输出端口的功率与卡式处理器接收到的激活阈值进行比较;以及在输入端口上检测到信号丢失并且输出端口的功率超过激活阈值的情况下,在模块处理器处触发光学网络模块以执行自动功率降低(APR)程序并使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱。可选地,卡式处理器和模块处理器是同一处理器的各自功能部分。这些步骤还包括,在输入端口上检测到信号丢失但输出端口的功率未超过激活阈值的情况下,在模块处理器处拒绝触发光学网络模块执行APR程序并且使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱。触发光学网络模块以执行APR程序包括使用硬件线路使光学网络模块以高于其他程序的优先级执行APR程序。使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱包括将与受影响端口相关联的频谱衰减为由模块处理器接收的预定量。可替代地,使用耦合到多个端口的波长选择开关来衰减与受影响端口相关联的频谱包括用可变量来衰减与受影响端口相关联的频谱,所述可变量取决于受影响端口的功率与模块处理器接收到的激活阈值之间的差。
附图说明
本文参考各种附图来说明和描述本公开,在这些附图中,在适当时使用相同的参考标记表示相同的系统部件/方法步骤,并且其中:
图1是示出本公开的APR系统的一个示例性实施例的示意图;
图2是示出本公开的APR方法的一个示例性实施例的流程图;
图3是示出根据图1和图2的APR系统和方法的仅应用于受影响端口的频谱的APR的示意图;
图4是示出对每个子光纤APR响应的需要以使得其他端口不受影响的示意图;以及
图5是示出用于光学网络模块的自动功率降低(APR)过程的流程图。
具体实施方式
此外,总的来说,本公开提供了一种频谱/端口特定的APR系统和方法,该系统和方法依赖于基于相应的输入LOS的WSS LCoS光栅图案的快速变化。因此,利用了频谱特定的WSS响应。
多光纤接口(如MPO端口)面临的挑战是,由于子光纤之间的间隔很小,子光纤的集合被认为是单点(或接近单点)源。这样,1M安全限制被用于所有子光纤的光发射总和。在C波段中,该限制为约21.3dBm,相当于在每根电缆有四对光纤的情况下,每个子光纤不超过约15.3dBm。
例如,在前几代CDC ROADM中,可以将每个子光纤的功率保持在最大水平以下,同时仍能实现适当系统性能所需的适当的PSD。然而,在56Gbaud下最多有16个信道。在最近的CDC ROADM设计中,在不超过每个子光纤约15.3dBm的限制的情况下,不再可能实现所需的PSD。这是由于与每个CCMD的添加/丢弃信道跳转到24相关联的总信号频谱的大幅增加、所支持的波特率(即频谱占有率)的增加以及信道预组合。
表1显示了作为上一代CDC(CCMD8x16@56GHz)中的集合,如何保持在1M限制以下是可能的,但这不再可能。最新的CCMD设计现在能够在90GHz或更高的频率下容纳96个信道。这个足够填充两个维数(degree)的频谱。
Figure BDA0002698723890000051
表1:比较基于CCMD端口和信号波特率的每个子光纤功率需求
本公开利用了多光纤电缆中双向光纤对的性质。给定端口的发送(demux)和接收(mux)光纤对并置在同一MPO电缆中。这样,输入LOS能够用于检测开放连接。与双工LC连接器不同,MPO电缆子光纤不可能细分,因此,输入LOS表示可靠的检测机制。由于单模MPO电缆的标准是APC终端,这使得基于反射的检测不可能。
当在输入端口上检测到LOS时,其响应是:通过WSS模块的衰减能力来降低与该端口交叉连接的频谱的功率。因此,其他端口上的业务不受影响。在响应前,附加逻辑将输出功率与激活阈值进行比较。如果该端口上的功率已低于多光纤最大值,系统可以选择跳过APR响应。
为了满足1M级定时要求,可以使用硬件(HW)线路中断所有其他WSS模块进程,并根据需要优先降低一个或更多个端口的功率。下图说明并描述了如何实现该机制。
现在具体参考图1,在一个示例性实施例中,本公开的APR系统10包括MPO接口12,在这种情况下,该接口具有4个Tx/Rx子光纤。该MPO接口12被耦合到Mux WSS 14和DemuxWSS 16,该Mux WSS和Demux WSS都被耦合到模块20内的放大器18(pre或post)和线路放大器22,如传统的那样。在线路放大器22中设置有卡式CPU或FPGA 24,并且在模块20中设置有模块CPU或FPGA,两者都可操作用于实现本公开的功能。当卡式CPU或FPGA 24在端口1 12(1)上检测到LOS时,将端口1 12(1)的输出功率与激活阈值进行比较。如果超过该激活阈值,则激活HW线路以触发模块20以优先处理即将到来的APR指令。特别地,通过串行通信通知模块20,并且如果需要,可以基于定时要求使用HW线路。这些APR指令被发送到模块24,并指示在哪些端口(例如,端口1 12(1))上应用APR。然后,模块24只对交叉连接到受影响端口(例如,端口1 12(1))的频谱应用APR衰减。MPO接口12(或其他MPO接口)的其他端口不受影响。需要注意的是,能够控制功率降低转换速率以减轻瞬态影响。例如,这里的LOS可以是拉出的连接器或光纤中断,因为其目的是确保自由空间发射的光处于安全功率水平。
这种方法在图2中示出。方法30开始于在端口X上的LOS检测32。如果没有检测到LOS,则功率或衰减控制器正常工作,并且不采取APR动作34。如果检测到LOS,则将端口X上功率与激活阈值进行比较36。如果端口X上的功率已经小于激活阈值,则功率或衰减控制器正常工作,并且不采取APR动作38。如果端口X上的功率超过激活阈值,则作为APR动作的一部分,端口X上的WSS频谱将被衰减40。
图3仅示出端口1上的这种衰减。能够看出,在所提供的示例中,公共输入在APR之前和之后接收到与端口1、2和3的输出相关的可比较的WSS频谱。在APR之后,与端口1相关联的WSS频谱输出被衰减,而与端口2和端口3相关联的WSS频谱输出保持不变。
图4是示出对每个子光纤APR响应的需要以使得其他端口不受影响的示意图。由于APR方案只针对与选定端口50相关联的WSS频谱,众多其他端口和信道不受影响。
应当认识到,根据实例,本文所描述的任何技术的某些动作或事件能够以不同的顺序执行,可以被添加、合并或完全省略(例如,并非所有描述的动作或事件对于技术的实施都是必要的)。此外,在某些示例中,动作或事件可以例如通过多线程处理、中断处理或多个处理器来并发地执行,而不是顺序地执行。
在一个或更多个示例中,所描述的功能可以以硬件、软件、固件或其任何组合来实现。如果以软件实现,则这些功能可以作为一个或更多个指令或代码被存储在计算机可读介质上或通过其传输,并由基于硬件的处理单元执行。计算机可读介质可以包括计算机可读存储介质,其对应于诸如数据存储介质的有形介质,或者通信介质,包括例如根据通信协议促进计算机程序从一处传输到另一处的任何介质。以这种方式,计算机可读介质通常可以对应于(1)非暂时性的有形计算机可读存储介质或(2)诸如信号或载波的通信介质。数据存储介质可以是能够由一台或更多台计算机或一个或更多个处理器访问以检索用于实现本公开所述技术的指令、代码和/或数据结构的任何可用介质。计算机程序产品可以包括计算机可读介质。
仅作为示例,而非限制,这种计算机可读存储介质能够包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储器、磁盘存储器或其他磁存储设备、快闪存储器,或任何其他能够以指令或数据结构形式存储所需程序代码并且能够由计算机访问的其他介质。而且,任何连接都被适当地地称为计算机可读介质。例如,如果使用同轴电缆、光纤电缆、双绞线、数字用户线路(DSL)或诸如红外线、无线电和微波的无线技术从网站、服务器或其他远程源发送指令,则同轴电缆、光纤电缆、双绞线、DSL或诸如红外线、无线电和微波的无线技术都包含在介质的定义中。然而,应该理解,计算机可读存储介质和数据存储介质不包括连接、载波、信号或其他暂时性介质,而是针对非暂时性的有形存储介质。如本文所使用的磁盘和磁碟,其包括光盘(CD)、激光光盘、光盘、数字通用光盘(DVD)和蓝光光盘,其中磁盘通常以磁性方式复制数据,而光盘则使用激光以光学方式复制数据。上述组合也应该包括在计算机可读介质的范围内。
指令可以由一个或更多个处理器执行,例如一个或更多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、复杂可编程逻辑器件(CPLD)或其他等效的集成或离散逻辑电路。因此,本文所使用的术语“处理器”可以指前述结构中的任何一个或适于实现本文所述技术的任何其他结构。另外,在一些方面,本文所描述的功能可以在专用硬件和/或软件模块中提供。此外,这些技术可以在一个或更多个电路或逻辑元件中被完全实现。
本公开的技术可以在包括集成电路(IC)或IC组(例如,芯片组)的各种设备或装置中实现。在本公开中描述了各种部件、模块或单元,以强调被配置用于执行所公开的技术的设备的功能方面,但不一定需要由不同的硬件单元来实现。相反,如上所述,各种单元可以组合在硬件单元中,或者由互操作的硬件单元的集合,包括如上所述的一个或更多个处理器,与适当的软件和/或固件一起来提供。
因此,本公开解决了激光器安全性的挑战,而无需求助于附加的HM或增加成本并且降低性能的方法。使用WSS来降低功率的替代方法是:使放用大器静音,这将不必要地影响与该维数相关联的所有业务(造成附带损坏),或者在所有WSS demux端口上增加光阀(shutters),这将增加数千的成本,并增加ROADM损失,从而影响性能。因此,本公开提供了一种更好的解决方案。有利地,本文提供的系统和方法在有源子光纤的数量方面是灵活的。提供了每个子光纤的响应,该响应使用输入LOS来触发APR到每个子光纤根据最大功率限制计算的水平,该最大功率限制例如,<15dBm,是基于每个MOP的四个子光纤的具体实现方式,以及给定关于光电二极管精度的假设等。
可能的衰减方案包括固定衰减、端口特定的固定衰减和刚好足够的衰减。在固定衰减中,如果检测到输入LOS,则与相应端口相关联的频谱衰减默认为通用(可设置)值,例如约5dB,而与端口功率无关。这是简单且响应迅速的,但可能会导致不必要的大功率瞬变。在端口特定的固定衰减中,能够考虑每个端口的最小标称功率值。同样,这是简单和响应迅速的,但仍可能导致不必要的大功率瞬变。在刚好足够的衰减中,需要考虑输出比APR激活功率高出多少,并添加大量偏移以达到眼睛安全的水平。这使功率瞬变最小化,但需要更多的计算复杂性。例如,可以通过为每个端口准备衰减曲线来减轻这种情况。
图5是用于光学网络模块的自动功率降低(APR)过程80的流程图。过程80包括,在包括适于耦合到一个或更多个多光纤连接器的一个或更多个端口的多光纤接口中,在卡式处理器处检测一个或更多个端口的输入端口上的信号丢失,并将相关联的输出端口的功率与卡式处理器接收到的激活阈值进行比较(步骤82);以及,在输入端口上检测到信号丢失并且输出端口的功率超过激活阈值的情况下,在模块处理器处触发光学网络模块以执行APR程序,并使用耦合到一个或更多个端口的波长选择开关来衰减与受影响端口相关联的频谱(步骤84)。卡式处理器和模块处理器能够是同一处理器的各自功能部分。
过程80能够进一步包括,在输入端口上检测到信号丢失但输出端口的功率没有超过激活阈值的情况下,在模块处理器处拒绝触发光学网络模块执行APR程序,并且使用耦合到一个或更多个端口的波长选择开关来衰减与受影响端口相关联的频谱。触发光学网络模块以执行APR程序能够包括使用通信线路使光学网络模块以高于其他程序的优先级执行APR程序。使用耦合到一个或更多个端口的波长选择开关来衰减与受影响端口相关联的频谱能够包括将与受影响端口相关联的频谱衰减为由模块处理器接收的预定量。使用耦合到一个或更多个端口的波长选择开关来衰减与受影响端口相关联的频谱能够包括用可变量来衰减与受影响端口相关联的频谱,所述可变量取决于受影响端口的功率与模块处理器接收到的激活阈值之间的差。
尽管本文参考了优选实施例及其具体示例来说明和描述本公开,但是对于本领域的普通技术人员来说显而易见的是,其他实施例和示例也可以执行类似的功能和/或获得类似的结果。所有这些等效的实施例和示例都在本公开的精神和范围内,并因此被考虑到,并且旨在由以下非限制性权利要求所涵盖以用于所有目的。

Claims (15)

1.一种光学模块(10),包括:
多个端口(12),所述多个端口被配置为连接到多光纤电缆,所述多光纤电缆中包括用于所述多个端口(12)的发射光纤和接收光纤;
用于所述多个端口中的每一个端口的检测器,所述检测器被配置为检测端口级别的信号丢失;以及
处理器(24),所述处理器被配置为仅对检测到信号丢失的所述多光纤电缆的受影响端口(12)执行自动功率降低。
2.根据权利要求1所述的光学网络模块,其中,所述多光纤电缆是MPO电缆。
3.根据权利要求1至2中任一项所述的光学网络模块(10),其中,所检测到的信号丢失是基于所述检测器检测到的功率与阈值的比较。
4.根据权利要求1至3中任一项所述的光学网络模块(10),其中,所述光学模块(10)是互连模块、维数模块以及复用器和解复用器模块中的任何一个。
5.根据权利要求1至4中任一项所述的光学网络模块(10),其中,所述多光纤电缆中所有光纤上的光功率之和超过约21.3dBm。
6.根据权利要求1至5中任一项所述的光学网络模块(10),其中,所述自动功率降低是通过波长选择开关(20)引起对所述受影响端口的频谱的衰减。
7.根据权利要求6所述的光学网络模块(10),其中,通过连接到所述波长选择开关(20)的硬件线路来优先处理所述自动功率降低。
8.一种方法,包括:
从多光纤电缆接收多个端口(12),所述多光纤电缆中包括用于所述多个端口(12)的发射光纤和接收光纤;
通过多个检测器监视所述多个端口(12),以检测端口级别的信号丢失;以及
仅对检测到信号丢失的所述多光纤电缆的受影响端口执行自动功率降低。
9.根据权利要求8所述的方法,其中,所述多光纤电缆是MPO电缆。
10.根据权利要求8至9中任一项所述的方法,其中,所检测到的信号丢失是基于所述检测器检测到的功率与阈值的比较。
11.根据权利要求8至10中任一项所述的方法,其中,所述方法在光学模块(10)中执行,所述光学模块是互连模块、维数模块以及复用器和解复用器模块中的任何一个。
12.根据权利要求8至11中任一项所述的方法,其中,所述多光纤电缆中所有光纤上的光功率之和超过约21.3dBm。
13.根据权利要求8至12中任一项所述的方法,其中,所述自动功率降低是通过波长选择开关(20)引起对所述受影响端口的频谱的衰减。
14.根据权利要求13所述的方法,其中,通过连接到所述波长选择开关(20)的硬件线路来优先处理所述自动功率降低。
15.一种存储计算机可执行指令的非暂时性计算机可读介质,其被配置为使处理器执行根据权利要求8至14中任一项所述的方法。
CN202080002075.7A 2019-03-26 2020-03-25 多光纤接口自动功率降低系统和方法 Active CN112106312B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US16/364,749 US10541748B1 (en) 2019-03-26 2019-03-26 Multi-fiber interface automatic power reduction systems and methods
US16/364,749 2019-03-26
US16/710,139 2019-12-11
US16/710,139 US10778329B1 (en) 2019-03-26 2019-12-11 Multi-fiber interface automatic power reduction systems and methods
PCT/US2020/024595 WO2020198294A1 (en) 2019-03-26 2020-03-25 Multi-fiber interface automatic power reduction systems and methods

Publications (2)

Publication Number Publication Date
CN112106312A true CN112106312A (zh) 2020-12-18
CN112106312B CN112106312B (zh) 2022-12-23

Family

ID=69167255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080002075.7A Active CN112106312B (zh) 2019-03-26 2020-03-25 多光纤接口自动功率降低系统和方法

Country Status (6)

Country Link
US (2) US10541748B1 (zh)
EP (1) EP3741054B1 (zh)
JP (1) JP7304364B2 (zh)
CN (1) CN112106312B (zh)
CA (1) CA3134004A1 (zh)
WO (1) WO2020198294A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438015A (zh) * 2020-03-23 2021-09-24 武汉光迅科技股份有限公司 一种apr保护方法、装置及计算机存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11108489B1 (en) 2020-09-30 2021-08-31 Ciena Corporation Reducing connection validation (CV) time in an optical node
US11652545B2 (en) 2020-11-24 2023-05-16 Ciena Corporation Avoiding fiber damage on non-supervisory optical fiber links
US11658452B2 (en) 2021-02-11 2023-05-23 Ciena Corporation Powering up an optical amplifier in an optical line system
US11272269B1 (en) 2021-03-29 2022-03-08 Ciena Corporation Integrated band splitter for scaling dual-band ROADM
US11824581B2 (en) 2021-08-11 2023-11-21 Ciena Corporation Turn-up procedure for local and remote amplifiers in an optical system
CN114389691B (zh) * 2022-01-24 2024-02-27 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040047628A1 (en) * 2002-09-11 2004-03-11 Chris Passier Automatic optical power management in an optical communications system
US20070140688A1 (en) * 2005-12-21 2007-06-21 Nortel Networks Limited Method and apparatus for detecting a fault on an optical fiber
US20100119223A1 (en) * 2008-11-10 2010-05-13 Cisco Technology, Inc. Optical Safety Implementation in Protection Switching Modules
US7787767B2 (en) * 2007-04-05 2010-08-31 Emcore Corporation Eye safety in electro-optical transceivers
US20160099851A1 (en) * 2014-10-01 2016-04-07 Ciena Corporation Method and system for optical connection validation in a reconfigurable optical add-drop multiplexer (roadm) node
US20160315709A1 (en) * 2015-04-24 2016-10-27 Fujitsu Limited Optical transmission apparatus and optical signal processing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798990B2 (en) 2001-02-09 2004-09-28 International Business Machines Corporation Laser safety method for DC coupled parallel optical link
US7021833B2 (en) * 2002-03-22 2006-04-04 Ban-Poh Loh Waveguide based optical coupling of a fiber optic cable and an optoelectronic device
US20140241720A1 (en) * 2013-02-22 2014-08-28 Nec Laboratories America, Inc. Latching optical switch and subsystem using bistable liquid crystal
JP2016012827A (ja) * 2014-06-30 2016-01-21 株式会社日立製作所 光送受信装置
WO2016061442A1 (en) * 2014-10-17 2016-04-21 Samtec, Inc. Methods for determining receiver coupling efficiency, link margin, and link topology in active optical cables
US9768902B2 (en) 2015-10-22 2017-09-19 Ciena Corporation Control systems and methods for spectrally overlapped flexible grid spectrum using a control bandwidth
US10277352B2 (en) 2016-05-24 2019-04-30 Ciena Corporation Noise suppression and amplification systems and methods for colorless optical add/drop devices
US10237633B2 (en) 2017-02-16 2019-03-19 Ciena Corporation Systems and methods for modular deployment and upgrade of multiple optical spectrum bands in optical transmission systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040047628A1 (en) * 2002-09-11 2004-03-11 Chris Passier Automatic optical power management in an optical communications system
US20070140688A1 (en) * 2005-12-21 2007-06-21 Nortel Networks Limited Method and apparatus for detecting a fault on an optical fiber
US7787767B2 (en) * 2007-04-05 2010-08-31 Emcore Corporation Eye safety in electro-optical transceivers
US20100119223A1 (en) * 2008-11-10 2010-05-13 Cisco Technology, Inc. Optical Safety Implementation in Protection Switching Modules
US20160099851A1 (en) * 2014-10-01 2016-04-07 Ciena Corporation Method and system for optical connection validation in a reconfigurable optical add-drop multiplexer (roadm) node
US20160315709A1 (en) * 2015-04-24 2016-10-27 Fujitsu Limited Optical transmission apparatus and optical signal processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438015A (zh) * 2020-03-23 2021-09-24 武汉光迅科技股份有限公司 一种apr保护方法、装置及计算机存储介质
CN113438015B (zh) * 2020-03-23 2022-06-10 武汉光迅科技股份有限公司 一种apr保护方法、装置及计算机存储介质

Also Published As

Publication number Publication date
CA3134004A1 (en) 2020-10-01
US10778329B1 (en) 2020-09-15
EP3741054A1 (en) 2020-11-25
WO2020198294A1 (en) 2020-10-01
CN112106312B (zh) 2022-12-23
US20200313766A1 (en) 2020-10-01
JP2022526049A (ja) 2022-05-23
JP7304364B2 (ja) 2023-07-06
EP3741054B1 (en) 2021-12-01
US10541748B1 (en) 2020-01-21

Similar Documents

Publication Publication Date Title
CN112106312B (zh) 多光纤接口自动功率降低系统和方法
EP2985930B1 (en) Equalization method and device for optical power
JP5863172B2 (ja) 光受信装置
CN102136876B (zh) 光线路保护加速电路、光线路保护系统和方法
US20200209108A1 (en) Calibration Apparatus and Method, and Wavelength Division Multiplexing System
WO2017050129A1 (zh) 无源光网络功率均衡的方法、装置、终端、单元及系统
US7630644B2 (en) Optical add/drop multiplexer, control method therefor and control program therefor
WO2022042378A1 (zh) 光信号控制方法及装置、光传输节点和光传输系统
US7430373B2 (en) Optical node processor, optical network system and its control method
CN111698582B (zh) 一种combo光模块及多模pon系统
US11228375B2 (en) Transmission system, transmission device, and transmission method
EP3641162A1 (en) Method and device for compensating optical power
EP3079274A1 (en) Optical transmitter, transmission method, optical receiver and reception method
JPWO2017159519A1 (ja) 光制御装置及び光分岐装置
US10615867B1 (en) Optical amplifier signaling systems and methods for shutoff coordination and topology discovery
US8559815B2 (en) Optical transmission apparatus and fault detection method
WO2021001868A1 (ja) 光受信装置、光伝送システム、光伝送方法及びコンピュータプログラム
KR102354267B1 (ko) 광 네트워크에서 파장을 튜닝하기 위한 전자 장치 및 방법
JP2004297790A (ja) 光ノード装置、光ネットワークシステムおよびその制御方法
WO2024027255A1 (zh) 光网络节点及光网络系统
CN112034564A (zh) 光源切换方法和装置
WO2024139591A1 (zh) 一种光波长保护组倒换方法以及相关装置
US11757528B2 (en) Supervision of an optical path including an amplifier
JP4545757B2 (ja) 光波長分岐挿入装置
KR102062742B1 (ko) 멀티 서비스 기능을 갖는 광통신 단말장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant