CN112062169A - 一种镍钴锰硫化物纳米片的制备方法 - Google Patents
一种镍钴锰硫化物纳米片的制备方法 Download PDFInfo
- Publication number
- CN112062169A CN112062169A CN202010968711.3A CN202010968711A CN112062169A CN 112062169 A CN112062169 A CN 112062169A CN 202010968711 A CN202010968711 A CN 202010968711A CN 112062169 A CN112062169 A CN 112062169A
- Authority
- CN
- China
- Prior art keywords
- sulfide
- cobalt
- nickel
- manganese
- dimensional material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002135 nanosheet Substances 0.000 title claims abstract description 27
- MBUJIFHANTWAKB-UHFFFAOYSA-N [S-2].[Mn+2].[Co+2].[Ni+2].[S-2].[S-2] Chemical compound [S-2].[Mn+2].[Co+2].[Ni+2].[S-2].[S-2] MBUJIFHANTWAKB-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000011572 manganese Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 18
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 15
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 15
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 15
- 239000010941 cobalt Substances 0.000 claims abstract description 14
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 14
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 9
- SEVNKUSLDMZOTL-UHFFFAOYSA-H cobalt(2+);manganese(2+);nickel(2+);hexahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mn+2].[Co+2].[Ni+2] SEVNKUSLDMZOTL-UHFFFAOYSA-H 0.000 claims abstract description 7
- 150000003839 salts Chemical class 0.000 claims abstract description 7
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 6
- -1 molybdenum-niobium-tin-carbon Chemical compound 0.000 claims abstract description 5
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 4
- UYJXRRSPUVSSMN-UHFFFAOYSA-P ammonium sulfide Chemical compound [NH4+].[NH4+].[S-2] UYJXRRSPUVSSMN-UHFFFAOYSA-P 0.000 claims abstract description 4
- INILCLIQNYSABH-UHFFFAOYSA-N cobalt;sulfanylidenemolybdenum Chemical compound [Mo].[Co]=S INILCLIQNYSABH-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 4
- MRDDPVFURQTAIS-UHFFFAOYSA-N molybdenum;sulfanylidenenickel Chemical compound [Ni].[Mo]=S MRDDPVFURQTAIS-UHFFFAOYSA-N 0.000 claims abstract description 4
- ZOCLAPYLSUCOGI-UHFFFAOYSA-M potassium hydrosulfide Chemical compound [SH-].[K+] ZOCLAPYLSUCOGI-UHFFFAOYSA-M 0.000 claims abstract description 4
- 229910052979 sodium sulfide Inorganic materials 0.000 claims abstract description 4
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical group [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims abstract description 4
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims abstract description 4
- HIVLDXAAFGCOFU-UHFFFAOYSA-N ammonium hydrosulfide Chemical compound [NH4+].[SH-] HIVLDXAAFGCOFU-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000002994 raw material Substances 0.000 claims abstract description 3
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 5
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 2
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 abstract 1
- 238000009776 industrial production Methods 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 4
- 229910003266 NiCo Inorganic materials 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- IWHAVVGLVXIYBA-UHFFFAOYSA-N [S-2].[Mn+2].[Co+2].[S-2] Chemical compound [S-2].[Mn+2].[Co+2].[S-2] IWHAVVGLVXIYBA-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/80—Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
- C01G53/82—Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种镍钴锰硫化物纳米片的制备方法,以二维材料为载体,以镍、钴、锰可溶性盐为原料,水热反应生成镍钴锰氢氧化物,再与硫化物混合,水热反应获得镍钴锰硫化物纳米片;二维材料为碳化钛、钼铌锡碳、石墨烯、镍‑钼硫化物、钴‑钼硫化物的一种;硫化物为硫化钠、硫化钾、硫化铵、硫化氢钠、硫化氢钾、硫化氢铵的一种;镍、钴、锰的摩尔比为1:(1.5‑2.5):(1‑3);二维材料为镍钴锰总摩尔数的0.001‑0.2;硫化物与镍钴锰总摩尔比为2‑5。该镍钴锰硫化物纳米片制备工艺简单可控、操作方便,适于工业化生产。
Description
技术领域
本发明专利涉及一种电极材料的制备方法,具体涉及一种镍钴锰硫化物纳米片的制备方法。
背景技术
过渡金属硫化物具有电导率高和稳定性好等优点,是非常有应用前景的超级电容器材料。目前科研人员主要集中在单金属或双金属硫化物的制备与性能改性,如Ni3S2、CuS、NiS、NiCo2S4、ZnCo2S4等。
Xu et al0采用电沉积法制备泡沫镍负载Ni3S2纳米片阵列实现高达309.4C·g-1的比容量。(Xu J,Sun Y,Lu M,et al.One-step electrodeposition fabrication ofNi3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetricsupercapacitors[J].Science China Materials,2019,62(5):699-710.)
Zhao et al.采用电沉积法制备CuS微球实现高达222.1C·g-1的比容量;(Zhao TK,Peng X R,Zhao X,et al.Facile preparation and high capacitance performanceof copper sulfide microspheres as supercapacitor electrodematerial.Composites Part B:Engineering,2019,163:26-35.)
Guo et al制备出NiCo2S4纳米管获得高达3.5C·cm-2的比容量,当电流密度增大25倍时保留66.1%的比容量;(Guo M L,Gao H X,Huang W,et al.Microwave-assistedrapid synthesis of NiCo2S4 nanotube arrays on Ni foam for highcyclingstabilitysupercapacitors.Journal of Alloys and Compounds,2019,780:164-169.
Cheng et al采溶剂热法合成ZnCo2S4实现418.1C·g-1的比容量,在功率密度1700W·kg-1时具有51.7Wh·kg-1的能量密度和在功率密度6.8kW·kg-1时具有42.5Wh·kg-1的能量密度;(Cheng C,Zhang X Y,Wei C Z,et al.Mesoporous hollow ZnCo2S4 core-shell nanospheres for high performance supercapacitors.CeramicInternational.2018,44:17464-17472.)
但单金属和双金属硫化物的能量密度不高,如何通过多金属的协同作用,提高其能量密度是亟待解决的问题。
发明内容
针对现有技术方案的缺陷,本发明的目的是提供一种镍钴锰硫化物纳米片的制备方法。
本发明涉及一种镍钴锰硫化物纳米片的制备方法,其特征在于:以二维材料为载体,以镍、钴、锰可溶性盐为原料,水热反应生成镍钴锰氢氧化物,再与硫化物混合,水热反应获得镍钴锰硫化物纳米片;二维材料为碳化钛、钼铌锡碳、石墨烯.镍-钼硫化物、钴-钼硫化物的一种;硫化物为硫化钠、硫化钾、硫化铵、硫化氢钠、硫化氢钾、硫化氢铵的一种;镍、钴、锰的摩尔比为1:(1.5-2.5):(1-3);一种镍钴锰硫化物纳米片的制备方法包括:
1)称量一定质量的二维材料、镍、钴、锰可溶性盐,放入水/乙醇溶剂,搅拌,然后在80-150℃水热反应5-10h,获得镍钴锰氢氧化物;
2)将步骤1)产物与硫化物混合,搅拌,然后在120-250℃水热反应5-10h;
所述的二维材料为镍钴锰总摩尔数的0.001-0.2;
所述的硫化物与镍钴锰总摩尔比为2-5。
本专利以二维材料为模板,吸附镍、钴、锰在其表面沉积,形成镍钴锰氢氧化物纳米片;再用硫化物与镍钴锰氢氧化物置换反应,生成镍钴锰硫化物纳米片。
与现有技术相比,本发明专利提供的一种镍钴锰硫化物纳米片制备方法,具有以下优势:
1)制备工艺简单、工序可控、可产业化生产;
2)以片状二维材料为模板,引导镍钴锰离子在其表面沉积,再与硫化物置换反应,生成纳米片状镍钴锰硫化物,极大地改善了镍钴锰硫化物的导电率。
3)镍钴锰三金属的协同作用,提高了材料的比容量;本专利制备的纳米片状镍钴锰硫化物具有很好的电化学性能;在电流密度1A·g-1具有大于600C·g-1的比容量。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹举以下实施例详细说明如下:
实例1
一种镍钴锰硫化物纳米片的制备方法,包括:
1)称量一定质量的二维材料、镍、钴、锰可溶性盐,放入水/乙醇溶剂,搅拌,然后在90℃水热反应6h;
2)将步骤1)产物与硫化物混合,搅拌,然后在180℃水热反应5h。
一种镍钴锰硫化物纳米片的成分设计,包括:
1)NiCl2·6H2O,0.02mol;CoCl2·6H2O,0.04mol;MnCl2·4H2O,0.03mol;碳化钛,0.0009mol;硫化钠,0.21mol;
结果显示:镍钴锰硫化物纳米片在电流密度1A·g-1时,具有大于600C·g-1的比容量,在电流密度为50A·g-1时,保留了大于300C·g-1的比容量。
实例2
操作同实例1.
一种镍钴锰硫化物纳米片的成分设计,包括:
2)NiCl2·6H2O,0.02mol;CoCl2·6H2O,0.04mol;MnCl2·4H2O,0.04mol;钼铌锡碳,0.00125mol;硫化钾,0.27mol;
镍钴锰硫化物纳米片在电流密度1A·g-1具有657.7C·g-1的比容量,电流密度为50A·g-1,保留339.5C·g-1的比容量,经1100次循环,保留97.8%的比容量。
实例3
一种镍钴锰硫化物纳米片的制备方法,包括:
3)称量一定质量的二维材料、镍、钴、锰可溶性盐,放入水/乙醇溶剂,搅拌,然后在120℃水热反应5h;
4)将步骤1)产物与硫化物混合,搅拌,然后在200℃水热反应5h。
一种镍钴锰硫化物纳米片的成分设计,包括:
3)Ni(CH3COO)2·4H2O,0.02mol;Co(CH3COO)2·4H2O,0.03mol;
Mn(CH3COO)2·4H2O,0.02mol;石墨烯,0.001mol;硫化钾,0.27mol;
4)Ni(CH3COO)2·4H2O,0.02mol;Co(CH3COO)2·4H2O,0.05mol;
Mn(CH3COO)2·4H2O,0.02mol;镍-钼硫化物,0.009mol;硫化铵,0.22mol;
5)Ni(CH3COO)2·4H2O,0.02mol;Co(CH3COO)2·4H2O,0.04mol;
Mn(CH3COO)2·4H2O,0.06mol;钴-钼硫化物,0.00125mol;硫化氢钾,0.5mol;
镍钴锰硫化物纳米片在电流密度1A·g-1具有657.7C·g-1的比容量,电流密度为50A·g-1,保留339.5C·g-1的比容量,经1100次循环,保留97.8%的比容量。
上述专利的具体实施方式是示例性的,是为了更好的使本领域技术人员能够理解本专利,不能理解为是对本专利包括范围的限制;只要是根据本专利所揭示精神的所作的任何等同变更或修饰,均落入本专利包括的范围。
Claims (3)
1.本发明涉及一种镍钴锰硫化物纳米片的制备方法,其特征在于:以二维材料为载体,以镍、钴、锰可溶性盐为原料,水热反应生成镍钴锰氢氧化物,再与硫化物混合,水热反应获得镍钴锰硫化物纳米片;二维材料为碳化钛、钼铌锡碳、石墨烯、镍-钼硫化物、钴-钼硫化物的一种;硫化物为硫化钠、硫化钾、硫化铵、硫化氢钠、硫化氢钾、硫化氢铵的一种;镍、钴、锰的摩尔比为1:(1.5-2.5):(1-3);一种镍钴锰硫化物纳米片的制备方法包括:
1)称量一定质量的二维材料、镍、钴、锰可溶性盐,放入水/乙醇溶剂,搅拌,然后在80-150℃水热反应5-10h,获得镍钴锰氢氧化物;
2)将步骤1)产物与硫化物混合,搅拌,然后在120-250℃水热反应5-10h。
2.根据权利要求1所述的一种镍钴锰硫化物纳米片制备方法,其特征在于:二维材料为镍钴锰总摩尔数的0.001-0.2。
3.根据权利要求1所述的一种镍钴锰硫化物纳米片制备方法,其特征在于:硫化物与镍钴锰总摩尔比为2-5。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010968711.3A CN112062169A (zh) | 2020-09-15 | 2020-09-15 | 一种镍钴锰硫化物纳米片的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010968711.3A CN112062169A (zh) | 2020-09-15 | 2020-09-15 | 一种镍钴锰硫化物纳米片的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112062169A true CN112062169A (zh) | 2020-12-11 |
Family
ID=73697070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010968711.3A Pending CN112062169A (zh) | 2020-09-15 | 2020-09-15 | 一种镍钴锰硫化物纳米片的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112062169A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114360918A (zh) * | 2021-11-22 | 2022-04-15 | 沈阳工程学院 | 一种高性能超级电容器异质结构的电极材料的制备方法 |
CN114590850A (zh) * | 2022-03-17 | 2022-06-07 | 中国长江三峡集团有限公司 | 硫化物全固态锂电池用新型硫化正极材料及其制备方法 |
CN114974916A (zh) * | 2022-07-04 | 2022-08-30 | 桂林电子科技大学 | 一种纤维状MXene负载NiCoS复合材料及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110291044A1 (en) * | 2009-02-13 | 2011-12-01 | Chengdu Jingyuan New Materials Technology Co., Ltd. | Nickel-cobalt-manganese multi-element lithium ion battery cathode material with dopants and its methods of preparation |
CN107010676A (zh) * | 2017-05-08 | 2017-08-04 | 浙江师范大学 | 一种用于超级电容器电极材料硫化钴镍纳米片的简便制备方法 |
CN109607625A (zh) * | 2019-02-15 | 2019-04-12 | 安阳师范学院 | 核壳镍-钴-锰三元硫化物空心球形电极材料及其制备方法 |
CN110828192A (zh) * | 2019-11-14 | 2020-02-21 | 南京理工大学 | 基于泡沫镍的自支撑高倍率性能电极及其制备方法 |
CN111261419A (zh) * | 2020-02-24 | 2020-06-09 | 西南大学 | 一种氢氧化钴/镍钼硫化物复合超级电容器电极材料及其制备方法和应用 |
-
2020
- 2020-09-15 CN CN202010968711.3A patent/CN112062169A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110291044A1 (en) * | 2009-02-13 | 2011-12-01 | Chengdu Jingyuan New Materials Technology Co., Ltd. | Nickel-cobalt-manganese multi-element lithium ion battery cathode material with dopants and its methods of preparation |
CN107010676A (zh) * | 2017-05-08 | 2017-08-04 | 浙江师范大学 | 一种用于超级电容器电极材料硫化钴镍纳米片的简便制备方法 |
CN109607625A (zh) * | 2019-02-15 | 2019-04-12 | 安阳师范学院 | 核壳镍-钴-锰三元硫化物空心球形电极材料及其制备方法 |
CN110828192A (zh) * | 2019-11-14 | 2020-02-21 | 南京理工大学 | 基于泡沫镍的自支撑高倍率性能电极及其制备方法 |
CN111261419A (zh) * | 2020-02-24 | 2020-06-09 | 西南大学 | 一种氢氧化钴/镍钼硫化物复合超级电容器电极材料及其制备方法和应用 |
Non-Patent Citations (4)
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114360918A (zh) * | 2021-11-22 | 2022-04-15 | 沈阳工程学院 | 一种高性能超级电容器异质结构的电极材料的制备方法 |
CN114360918B (zh) * | 2021-11-22 | 2023-12-22 | 沈阳工程学院 | 一种高性能超级电容器异质结构的电极材料的制备方法 |
CN114590850A (zh) * | 2022-03-17 | 2022-06-07 | 中国长江三峡集团有限公司 | 硫化物全固态锂电池用新型硫化正极材料及其制备方法 |
CN114590850B (zh) * | 2022-03-17 | 2023-04-18 | 中国长江三峡集团有限公司 | 硫化物全固态锂电池用硫化正极材料及其制备方法 |
CN114974916A (zh) * | 2022-07-04 | 2022-08-30 | 桂林电子科技大学 | 一种纤维状MXene负载NiCoS复合材料及其制备方法和应用 |
CN114974916B (zh) * | 2022-07-04 | 2024-01-30 | 桂林电子科技大学 | 一种纤维状MXene负载NiCoS复合材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Interface engineering and heterometal doping Mo-NiS/Ni (OH) 2 for overall water splitting | |
Quan et al. | Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance | |
Jing et al. | Enhanced hydrogen evolution reaction of WS2–CoS2 heterostructure by synergistic effect | |
CN112062169A (zh) | 一种镍钴锰硫化物纳米片的制备方法 | |
Liu et al. | Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor | |
CN107587161B (zh) | 一种棒状NiFeSe/C电解水催化剂的制备方法 | |
Zhang et al. | One-step synthesis of NiCo2O4 nanorods and firework-shaped microspheres formed with necklace-like structure for supercapacitor materials | |
Xu et al. | Research progress of nickel-based metal-organic frameworks and their derivatives for oxygen evolution catalysis | |
Senthil et al. | A facile one-pot synthesis of microspherical-shaped CoS2/CNT composite as Pt-free electrocatalyst for efficient hydrogen evolution reaction | |
CN107610938A (zh) | 一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用 | |
Yaseen et al. | Synergistically coupling of Co/Mo2C/Co6Mo6C2@ C electrocatalyst for overall water splitting: the role of carbon precursors in structural engineering and catalytic activity | |
Zang et al. | Controllable synthesis of triangular Ni (HCO 3) 2 nanosheets for supercapacitor | |
CN105355919A (zh) | 一种铜钴硫超细粉的制备方法 | |
CN101508470A (zh) | 多孔一维纳米四氧化三钴的制备方法 | |
Qiu et al. | Support interactions dictated active edge sites over MoS 2–carbon composites for hydrogen evolution | |
Liu et al. | 0D–2D Schottky heterostructure coupling of FeS nanosheets and Co9S8 nanoparticles for long-term industrial-level water oxidation | |
Du et al. | Controllable synthesis of Ni 3 S 2@ MOOH/NF (M= Fe, Ni, Cu, Mn and Co) hybrid structure for the efficient hydrogen evolution reaction | |
CN107663637A (zh) | 钼酸盐纳米复合材料及其制备方法和应用 | |
Xu et al. | Highly efficient hydrogen evolution based on Ni3S4@ MoS2 hybrids supported on N-doped reduced graphene oxide | |
Chen et al. | Defect-rich MoS2/r-GO hybrid via microwave-assisted solvothermal process for efficient electrocatalytic hydrogen evolution | |
Hu et al. | Controllable hydrothermal-assisted synthesis of mesoporous Co 3 O 4 nanosheets | |
CN111185179A (zh) | 一种甲烷裂解催化剂及其制备方法 | |
Xiao et al. | High active and easily prepared cobalt encapsulated in carbon nanotubes for hydrogen evolution reaction | |
CN111017904A (zh) | 一种碳量子点-CoFe类普鲁士蓝纳米复合材料及其制备方法和应用 | |
Ma et al. | Versatile construction of a hierarchical porous electrode and its application in electrochemical hydrogen production: a mini review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201211 |