CN112062169A - 一种镍钴锰硫化物纳米片的制备方法 - Google Patents

一种镍钴锰硫化物纳米片的制备方法 Download PDF

Info

Publication number
CN112062169A
CN112062169A CN202010968711.3A CN202010968711A CN112062169A CN 112062169 A CN112062169 A CN 112062169A CN 202010968711 A CN202010968711 A CN 202010968711A CN 112062169 A CN112062169 A CN 112062169A
Authority
CN
China
Prior art keywords
sulfide
cobalt
nickel
manganese
dimensional material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010968711.3A
Other languages
English (en)
Inventor
李宁霞
金恺乐
张佳颖
金益广
曹江行
张晶晶
范美强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202010968711.3A priority Critical patent/CN112062169A/zh
Publication of CN112062169A publication Critical patent/CN112062169A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/80Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
    • C01G53/82Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种镍钴锰硫化物纳米片的制备方法,以二维材料为载体,以镍、钴、锰可溶性盐为原料,水热反应生成镍钴锰氢氧化物,再与硫化物混合,水热反应获得镍钴锰硫化物纳米片;二维材料为碳化钛、钼铌锡碳、石墨烯、镍‑钼硫化物、钴‑钼硫化物的一种;硫化物为硫化钠、硫化钾、硫化铵、硫化氢钠、硫化氢钾、硫化氢铵的一种;镍、钴、锰的摩尔比为1:(1.5‑2.5):(1‑3);二维材料为镍钴锰总摩尔数的0.001‑0.2;硫化物与镍钴锰总摩尔比为2‑5。该镍钴锰硫化物纳米片制备工艺简单可控、操作方便,适于工业化生产。

Description

一种镍钴锰硫化物纳米片的制备方法
技术领域
本发明专利涉及一种电极材料的制备方法,具体涉及一种镍钴锰硫化物纳米片的制备方法。
背景技术
过渡金属硫化物具有电导率高和稳定性好等优点,是非常有应用前景的超级电容器材料。目前科研人员主要集中在单金属或双金属硫化物的制备与性能改性,如Ni3S2、CuS、NiS、NiCo2S4、ZnCo2S4等。
Xu et al0采用电沉积法制备泡沫镍负载Ni3S2纳米片阵列实现高达309.4C·g-1的比容量。(Xu J,Sun Y,Lu M,et al.One-step electrodeposition fabrication ofNi3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetricsupercapacitors[J].Science China Materials,2019,62(5):699-710.)
Zhao et al.采用电沉积法制备CuS微球实现高达222.1C·g-1的比容量;(Zhao TK,Peng X R,Zhao X,et al.Facile preparation and high capacitance performanceof copper sulfide microspheres as supercapacitor electrodematerial.Composites Part B:Engineering,2019,163:26-35.)
Guo et al制备出NiCo2S4纳米管获得高达3.5C·cm-2的比容量,当电流密度增大25倍时保留66.1%的比容量;(Guo M L,Gao H X,Huang W,et al.Microwave-assistedrapid synthesis of NiCo2S4 nanotube arrays on Ni foam for highcyclingstabilitysupercapacitors.Journal of Alloys and Compounds,2019,780:164-169.
Cheng et al采溶剂热法合成ZnCo2S4实现418.1C·g-1的比容量,在功率密度1700W·kg-1时具有51.7Wh·kg-1的能量密度和在功率密度6.8kW·kg-1时具有42.5Wh·kg-1的能量密度;(Cheng C,Zhang X Y,Wei C Z,et al.Mesoporous hollow ZnCo2S4 core-shell nanospheres for high performance supercapacitors.CeramicInternational.2018,44:17464-17472.)
但单金属和双金属硫化物的能量密度不高,如何通过多金属的协同作用,提高其能量密度是亟待解决的问题。
发明内容
针对现有技术方案的缺陷,本发明的目的是提供一种镍钴锰硫化物纳米片的制备方法。
本发明涉及一种镍钴锰硫化物纳米片的制备方法,其特征在于:以二维材料为载体,以镍、钴、锰可溶性盐为原料,水热反应生成镍钴锰氢氧化物,再与硫化物混合,水热反应获得镍钴锰硫化物纳米片;二维材料为碳化钛、钼铌锡碳、石墨烯.镍-钼硫化物、钴-钼硫化物的一种;硫化物为硫化钠、硫化钾、硫化铵、硫化氢钠、硫化氢钾、硫化氢铵的一种;镍、钴、锰的摩尔比为1:(1.5-2.5):(1-3);一种镍钴锰硫化物纳米片的制备方法包括:
1)称量一定质量的二维材料、镍、钴、锰可溶性盐,放入水/乙醇溶剂,搅拌,然后在80-150℃水热反应5-10h,获得镍钴锰氢氧化物;
2)将步骤1)产物与硫化物混合,搅拌,然后在120-250℃水热反应5-10h;
所述的二维材料为镍钴锰总摩尔数的0.001-0.2;
所述的硫化物与镍钴锰总摩尔比为2-5。
本专利以二维材料为模板,吸附镍、钴、锰在其表面沉积,形成镍钴锰氢氧化物纳米片;再用硫化物与镍钴锰氢氧化物置换反应,生成镍钴锰硫化物纳米片。
与现有技术相比,本发明专利提供的一种镍钴锰硫化物纳米片制备方法,具有以下优势:
1)制备工艺简单、工序可控、可产业化生产;
2)以片状二维材料为模板,引导镍钴锰离子在其表面沉积,再与硫化物置换反应,生成纳米片状镍钴锰硫化物,极大地改善了镍钴锰硫化物的导电率。
3)镍钴锰三金属的协同作用,提高了材料的比容量;本专利制备的纳米片状镍钴锰硫化物具有很好的电化学性能;在电流密度1A·g-1具有大于600C·g-1的比容量。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹举以下实施例详细说明如下:
实例1
一种镍钴锰硫化物纳米片的制备方法,包括:
1)称量一定质量的二维材料、镍、钴、锰可溶性盐,放入水/乙醇溶剂,搅拌,然后在90℃水热反应6h;
2)将步骤1)产物与硫化物混合,搅拌,然后在180℃水热反应5h。
一种镍钴锰硫化物纳米片的成分设计,包括:
1)NiCl2·6H2O,0.02mol;CoCl2·6H2O,0.04mol;MnCl2·4H2O,0.03mol;碳化钛,0.0009mol;硫化钠,0.21mol;
结果显示:镍钴锰硫化物纳米片在电流密度1A·g-1时,具有大于600C·g-1的比容量,在电流密度为50A·g-1时,保留了大于300C·g-1的比容量。
实例2
操作同实例1.
一种镍钴锰硫化物纳米片的成分设计,包括:
2)NiCl2·6H2O,0.02mol;CoCl2·6H2O,0.04mol;MnCl2·4H2O,0.04mol;钼铌锡碳,0.00125mol;硫化钾,0.27mol;
镍钴锰硫化物纳米片在电流密度1A·g-1具有657.7C·g-1的比容量,电流密度为50A·g-1,保留339.5C·g-1的比容量,经1100次循环,保留97.8%的比容量。
实例3
一种镍钴锰硫化物纳米片的制备方法,包括:
3)称量一定质量的二维材料、镍、钴、锰可溶性盐,放入水/乙醇溶剂,搅拌,然后在120℃水热反应5h;
4)将步骤1)产物与硫化物混合,搅拌,然后在200℃水热反应5h。
一种镍钴锰硫化物纳米片的成分设计,包括:
3)Ni(CH3COO)2·4H2O,0.02mol;Co(CH3COO)2·4H2O,0.03mol;
Mn(CH3COO)2·4H2O,0.02mol;石墨烯,0.001mol;硫化钾,0.27mol;
4)Ni(CH3COO)2·4H2O,0.02mol;Co(CH3COO)2·4H2O,0.05mol;
Mn(CH3COO)2·4H2O,0.02mol;镍-钼硫化物,0.009mol;硫化铵,0.22mol;
5)Ni(CH3COO)2·4H2O,0.02mol;Co(CH3COO)2·4H2O,0.04mol;
Mn(CH3COO)2·4H2O,0.06mol;钴-钼硫化物,0.00125mol;硫化氢钾,0.5mol;
镍钴锰硫化物纳米片在电流密度1A·g-1具有657.7C·g-1的比容量,电流密度为50A·g-1,保留339.5C·g-1的比容量,经1100次循环,保留97.8%的比容量。
上述专利的具体实施方式是示例性的,是为了更好的使本领域技术人员能够理解本专利,不能理解为是对本专利包括范围的限制;只要是根据本专利所揭示精神的所作的任何等同变更或修饰,均落入本专利包括的范围。

Claims (3)

1.本发明涉及一种镍钴锰硫化物纳米片的制备方法,其特征在于:以二维材料为载体,以镍、钴、锰可溶性盐为原料,水热反应生成镍钴锰氢氧化物,再与硫化物混合,水热反应获得镍钴锰硫化物纳米片;二维材料为碳化钛、钼铌锡碳、石墨烯、镍-钼硫化物、钴-钼硫化物的一种;硫化物为硫化钠、硫化钾、硫化铵、硫化氢钠、硫化氢钾、硫化氢铵的一种;镍、钴、锰的摩尔比为1:(1.5-2.5):(1-3);一种镍钴锰硫化物纳米片的制备方法包括:
1)称量一定质量的二维材料、镍、钴、锰可溶性盐,放入水/乙醇溶剂,搅拌,然后在80-150℃水热反应5-10h,获得镍钴锰氢氧化物;
2)将步骤1)产物与硫化物混合,搅拌,然后在120-250℃水热反应5-10h。
2.根据权利要求1所述的一种镍钴锰硫化物纳米片制备方法,其特征在于:二维材料为镍钴锰总摩尔数的0.001-0.2。
3.根据权利要求1所述的一种镍钴锰硫化物纳米片制备方法,其特征在于:硫化物与镍钴锰总摩尔比为2-5。
CN202010968711.3A 2020-09-15 2020-09-15 一种镍钴锰硫化物纳米片的制备方法 Pending CN112062169A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010968711.3A CN112062169A (zh) 2020-09-15 2020-09-15 一种镍钴锰硫化物纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010968711.3A CN112062169A (zh) 2020-09-15 2020-09-15 一种镍钴锰硫化物纳米片的制备方法

Publications (1)

Publication Number Publication Date
CN112062169A true CN112062169A (zh) 2020-12-11

Family

ID=73697070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010968711.3A Pending CN112062169A (zh) 2020-09-15 2020-09-15 一种镍钴锰硫化物纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN112062169A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114360918A (zh) * 2021-11-22 2022-04-15 沈阳工程学院 一种高性能超级电容器异质结构的电极材料的制备方法
CN114590850A (zh) * 2022-03-17 2022-06-07 中国长江三峡集团有限公司 硫化物全固态锂电池用新型硫化正极材料及其制备方法
CN114974916A (zh) * 2022-07-04 2022-08-30 桂林电子科技大学 一种纤维状MXene负载NiCoS复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110291044A1 (en) * 2009-02-13 2011-12-01 Chengdu Jingyuan New Materials Technology Co., Ltd. Nickel-cobalt-manganese multi-element lithium ion battery cathode material with dopants and its methods of preparation
CN107010676A (zh) * 2017-05-08 2017-08-04 浙江师范大学 一种用于超级电容器电极材料硫化钴镍纳米片的简便制备方法
CN109607625A (zh) * 2019-02-15 2019-04-12 安阳师范学院 核壳镍-钴-锰三元硫化物空心球形电极材料及其制备方法
CN110828192A (zh) * 2019-11-14 2020-02-21 南京理工大学 基于泡沫镍的自支撑高倍率性能电极及其制备方法
CN111261419A (zh) * 2020-02-24 2020-06-09 西南大学 一种氢氧化钴/镍钼硫化物复合超级电容器电极材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110291044A1 (en) * 2009-02-13 2011-12-01 Chengdu Jingyuan New Materials Technology Co., Ltd. Nickel-cobalt-manganese multi-element lithium ion battery cathode material with dopants and its methods of preparation
CN107010676A (zh) * 2017-05-08 2017-08-04 浙江师范大学 一种用于超级电容器电极材料硫化钴镍纳米片的简便制备方法
CN109607625A (zh) * 2019-02-15 2019-04-12 安阳师范学院 核壳镍-钴-锰三元硫化物空心球形电极材料及其制备方法
CN110828192A (zh) * 2019-11-14 2020-02-21 南京理工大学 基于泡沫镍的自支撑高倍率性能电极及其制备方法
CN111261419A (zh) * 2020-02-24 2020-06-09 西南大学 一种氢氧化钴/镍钼硫化物复合超级电容器电极材料及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SAHOO S ET AL.: "Electrodeposited Nickel Cobalt Manganese based mixed sulfide nanosheets for high performance supercapacitor application", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *
SAHOO S ET AL.: "Electrodeposited Nickel Cobalt Manganese based mixed sulfide nanosheets for high performance supercapacitor application", 《MICROPOROUS AND MESOPOROUS MATERIALS》, vol. 244, 16 February 2017 (2017-02-16), pages 101 - 108, XP029956690, DOI: 10.1016/j.micromeso.2017.02.043 *
ZHU YY ET AL.: "Strong synergetic electrochemistry between transition metals of alpha phase Ni-Co-Mn hydroxide contributed superior performance for hybrid supercapacitors", 《JOURNAL OF POWER SOURCES》 *
ZHU YY ET AL.: "Strong synergetic electrochemistry between transition metals of alpha phase Ni-Co-Mn hydroxide contributed superior performance for hybrid supercapacitors", 《JOURNAL OF POWER SOURCES》, vol. 412, 4 December 2018 (2018-12-04), pages 559 - 567, XP085577443, DOI: 10.1016/j.jpowsour.2018.11.080 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114360918A (zh) * 2021-11-22 2022-04-15 沈阳工程学院 一种高性能超级电容器异质结构的电极材料的制备方法
CN114360918B (zh) * 2021-11-22 2023-12-22 沈阳工程学院 一种高性能超级电容器异质结构的电极材料的制备方法
CN114590850A (zh) * 2022-03-17 2022-06-07 中国长江三峡集团有限公司 硫化物全固态锂电池用新型硫化正极材料及其制备方法
CN114590850B (zh) * 2022-03-17 2023-04-18 中国长江三峡集团有限公司 硫化物全固态锂电池用硫化正极材料及其制备方法
CN114974916A (zh) * 2022-07-04 2022-08-30 桂林电子科技大学 一种纤维状MXene负载NiCoS复合材料及其制备方法和应用
CN114974916B (zh) * 2022-07-04 2024-01-30 桂林电子科技大学 一种纤维状MXene负载NiCoS复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Zhang et al. Interface engineering and heterometal doping Mo-NiS/Ni (OH) 2 for overall water splitting
Quan et al. Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance
Jing et al. Enhanced hydrogen evolution reaction of WS2–CoS2 heterostructure by synergistic effect
CN112062169A (zh) 一种镍钴锰硫化物纳米片的制备方法
Liu et al. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor
CN107587161B (zh) 一种棒状NiFeSe/C电解水催化剂的制备方法
Zhang et al. One-step synthesis of NiCo2O4 nanorods and firework-shaped microspheres formed with necklace-like structure for supercapacitor materials
Xu et al. Research progress of nickel-based metal-organic frameworks and their derivatives for oxygen evolution catalysis
Senthil et al. A facile one-pot synthesis of microspherical-shaped CoS2/CNT composite as Pt-free electrocatalyst for efficient hydrogen evolution reaction
CN107610938A (zh) 一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用
Yaseen et al. Synergistically coupling of Co/Mo2C/Co6Mo6C2@ C electrocatalyst for overall water splitting: the role of carbon precursors in structural engineering and catalytic activity
Zang et al. Controllable synthesis of triangular Ni (HCO 3) 2 nanosheets for supercapacitor
CN105355919A (zh) 一种铜钴硫超细粉的制备方法
CN101508470A (zh) 多孔一维纳米四氧化三钴的制备方法
Qiu et al. Support interactions dictated active edge sites over MoS 2–carbon composites for hydrogen evolution
Liu et al. 0D–2D Schottky heterostructure coupling of FeS nanosheets and Co9S8 nanoparticles for long-term industrial-level water oxidation
Du et al. Controllable synthesis of Ni 3 S 2@ MOOH/NF (M= Fe, Ni, Cu, Mn and Co) hybrid structure for the efficient hydrogen evolution reaction
CN107663637A (zh) 钼酸盐纳米复合材料及其制备方法和应用
Xu et al. Highly efficient hydrogen evolution based on Ni3S4@ MoS2 hybrids supported on N-doped reduced graphene oxide
Chen et al. Defect-rich MoS2/r-GO hybrid via microwave-assisted solvothermal process for efficient electrocatalytic hydrogen evolution
Hu et al. Controllable hydrothermal-assisted synthesis of mesoporous Co 3 O 4 nanosheets
CN111185179A (zh) 一种甲烷裂解催化剂及其制备方法
Xiao et al. High active and easily prepared cobalt encapsulated in carbon nanotubes for hydrogen evolution reaction
CN111017904A (zh) 一种碳量子点-CoFe类普鲁士蓝纳米复合材料及其制备方法和应用
Ma et al. Versatile construction of a hierarchical porous electrode and its application in electrochemical hydrogen production: a mini review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201211