CN111185179A - 一种甲烷裂解催化剂及其制备方法 - Google Patents

一种甲烷裂解催化剂及其制备方法 Download PDF

Info

Publication number
CN111185179A
CN111185179A CN202010144242.3A CN202010144242A CN111185179A CN 111185179 A CN111185179 A CN 111185179A CN 202010144242 A CN202010144242 A CN 202010144242A CN 111185179 A CN111185179 A CN 111185179A
Authority
CN
China
Prior art keywords
nickel
catalyst
solution
copper
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010144242.3A
Other languages
English (en)
Inventor
李达林
施泽敏
黄敏
江莉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202010144242.3A priority Critical patent/CN111185179A/zh
Publication of CN111185179A publication Critical patent/CN111185179A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种甲烷裂解催化剂及其制备方法,属于甲烷裂解催化剂制备技术领域。本发明催化剂以镍铜合金纳米粒子为活性相、氧化铝为结构助剂,首先采用共沉淀法合成镍铜铝层状复合氢氧化物作为催化剂前驱体,经500℃焙烧分解形成岩盐型氧化镍‑氧化铜‑氧化铝固溶体,然后经800℃氢气还原处理原位生成高分散镍铜合金纳米粒子。本发明催化剂的镍铜合金平均晶粒尺寸为9~10 nm,具有组成均匀和组成可调的特点,对高温甲烷裂解反应表现出良好的催化性能,反应温度650℃时的碳产率可达70 克每克催化剂,可获得竹节型结构的碳纳米管。

Description

一种甲烷裂解催化剂及其制备方法
技术领域
本发明属于甲烷裂解催化剂制备技术领域,具体涉及一种甲烷裂解催化剂及其制备方法。
技术背景
氢气是一种优质清洁燃料,可通过各种方式转化为电能和其他低污染的能源形式,不会产生环境问题。由于氢气在自然界的含量极低,工业上大规模制氢主要通过煤气化、石脑油水蒸汽重整、部分氧化或天然气水蒸气重整、自热重整或醇水蒸气重整等途径。与其他化石燃料相比,天然气是生产氢气最好的原料,其主要成分是甲烷,氢碳比含量最高。甲烷水蒸汽重整是目前世界上规模最大、最经济的制氢技术,约占世界氢气产量的50%。然而,该过程会产生大量CO、CO2副产物。CO易使燃料电池Pt电极中毒失活,而CO2是主要的温室气体之一。甲烷催化裂解是制取纯氢的一种简单、有效的方法,不仅没有CO x 副产物,而且生成的碳如碳纳米管(CNTs)、碳纳米纤维(CNFs)是一种良好的纳米材料,具有优异的光电性能、机械强度和表面积高等特点,有广泛的应用前景。
CH4分子具有高度稳定的四面体结构,C–H键键能高达434kJ/mol。因此,C–H键断裂需要很高的活化能,是甲烷裂解最为关键的一步。为降低反应活化能,使用催化剂是最有效的方法。大量研究表明,第VIII族过渡金属如Ni、Co、Fe对甲烷分解具有较高的活性。Ni催化剂和Co催化剂在500~800℃温度范围内对甲烷裂解反应就有足够的活性,而Fe催化剂的活化温度一般在800℃以上。相同反应条件下,Ni催化剂比Co催化剂具有更高的活性和稳定性。Ni催化剂在较低温度就具有活性,其活性组分单位质量氢气的产率比较高。甲烷裂解是一个吸热反应,升高反应温度有利于提高甲烷裂解速率,但是Ni催化剂在高温条件下很容易失活。因此,必须研发一种具有良好高温催化性能的甲烷裂解催化剂。
发明内容
本发明的目的在于针对现有技术不足,提供一种甲烷裂解催化剂及其制备方法。本发明采用层状复合氢氧化物作为催化剂前驱体,经过焙烧和还原处理,制备高分散、组成均匀的镍铜合金甲烷裂解催化剂。
为实现上述目的,本发明采用如下技术方案:
采用共沉淀法合成以镍、铜、铝金属阳离子的氢氧化物为主体层板、以碳酸根离子为插层的层状复合氢氧化物前驱体,经焙烧分解形成岩盐型氧化镍-氧化铜-氧化铝固溶体,再经氢气程序升温还原得到镍铜合金纳米粒子,所述催化剂中摩尔比(Ni+Cu):Al = 3:1、Ni:Cu = 90:10~70:30。
上述镍铜合金甲烷裂解催化剂的制备方法,其具体步骤如下:
a、镍铜铝层状复合氢氧化物的合成:采用共沉淀法合成镍铜铝层状复合氢氧化物,在转速800转/分钟搅拌下,将100ml Ni(NO3)2·6H2O、Cu(NO3)2·3H2O、Al(NO3)3·9H2O混合溶液用滴液漏斗以30滴/分钟的速度逐滴加入到Na2CO3溶液,同时将沉淀剂NaOH溶液以35滴/分钟的速度缓慢滴入Na2CO3溶液;整个沉淀过程在室温下进行,维持pH=10±0.5;滴加完毕后继续搅拌1 h,然后静置24h,过滤并用去离子水洗涤至 pH=7±0.2,于100℃烘干12h,得到层状复合氢氧化物驱体;
b、焙烧和还原处理:将a步骤所得层状复合氢氧化物前驱体置于马弗炉,于空气气氛500℃焙烧得到混合氧化物;将混合氧化物在H2气氛中程序升温至800℃进行还原处理,得到镍铜合金催化剂。
进一步,所述a步骤中Na2CO3溶液的Na2CO3摩尔数为Al(NO3)3·9H2O摩尔数的1:2。
进一步,所述a步骤中沉淀剂NaOH溶液的浓度为2 mol/L,NaOH摩尔用量与Ni(NO3)2·6H2O、Cu(NO3)2·3H2O、Al(NO3)3·9H2O摩尔用量总和的比值为2:1。
进一步,所述b步骤中的焙烧处理条件为:焙烧气氛为空气,焙烧温度500 ℃,升温速率3 ℃/min,在500℃保持5 h。
进一步,所述b步骤中的还原处理条件为:H2流速30 mL/min,还原温度800 ℃,升温速率10 ℃/min,在800 ℃保持30min。
本发明的有益效果在于:
(1)本发明采用镍铜铝层状复合氢氧化物作为催化剂前驱体,经由氧化镍-氧化铜-氧化铝固溶体,使得催化剂组分保持高度、均匀分散,避免发生团聚、不均匀等现象,有利于准确控制合金组成;
(2)本发明的镍铜合金平均晶粒尺寸为9~10 nm,分散度高,且每个合金粒子的组成相似,具有组成均匀和组成可调的特点;
(3)本发明的镍铜合金催化剂对高温甲烷裂解反应表现出良好的催化性能,可获得较高产率的碳纳米材料。
附图说明
图1为本发明实施例1催化剂的X射线粉末衍射谱图;
图2为本发明实施例2催化剂的X射线粉末衍射谱图;
图3为本发明实施例3催化剂的X射线粉末衍射谱图;
图4为本发明实施例3催化剂的扫描透射电镜X射线能谱分析结果;
图5为本发明实施例3催化剂的X射线能谱点分析谱图;
图6为本发明实施例3催化剂的X射线能谱线分析谱图;
图7为本发明实施例3催化剂催化甲烷裂解生成碳纳米材料的透射电镜图;
图8为本发明实施例1和对比例催化剂在600℃的甲烷裂解测试结果;
图9为本发明实施例1~3催化剂在650℃的甲烷裂解测试结果。
具体实施方式
以下结合具体实施例对本发明做进一步说明,但本发明不仅仅限于这些实施例。
实施例1:
称取20g NaOH固体,溶于250 mL去离子水,搅拌10 min,配成2 mol/L的NaOH水溶液。按摩尔比(Ni2++Cu2+):Al3+ = 75:25、Ni2+:Cu2+ = 90:10,分别称取7.8513g Ni(NO3)2·6H2O、0.7248g Cu(NO3)2·3H2O、3.7513g Al(NO3)3·9H2O溶于100 mL去离子水,搅拌10 min,使硝酸盐完全溶解,得到混合溶液。按Na2CO3摩尔量为Al(NO3)3·9H2O摩尔量的一半称取0.5300gNa2CO3,溶于100 mL去离子水,作为底液。将镍铜铝硝酸盐混合溶液用滴液漏斗以30滴/分钟的速度逐滴滴入含有Na2CO3溶液的烧杯中,并不断搅拌。同时用蠕动泵将沉淀剂NaOH溶液以35滴/分钟的速度缓慢滴入烧杯中,维持沉淀pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,接着在100 ℃干燥12 h,得到镍铜铝层状复合氢氧化物前驱体。将前驱体置于马弗炉,以3 ℃/min升至500 ℃焙烧5 h,得到氧化镍-氧化铜-氧化铝固溶体。将氧化物固溶体置于石英管,在30 mL/min H2气流中以10℃/min升至800 ℃并保持30 min,然后冷却至室温,得到镍铜合金催化剂。
用X射线粉末衍射对上述样品进行物相分析,如图1所示,位于2θ = 52.08º、60.87º、91.64º衍射峰对应于Ni-Cu合金的(111)、(200)、(220)晶面,通过谢乐公式计算合金平均晶粒尺寸为9.6 nm,通过布拉格法则计算合金组成为Cu/(Ni+Cu) = 9%(摩尔比),与催化剂本体组成基本一致。
实施例2:
称取20g NaOH固体,溶于250 mL去离子水,搅拌10 min,配成2 mol/L的NaOH水溶液。按摩尔比(Ni2++Cu2+):Al3+= 75:25、Ni2+:Cu2+ = 80:20,分别称取6.9790g Ni(NO3)2·6H2O、1.4496g Cu(NO3)2·3H2O、3.7513g Al(NO3)3·9H2O溶于100 mL去离子水,搅拌10 min,使硝酸盐完全溶解,得到混合溶液。按Na2CO3摩尔量为Al(NO3)3·9H2O摩尔量的一半称取0.5300gNa2CO3,溶于100 mL去离子水,作为底液。将镍铜铝硝酸盐混合溶液用滴液漏斗以30滴/分钟的速度逐滴滴入含有Na2CO3溶液的烧杯中,并不断搅拌。同时用蠕动泵将沉淀剂NaOH溶液以35滴/分钟的速度缓慢滴入烧杯中,维持沉淀pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,接着在100 ℃干燥12 h,得到镍铜铝层状复合氢氧化物前驱体。将前驱体置于马弗炉,以3 ℃/min升至500 ℃焙烧5 h,得到氧化镍-氧化铜-氧化铝固溶体。将氧化物固溶体置于石英管,在30 mL/min H2气流中以10℃/min升至800 ℃并保持30 min,然后冷却至室温,得到镍铜合金催化剂。
用X射线粉末衍射对上述样品进行物相分析,如图2所示,位于2θ = 51.95º、60.74º、91.37º衍射峰对应于Ni-Cu合金的(111)、(200)、(220)晶面,通过谢乐公式计算合金平均晶粒尺寸为9.5 nm,通过布拉格法则计算合金组成为Cu/(Ni+Cu) = 22%(摩尔比),与催化剂本体组成基本一致。
实施例3:
称取20g NaOH固体,溶于250 mL去离子水,搅拌10 min,配成2 mol/L的NaOH水溶液。按摩尔比(Ni2++Cu2+):Al3+ = 75:25、Ni2+:Cu2+ = 70:30,分别称取6.1066g Ni(NO3)2·6H2O、2.1744g Cu(NO3)2·3H2O、3.7513g Al(NO3)3·9H2O溶于100 mL去离子水,搅拌10 min,使硝酸盐完全溶解,得到混合溶液。按Na2CO3摩尔量为Al(NO3)3·9H2O摩尔量的一半称取0.5300gNa2CO3,溶于100 mL去离子水,作为底液。将镍铜铝硝酸盐混合溶液用滴液漏斗以30滴/分钟的速度逐滴滴入含有Na2CO3溶液的烧杯中,并不断搅拌。同时用蠕动泵将沉淀剂NaOH溶液以35滴/分钟的速度缓慢滴入烧杯中,维持沉淀pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,接着在100 ℃干燥12 h,得到镍铜铝层状复合氢氧化物前驱体。将前驱体置于马弗炉,以3 ℃/min升至500 ℃焙烧5 h,得到氧化镍-氧化铜-氧化铝固溶体。将氧化物固溶体置于石英管,在30 mL/min H2气流中以10℃/min升至800 ℃并保持30 min,然后冷却至室温,得到镍铜合金催化剂。
用X射线粉末衍射对上述催化剂进行物相分析,如图3所示,位于2θ = 51.78º、60.54º、91.03º衍射峰对应于Ni-Cu合金的(111)、(200)、(220)晶面,通过谢乐公式计算合金平均晶粒尺寸为9.8nm,通过布拉格法则计算合金组成为Ni0:Cu0= 68:32(摩尔比),与催化剂本体组成基本一致。
用扫描透射电镜X射线能谱分析合金组成,如图4所示,1~3号合金粒子的组成分别为Ni0:Cu0 = 71:29、72:28、73:27,说明合金组成均匀。
1号合金粒子的X射线能谱点分析结果如图5所示,根据峰面积计算出合金组成Ni0:Cu0 = 71:29。
用X射线能谱线分析合金元素分布,如图6所示,Ni和Cu均匀分布在粒子表面和体相,说明形成了均匀合金。
用透射电镜分析上述催化剂在650℃甲烷裂解反应后生成的碳的形貌,如图7所示,可得到竹节型结构的碳纳米管。
对比例1:
取20g NaOH固体,溶于250mL去离子水中,搅拌10min,配成2 mol/L的NaOH水溶液。按Ni2+/Al3+摩尔比为3,分别称取8.7237g Ni(NO3)2·6H2O 和3.7513g Al(NO3)3·9H2O溶于100 mL去离子水,搅拌10 min,使硝酸盐完全溶解,得到混合溶液。按Na2CO3摩尔量为Al(NO3)3·9H2O摩尔量的一半称取0.5300g Na2CO3,溶于100 mL去离子水,作为底液。将镍铝硝酸盐混合溶液用滴液漏斗以30滴/分钟的速度逐滴滴入含有Na2CO3溶液的烧杯中,并不断搅拌。同时用蠕动泵将沉淀剂NaOH溶液以35滴/分钟的速度缓慢滴入烧杯中,维持沉淀pH =10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ±0.2,接着在100 ℃干燥12 h,得到镍铝层状复合氢氧化物前驱体。将前驱体置于马弗炉,以3 ℃/min升至500 ℃焙烧5 h,得到氧化镍-氧化铝固溶体。将氧化物固溶体置于石英管,在30 mL/min H2气流中以10 ℃/min升至800 ℃并保持30 min,然后冷却至室温,得到镍催化剂。
对比例2:
称取20g NaOH固体,溶于250 mL去离子水,搅拌10 min,配成2 mol/L的NaOH水溶液。按摩尔比(Ni2++Co2+):Al3+ = 75:25、Ni2+:Co2+ = 90:10,分别称取7.8513g Ni(NO3)2·6H2O、0.8731g Co(NO3)2·6H2O、3.7513g Al(NO3)3·9H2O溶于100 mL去离子水,搅拌10 min,使硝酸盐完全溶解,得到混合溶液。按Na2CO3摩尔量为Al(NO3)3·9H2O摩尔量的一半称取0.5300gNa2CO3,溶于100 mL去离子水,作为底液。将镍钴铝硝酸盐混合溶液用滴液漏斗以30滴/分钟的速度逐滴滴入含有Na2CO3溶液的烧杯中,并不断搅拌。同时用蠕动泵将沉淀剂NaOH溶液以35滴/分钟的速度缓慢滴入烧杯中,维持沉淀pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,接着在100 ℃干燥12 h,得到镍钴铝层状复合氢氧化物前驱体。将前驱体置于马弗炉,以3 ℃/min升至500 ℃焙烧5 h,得到氧化镍-氧化钴-氧化铝固溶体。将氧化物固溶体置于石英管,在30 mL/min H2气流中以10℃/min升至800 ℃并保持30 min,然后冷却至室温,得到镍钴合金催化剂。
对比例3:
称取20g NaOH固体,溶于250 mL去离子水,搅拌10 min,配成2 mol/L的NaOH水溶液。按摩尔比Ni2+/(Fe3++Al3+) = 75:25、Ni2+:Fe3+ = 90:10,分别称取7.8513g Ni(NO3)2·6H2O、1.2120g Fe(NO3)3·9H2O、3.7513g Al(NO3)3·9H2O溶于100 mL去离子水,搅拌10 min,使硝酸盐完全溶解,得到混合溶液。按Na2CO3摩尔量为Al(NO3)3·9H2O摩尔量的一半称取0.5300gNa2CO3,溶于100 mL去离子水,作为底液。将镍钴铝硝酸盐混合溶液用滴液漏斗以30滴/分钟的速度逐滴滴入含有Na2CO3溶液的烧杯中,并不断搅拌。同时用蠕动泵将沉淀剂NaOH溶液以35滴/分钟的速度缓慢滴入烧杯中,维持沉淀pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,接着在100 ℃干燥12 h,得到镍铁铝层状复合氢氧化物前驱体。将前驱体置于马弗炉,以3 ℃/min升至500 ℃焙烧5 h,得到氧化镍-氧化铁-氧化铝固溶体。将氧化物固溶体置于石英管,在30 mL/min H2气流中以10℃/min升至800 ℃并保持30 min,然后冷却至室温,得到镍铁合金催化剂。
上述催化剂的甲烷裂解反应性能评价在法国Setram公司Setsys Evolution同步热分析仪进行。首先将50 mg催化剂在固定床反应器于800℃用H2还原30min,之后在25 mL/min N2气流下降至室温,然后称取1 mg还原催化剂置于氧化铝坩埚,在5mL/minN2气流下升温至600℃或650℃,之后通入5mL/min CH4,反应结果如图8、9所示。图8是实施例1催化剂和对比例1~3催化剂在600℃的反应结果。可以看到,催化剂的催化稳定性和碳产率为实施例1>> 对比例3 > 对比例2 > 对比例1(碳产率分别为66.3、24.1、20.0、11.5克碳/克催化剂),即镍铜合金 >> 镍铁合金 > 镍钴合金 > 镍,说明铜的添加效果显著优于铁和钴。图9是实施例1~3催化剂和对比例1催化剂在650℃的反应结果。可以看到,对比例1催化剂很快发生失活,碳产率仅1.4克碳/克催化剂,而本发明实施例1~3催化剂显示了很高的催化稳定性,碳产率分别达到了23.2、43.5、70.0克碳/克催化剂,是对比例1催化剂的16、31、50倍。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

1.一种甲烷裂解催化剂,其特征在于:所述催化剂是以镍铜合金纳米粒子为活性相、Al2O3为结构助剂,其中(Ni+Cu):Al摩尔比为3:1,Ni:Cu摩尔比为90:10~70:30。
2.一种如权利要求1所述的甲烷裂解催化剂的制备方法,其特征在于:采用共沉淀法合成镍铜铝层状复合氢氧化物前驱体,经焙烧分解形成岩盐型氧化镍-氧化铜-氧化铝固溶体,再经氢气程序升温还原生成镍铜合金纳米粒子,即得到甲烷裂解催化剂。
3.根据权利要求2所述的制备方法,其特征在于:具体包括以下步骤:
a、镍铜铝层状复合氢氧化物的合成:在转速为800转/分钟搅拌下,将Ni(NO3)2·6H2O、Cu(NO3)2·3H2O、Al(NO3)3·9H2O混合溶液用滴液漏斗以30滴/分钟的速度逐滴加入到Na2CO3溶液,同时将沉淀剂NaOH溶液以30滴/分钟的速度缓慢滴入Na2CO3溶液;整个沉淀过程在室温下进行,维持pH = 10 ± 0.5;滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至 pH = 7 ± 0.2,于100 ℃烘干12 h,得到以镍铜铝氢氧化物为主体层板、碳酸根离子为插层的层状复合氢氧化物;
b、焙烧和氢气程序升温还原:将a步骤所得层状复合氢氧化物置于马弗炉,经过焙烧分解生成氧化镍-氧化铜-氧化铝固溶体;将氧化物固溶体还原,得到高分散、组成均匀的镍铜合金纳米粒子,即得到甲烷裂解催化剂。
4.根据权利要求3所述的制备方法,其特征在于:所述a步骤中(Ni2++Cu2+):Al3+摩尔比为3:1,Ni2+:Cu2+摩尔比为90:10~70:30。
5.根据权利要求3所述的制备方法,其特征在于:所述a步骤中Na2CO3溶液的Na2CO3与Al(NO3)3·9H2O的摩尔比为1:2。
6.根据权利要求3所述的制备方法,其特征在于:所述a步骤中NaOH溶液浓度为2 mol/L,NaOH摩尔用量与Ni(NO3)2·6H2O、Cu(NO3)2·6H2O、Al(NO3)3·9H2O摩尔用量总和的比值为2:1。
7.根据权利要求3所述的制备方法,其特征在于:所述b步骤的焙烧条件为:焙烧气氛为空气,焙烧温度500 ℃,升温速率3 ℃/min,在500℃保持5 h。
8.根据权利要求3所述的制备方法,其特征在于:所述b步骤的还原条件为:H2流速30mL/min,还原温度从室温到800 ℃,升温速率10 ℃/min,在800℃保持30 min。
CN202010144242.3A 2020-03-04 2020-03-04 一种甲烷裂解催化剂及其制备方法 Pending CN111185179A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010144242.3A CN111185179A (zh) 2020-03-04 2020-03-04 一种甲烷裂解催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010144242.3A CN111185179A (zh) 2020-03-04 2020-03-04 一种甲烷裂解催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN111185179A true CN111185179A (zh) 2020-05-22

Family

ID=70702783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010144242.3A Pending CN111185179A (zh) 2020-03-04 2020-03-04 一种甲烷裂解催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111185179A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112076770A (zh) * 2020-08-28 2020-12-15 北京大学 层状多金属氢氧化物在甲烷光化学转化中的应用
CN112705208A (zh) * 2021-01-29 2021-04-27 福州大学 一种镍镓合金催化剂及其制备方法和应用
CN113145119A (zh) * 2021-01-28 2021-07-23 同济大学 一种二维层状结构CuNi-Cu2O/NiAlOx纳米复合材料的制备方法及应用
CN115364862A (zh) * 2022-09-20 2022-11-22 南京师范大学 一种镍基催化剂及制备方法及在木质素解聚过程中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093337A2 (de) * 2006-02-16 2007-08-23 Bayer Materialscience Ag Verfahren zur kontinuierlichen herstellung von katalysatoren
CN102583242A (zh) * 2012-03-09 2012-07-18 大连理工大学 一种催化裂解甲烷制备氢气的方法
CN105013506A (zh) * 2015-06-25 2015-11-04 中国石油天然气集团公司 用于甲烷催化裂解的双功能催化剂及其制法与制氢方法
CN108380218A (zh) * 2018-03-16 2018-08-10 福州大学 一种负载型均匀镍钴合金催化剂及其制备方法
WO2018229729A1 (en) * 2017-06-15 2018-12-20 Sabic Global Technologies B.V. Combined gasification and catalytic decomposition for the production of hydrogen and synthesis gas from hydrocarbons
CN109999813A (zh) * 2019-03-15 2019-07-12 上海大学 一种甲烷催化裂解制氢催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093337A2 (de) * 2006-02-16 2007-08-23 Bayer Materialscience Ag Verfahren zur kontinuierlichen herstellung von katalysatoren
CN102583242A (zh) * 2012-03-09 2012-07-18 大连理工大学 一种催化裂解甲烷制备氢气的方法
CN105013506A (zh) * 2015-06-25 2015-11-04 中国石油天然气集团公司 用于甲烷催化裂解的双功能催化剂及其制法与制氢方法
WO2018229729A1 (en) * 2017-06-15 2018-12-20 Sabic Global Technologies B.V. Combined gasification and catalytic decomposition for the production of hydrogen and synthesis gas from hydrocarbons
CN108380218A (zh) * 2018-03-16 2018-08-10 福州大学 一种负载型均匀镍钴合金催化剂及其制备方法
CN109999813A (zh) * 2019-03-15 2019-07-12 上海大学 一种甲烷催化裂解制氢催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DOUXING LIA ET.AL: "Evidence of composition deviation of metal particles of", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
JIULING CHEN ET.AL: "Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions", 《CARBON》 *
TATYANA V. RESHETENKO ET.AL: "Carbon capacious Ni-Cu-Al2O3 catalysts for", 《APPLIED CATALYSIS A-GENERAL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112076770A (zh) * 2020-08-28 2020-12-15 北京大学 层状多金属氢氧化物在甲烷光化学转化中的应用
CN113145119A (zh) * 2021-01-28 2021-07-23 同济大学 一种二维层状结构CuNi-Cu2O/NiAlOx纳米复合材料的制备方法及应用
CN112705208A (zh) * 2021-01-29 2021-04-27 福州大学 一种镍镓合金催化剂及其制备方法和应用
CN115364862A (zh) * 2022-09-20 2022-11-22 南京师范大学 一种镍基催化剂及制备方法及在木质素解聚过程中的应用

Similar Documents

Publication Publication Date Title
CN111185179A (zh) 一种甲烷裂解催化剂及其制备方法
Pan et al. Anti-sintering mesoporous Ni–Pd bimetallic catalysts for hydrogen production via dry reforming of methane
Cao et al. Growing layered double hydroxides on CNTs and their catalytic performance for higher alcohol synthesis from syngas
CN113289693B (zh) 一种氨分解催化剂及其制备方法和应用
Yusuf et al. Syngas production from greenhouse gases using Ni–W bimetallic catalyst via dry methane reforming: Effect of W addition
CN109126844B (zh) 一种碳化钼纳米片及其制备方法和应用
CN111167495B (zh) 一种氨硼烷制氢用催化剂Ni2-xFex@CN-G及其制备方法
Ugale et al. Cost-effective synthesis of carbon loaded Co3O4 for controlled hydrogen generation via NaBH4 hydrolysis
Jana et al. Mild temperature hydrogen production by methane decomposition over cobalt catalysts prepared with different precipitating agents
Li et al. Efficient and stable supercritical-water-synthesized Ni-based catalysts for supercritical water gasification
KR20180017685A (ko) 역수성 가스전환 반응용 합금촉매의 제조방법
Ashik et al. Nanonickel catalyst reinforced with silicate for methane decomposition to produce hydrogen and nanocarbon: synthesis by co-precipitation cum modified Stöber method
Shi et al. Fabricating Cu2O-CuO submicron-cubes for efficient catalytic CO oxidation: The significant effect of heterojunction interface
Ying et al. Rare earth modified Ni-Si catalysts for hydrogen production from methane decomposition
Zhou et al. Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking
Liu et al. Producing ultrastable Ni-ZrO2 nanoshell catalysts for dry reforming of methane by flame synthesis and Ni exsolution
Manasa et al. Improved H2 yields over rice husk derived SiO2 nanoparticles supported Ni catalyst during non-oxidative methane cracking
Zhang et al. A novel Ni-Co alloy catalyst derived from spinel
Wang et al. Novel nano spinel-type high-entropy oxide (HEO) catalyst for hydrogen production using ethanol steam reforming
Alharthi et al. Cobalt ferrite for direct cracking of methane to produce hydrogen and carbon nanostructure: effect of temperature and methane flow rate
Yang et al. The construction of the Ni/La2O2CO3 nanorods catalysts with enhanced low-temperature CO2 methanation activities
Li et al. CoNi alloy catalyst supported on Zr-modified Y2O3 for ammonia decomposition to COx-free hydrogen
CN114220980B (zh) 一种氮嵌入镍超薄纳米片及其制备方法和应用
CN102390827B (zh) 水溶性碱金属碳酸盐催化合成螺旋碳纳米材料的方法
Zhang et al. Hydrogen production from complete dehydrogenation of hydrazine borane on carbon-doped TiO 2-supported NiCr catalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200522

RJ01 Rejection of invention patent application after publication