CN112705208A - 一种镍镓合金催化剂及其制备方法和应用 - Google Patents

一种镍镓合金催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112705208A
CN112705208A CN202110124161.1A CN202110124161A CN112705208A CN 112705208 A CN112705208 A CN 112705208A CN 202110124161 A CN202110124161 A CN 202110124161A CN 112705208 A CN112705208 A CN 112705208A
Authority
CN
China
Prior art keywords
nickel
solution
alloy catalyst
catalyst
gallium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110124161.1A
Other languages
English (en)
Inventor
李达林
黄敏
江莉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202110124161.1A priority Critical patent/CN112705208A/zh
Publication of CN112705208A publication Critical patent/CN112705208A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/825Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种镍镓合金催化剂及其制备方法和应用。本发明的催化剂以Al2O3为载体、Ni为活性组分、Ga为助剂、Ni‒Ga合金为活性相。首先采用共沉淀法合成Ni‒Ga‒Al类水滑石前驱体,然后经500℃空气焙烧和800℃氢气还原处理制得Ni‒Ga/Al2O3合金催化剂。本发明的Ni‒Ga/Al2O3(Ga/Ni=1/4)合金催化剂在600℃甲烷裂解反应中不仅显著提高了氢气和碳的产率,且表现出良好的抗烧结性能。

Description

一种镍镓合金催化剂及其制备方法和应用
技术领域
本发明属于合金催化剂制备技术领域,具体涉及一种镍镓合金催化剂及其制备方法和应用。
背景技术
氢气由于来源广泛、可再生、热值高、污染低、燃烧时仅产生水等特点被认为是一种清洁燃料,是燃料电池的理想燃料。因此,发展氢燃料电池对解决当前化石燃料日益匮乏和因化石燃料燃烧而产生的大气污染等问题,具有十分重要的意义。目前氢气的工业生产主要是基于天然气的蒸汽重整和部分氧化等。然而,这些技术会产生大量二氧化碳和一氧化碳。二氧化碳是一种温室气体,而一氧化碳是一种毒物,易使燃料电池的Pt电极中毒。因此,产生的氢气和二氧化碳、一氧化碳混合气体必须经过复杂的净化过程,才能得到高纯氢并用于燃料电池。与之相比,甲烷催化裂解可直接制取不含CO x 纯氢,用于质子交换膜燃料电池,反应过程简单,操作温度低,能量消耗低,产生氢气浓度高。另外,甲烷催化裂解的副产物是碳纳米材料如碳纳米纤维、碳纳米管,这些碳纳米材料具有许多独特的性能,如耐强酸强碱、导电性高、表面积大、机械强度好等,具有广泛的用途。尤其是碳纳米管,是一种很有前景的催化剂载体材料。因此,甲烷催化裂解受到了越来越多的关注。
CH4分子具有高度稳定的四面体结构,由四个C‒H键组成,键能为434 kJ/mol,甲烷裂解反应中sp3杂化的C‒H键断裂是最为关键的一步,需要很高的活化能。使用催化剂能有效降低反应活化能,在较低的温度下产生氢。过渡金属如Ni、Fe、Co对甲烷分解具有较高的活性,特别是Ni催化剂,在500℃就具有活性,且单位质量活性组分的氢气产率也较高。由于低温下热力学限制了甲烷的转化率,为了得到较高的甲烷转化率,反应需要在较高温度下进行,然而高温条件下镍催化剂很容易快速失活,导致氢气和碳的产率急剧下降。为此,许多研究者在镍催化剂中添加其它助剂如Cu、Fe、Co、Pd、Zn、Cr等,其中Cu的促进效果十分显著。铜与镍可以形成合金,与Ni催化剂相比,Ni‒Cu合金不仅大大提高了甲烷裂化催化稳定性和碳产率,而且对生成的碳纳米材料的形貌有很大影响。如有文献报道Ni‒Cu/Al2O3催化甲烷裂解可产生多种形貌的碳纳米材料:Ni‒Cu‒Al (75:15:10)催化剂在CH4/N2 = 1/2、500℃条件下生成类似八爪鱼的碳纳米纤维,在CH4/N2=1/2、750℃生成碳纳米管,在CH4/H2=1/2、730‒770℃生成竹节型碳纳米管;Ni‒Cu‒Al (75:8:17)催化剂在CH4/H2=2/1、720℃条件下生成内径很小的碳纳米管,这与其它文献报道的Ni/Al2O3催化剂的情况类似。也有文献报道Ni‒Cu‒Al (67.5:7.5:25)催化剂在纯CH4、600℃反应可生成直径达180 nm的碳纳米纤维,而相同反应条件下Ni‒Al (75:25)催化剂则生成了内径很小的碳纳米管。类似地,有文献报道Ni‒Cu‒SiO2 (60:25:15)催化剂在CH4/He=1/1、650℃反应生成了直径约50 nm的碳纳米纤维。此外,有文献报道Ni‒Cu/MgO催化剂在纯CH4、665℃反应得到直径约50 nm的碳纳米纤维,其石墨层沿着轴向垂直排列,呈盘状堆叠结构。从上述文献报道可以看出,Ni‒Cu合金催化剂一方面可以改变碳纳米材料的形貌,另一方面也存在若干局限。首先,在500‒650℃中低温条件下主要生成八爪鱼型或直径较大的碳纳米纤维,难以得到碳纳米管。其次,Ni‒Cu合金在反应过程中易发生烧结长大,其直径可达50 nm甚至100 nm以上,这对碳纳米材料的形貌和尺寸调控造成很大困难。因此,有必要开发一种抗烧结催化剂。
发明内容
本发明的目的在于针对现有技术不足,提供一种镍镓合金催化剂及其制备方法。本发明的催化剂以Al2O3为载体、Ni为活性组分、Ga为助剂、Ni‒Ga合金为活性相,(Ni+Ga)/Al摩尔比为3,Ga/Ni摩尔比为1/9~2/3。首先采用共沉淀法合成Ni‒Ga‒Al类水滑石前驱体(Ni3‒x Ga x Al,其中x= 0.3~1.2),然后经500℃空气焙烧和800℃氢气还原处理制得Ni‒Ga/Al2O3合金催化剂。该催化剂既能显著提高甲烷裂解反应氢气和碳的产率,又能得到空腔直径较大的碳纳米管,且表现出良好的抗烧结性能。
为实现上述目的,本发明采用如下技术方案:
采用共沉淀法合成以Ni2+、Ga3+、Al3+的氢氧化物为主体层板、以碳酸根离子为层间阴离子的类水滑石前驱体,经焙烧分解形成,再经氢气程序升温还原得到Ni‒Ga合金纳米粒子,所述催化剂中摩尔比(Ni+Ga):Al = 3:1、Ni:Ga = 9:1~3:2。
上述甲烷裂解镍镓合金催化剂的制备方法,具体步骤如下:
a、采用共沉淀法合成Ni3‒x Ga x Al类水滑石前驱体:称取Ni(NO3)2·6H2O、Ga(NO3)3·9H2O、Al(NO3)3·9H2O用100 mL去离子水溶解得到金属盐混合溶液,在室温和搅拌(800转/分钟)下,将金属盐混合溶液用滴液漏斗以30滴/分钟的速度逐滴加入到100 mL Na2CO3溶液中,同时将2 mol/L NaOH溶液滴入Na2CO3溶液中调节溶液pH = 10 ± 0.5;滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至溶液呈中性,置于烘箱100℃干燥12 h,得到Ni3‒x Ga x Al类水滑石。
b、将a步骤所得类水滑石置于马弗炉,经500℃空气焙烧分解生成混合金属氧化物,再经800℃氢气还原处理,即得到Ni‒Ga/Al2O3合金催化剂。
进一步,所述a步骤中n(Ni2++Ga3+)/n(Al3+)摩尔比为3/1,Ga3+/Ni2+摩尔比为1/9~2/3。
进一步,所述a步骤中Na2CO3溶液的Na2CO3摩尔用量为Ga(NO3)3·9H2O和 Al(NO3)3·9H2O的摩尔用量之和的1/2,溶于100mL去离子水中,作为底液。
进一步,所述b步骤中类水滑石的的焙烧温度为500℃,升温速率为3℃/min,焙烧气氛为空气,焙烧时间为5h;所述混合金属氧化物呈NiO晶相结构特征,为Ni(Ga,Al)O复合金属氧化物。
进一步,所述b步骤中的还原温度为800℃,H2流速为30 mL/min,升温速率为10℃/min,在800℃保持30 min。
应用:所述镍镓合金催化剂在催化甲烷裂解制备氢气和碳纳米管中的应用。
本发明的有益效果在于:
(1)本发明的Ni‒Ga/Al2O3合金催化剂是由Ni‒Ga‒Al 类水滑石通过焙烧和还原处理制备而得,Ni和Ga元素在制备过程中保持均匀分散,Ni‒Ga合金平均晶粒尺寸为8~10 nm,具有组成均匀和组成可调的特点。
(2)本发明的Ni‒Ga/Al2O3合金催化剂对高温甲烷裂解反应表现出良好的催化性能,添加适量Ga助剂显著提高了碳产率。Ni‒Ga/Al2O3合金催化剂在600℃反应得到直径较小、壁较薄、内部空腔直径较大的碳纳米管。与文献报道的Ni‒Cu合金催化剂相比,Ni‒Ga合金只改变碳纳米管的几何尺寸,对形貌无显著影响。
(3)本发明的Ni‒Ga/Al2O3合金催化剂在甲烷裂解反应过程中表现出良好的抗烧结能力,与Ni/Al2O3催化剂相比,添加助剂Ga大大降低了金属烧结程度;与文献报道的Ni‒Cu合金催化剂相比,Ni‒Ga合金有效抑制了金属烧结。
附图说明
图1为本发明实施例1催化剂的X射线粉末衍射谱图;
图2为本发明实施例2催化剂前驱体的X射线粉末衍射谱图;
图3为本发明实施例2催化剂前驱体经500℃焙烧后的X射线粉末衍射谱图;
图4为本发明实施例2催化剂的X射线粉末衍射谱图;
图5为本发明实施例2催化剂的扫描透射电镜X射线能谱分析结果;
图6为本发明实施例2催化剂的X射线能谱点分析谱图;
图7为本发明实施例2催化剂的X射线能谱线分析谱图;
图8为本发明实施例3催化剂的X射线粉末衍射谱图;
图9为本发明实施例4催化剂的X射线粉末衍射谱图;
图10为本发明实施例5催化剂的X射线粉末衍射谱图;
图11为对比例催化剂的X射线粉末衍射谱图;
图12为本发明实施例催化剂和对比例催化剂600℃甲烷裂解测试结果;
图13为本发明实施例2催化剂催化甲烷裂解生成碳纳米材料的透射电镜图;
图14对比例催化剂催化甲烷裂解生成碳纳米材料的透射电镜图;
图15为本发明实施例2催化剂反应不同时间后的X射线粉末衍射谱图;
图16为对比例催化剂反应不同时间后的X射线粉末衍射谱图。
具体实施方式
提供下述实施例是为了进一步理解本发明,但本发明不仅仅限于这些实施例。任何人在本人发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购得到的常规产品。
实施例1:
一种镍镓合金催化剂,具体制备步骤如下:称取20g NaOH固体,溶解于250mL去离子水中,配成2 mol/L的NaOH水溶液作为沉淀剂。称取8.3894g Ni(NO3)2·6H2O、1.3391g Ga(NO3)3·9H2O、4.0084g Al(NO3)3·9H2O溶解于100 mL去离子水,得到金属盐混合溶液。称取0.7361g Na2CO3溶于100 mL去离子水,作为底液。将金属盐混合溶液用滴液漏斗以30滴/分钟的速度滴入Na2CO3溶液,并不断搅拌。同时用蠕动泵将NaOH溶液以30滴/分钟的速度滴入溶液中,维持溶液pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,滤饼在100℃干燥12 h,得到类水滑石前驱体。将前驱体置于马弗炉中,以3℃/min升至500℃焙烧5 h,得到混合金属氧化物。将混合金属氧化物置于石英管,在30 mL/min H2气流中以10℃/min升至800℃并保持30min,然后在氮气气氛下冷却至室温,得到催化剂,记为Ni‒Ga/Al2O3 (Ga/Ni=1/9)。
采用X射线粉末衍射表征方法对上述样品进行物相分析,如图1所示,位于2θ =51.91º、60.62º、91.38º衍射峰对应于Ni‒Ga合金的(111)、(200)、(220)晶面,与对比例催化剂Ni金属的衍射峰相比往低角度移动,表明形成了合金;通过谢乐公式计算合金平均晶粒尺寸为10nm。
实施例2:
一种镍镓合金催化剂,具体制备步骤如下:称取20g NaOH固体,溶解于250mL去离子水中,配成2 mol/L的NaOH水溶液作为沉淀剂。称取7.3086g Ni(NO3)2·6H2O、2.6248g Ga(NO3)3·9H2O、3.9285g Al(NO3)3·9H2O溶解于100 mL去离子水,得到金属盐混合溶液。称取0.8880g Na2CO3,溶于100 mL去离子水,作为底液。将金属盐混合溶液用滴液漏斗以30滴/分钟的速度滴入Na2CO3溶液,并不断搅拌。同时用蠕动泵将NaOH溶液以30滴/分钟的速度滴入溶液中,维持溶液pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,滤饼在100℃干燥12 h,得到类水滑石前驱体。将前驱体置于马弗炉中,以3℃/min升至500℃焙烧5 h,得到混合金属氧化物。将混合金属氧化物置于石英管,在30 mL/min H2气流中以10℃/min升至800℃并保持30min,然后在氮气气氛下冷却至室温,得到催化剂,记为Ni‒Ga/Al2O3 (Ga/Ni = 1/4)。
采用X射线粉末衍射表征方法对上述前驱体样品进行物相分析,如图2所示,位于2θ = 13.4º、27.5º、41.1º、46.4°、55.0°、72.4°、73.8°衍射峰对应于类水滑石的(003)、(006)、(009)、(015)、(018)、(110)、(113)晶面,没有观察到其它物相,表明形成了单一晶相Ni‒Ga‒Al类水滑石。
采用X射线粉末衍射表征方法对上述焙烧样品进行物相分析,如图3所示,位于2θ= 43.3º、51.0°、75.0°衍射峰对应于NiO的(111)、(200)、(220)晶面,没有观察到Ga2O3和Al2O3物相的衍射峰;NiO的衍射峰较弥散,说明结晶度较低,可归属于形成了Ni(Ga,Al)O复合氧化物。
采用X射线粉末衍射表征方法对上述还原样品进行物相分析,如图4所示,位于2θ= 51.38º、60.06º、90.35º衍射峰对应于Ni‒Ga合金的(111)、(200)、(220)晶面,与对比例催化剂Ni金属的衍射峰相比往低角度移动,表明形成了合金;由(111)衍射峰通过谢乐公式计算合金平均晶粒尺寸为8.3nm。
用扫描透射电镜X射线能谱分析合金组成,如图5所示,1~4号合金粒子的组成分别为Ni0:Ga0 = 81:19、80:20、78:22、75:25,表明合金粒子具有相似的组成,且与催化剂的本体组成很接近,说明合金组成可调控。
1号合金粒子的X射线能谱点分析结果如图6所示,根据峰面积计算出合金组成Ni0:Ga0 = 81:19。
用X射线能谱线分析合金元素分布,如图7所示,Ni和Ga均匀分布在粒子表面和体相,说明形成了组成均匀的合金。
实施例3:
一种镍镓合金催化剂,具体制备步骤如下:称取20g NaOH固体,溶解于250mL去离子水中,配成2 mol/L的NaOH水溶液作为沉淀剂。称取6.7842g Ni(NO3)2·6H2O、3.2487g Ga(NO3)3·9H2O、3.8897g Al(NO3)3·9H2O溶解于100 mL去离子水,得到金属盐混合溶液。称取0.9616g Na2CO3,溶于100 mL去离子水,作为底液。将金属盐混合溶液用滴液漏斗以30滴/分钟的速度滴入Na2CO3溶液,并不断搅拌。同时用蠕动泵将NaOH溶液以30滴/分钟的速度滴入溶液中,维持溶液pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,滤饼在100℃干燥12 h,得到类水滑石前驱体。将前驱体置于马弗炉中,以3℃/min升至500℃焙烧5 h,得到混合金属氧化物。将混合金属氧化物置于石英管,在30 mL/min H2气流中以10℃/min升至800℃并保持30min,然后在氮气气氛下冷却至室温,得到催化剂,记为Ni‒Ga/Al2O3 (Ga/Ni = 1/3)。
采用X射线粉末衍射表征方法对上述样品进行物相分析,如图8所示,位于2θ =51.25º、59.85º、89.90º衍射峰对应于Ni‒Ga合金的(111)、(200)、(220)晶面,与对比例催化剂Ni金属的衍射峰相比往低角度移动,表明形成了合金;由(111)衍射峰通过谢乐公式计算合金平均晶粒尺寸为9.2nm。
实施例4:
一种镍镓合金催化剂,具体制备步骤如下:称取20g NaOH固体,溶解于250mL去离子水中,配成2 mol/L的NaOH水溶液作为沉淀剂。称取6.2701g Ni(NO3)2·6H2O、3.8603g Ga(NO3)3·9H2O、3.8517g Al(NO3)3·9H2O溶解于100 mL去离子水,得到金属盐混合溶液。称取1.0339g Na2CO3,溶于100 mL去离子水,作为底液。将金属盐混合溶液用滴液漏斗以30滴/分钟的速度滴入Na2CO3溶液,并不断搅拌。同时用蠕动泵将NaOH溶液以30滴/分钟的速度滴入溶液中,维持溶液pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,滤饼在100℃干燥12 h,得到类水滑石前驱体。将前驱体置于马弗炉中,以3℃/min升至500℃焙烧5 h,得到混合金属氧化物。将混合金属氧化物置于石英管,在30 mL/min H2气流中以10℃/min升至800℃并保持30min,然后在氮气气氛下冷却至室温,得到催化剂,记为Ni‒Ga/Al2O3 (Ga/Ni = 3/7)。
采用X射线粉末衍射表征方法对上述样品进行物相分析,如图9所示,位于2θ =51.17º、59.77º、89.77º衍射峰对应于Ni‒Ga合金的(111)、(200)、(220)晶面,与对比例催化剂Ni金属的衍射峰相比往低角度移动,表明形成了合金;由(111)衍射峰通过谢乐公式计算合金平均晶粒尺寸为8.8nm。
实施例5:
一种镍镓合金催化剂,具体制备步骤如下:称取20g NaOH固体,溶解于250mL去离子水中,配成2 mol/L的NaOH水溶液作为沉淀剂。称取5.2714g Ni(NO3)2·6H2O、5.0485g Ga(NO3)3·9H2O、3.7779g Al(NO3)3·9H2O溶解于100 mL去离子水,得到金属盐混合溶液。称取1.1742g Na2CO3,溶于100 mL去离子水,作为底液。将金属盐混合溶液用滴液漏斗以30滴/分钟的速度滴入Na2CO3溶液,并不断搅拌。同时用蠕动泵将NaOH溶液以30滴/分钟的速度滴入溶液中,维持溶液pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,滤饼在100℃干燥12 h,得到类水滑石前驱体。将前驱体置于马弗炉中,以3℃/min升至500℃焙烧5 h,得到混合金属氧化物。将混合金属氧化物置于石英管,在30 mL/min H2气流中以10℃/min升至800℃并保持30min,然后在氮气气氛下冷却至室温,得到催化剂,记为Ni‒Ga/Al2O3 (Ga/Ni = 2/3)。
采用X射线粉末衍射表征方法对上述样品进行物相分析,如图10所示,位于2θ =50.84º、59.40º、89.07º衍射峰对应于Ni‒Ga合金的(111)、(200)、(220)晶面,与对比例催化剂Ni金属的衍射峰相比往低角度移动,表明形成了合金;由(111)衍射峰通过谢乐公式计算合金平均晶粒尺寸为9.7nm。
对比例:
采用共沉淀法制备Ni/Al2O3催化剂,具体制备步骤如下:取20g NaOH固体,溶于250mL去离子水中,搅拌10min,配成2 mol/L的NaOH水溶液。称取9.5150g Ni(NO3)2·6H2O和4.0916g Al(NO3)3·9H2O溶于100 mL去离子水中,搅拌10 min,使硝酸盐完全溶解,得到混合溶液。称取0.5780g Na2CO3,溶于100 mL去离子水,作为底液。将混合溶液用滴液漏斗以30滴/分钟的速度滴入Na2CO3溶液,并不断搅拌。同时用蠕动泵将NaOH溶液以30滴/分钟的速度滴入溶液中,维持溶液pH = 10 ± 0.5,滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至pH = 7 ± 0.2,滤饼在100℃干燥12 h,得到类水滑石前驱体。将前驱体置于马弗炉中,以3℃/min升至500℃焙烧5 h,得到混合金属氧化物。将混合金属氧化物置于石英管,在30 mL/min H2气流中以10℃/min升至800℃并保持30min,然后在氮气气氛下冷却至室温,得到催化剂,记为Ni/Al2O3
采用X射线粉末衍射表征方法对上述样品进行物相分析,如图11所示,位于2θ =52.12º、60.99º、91.78º衍射峰对应于Ni金属的(111)、(200)、(220)晶面;由(111)衍射峰通过谢乐公式计算合金平均晶粒尺寸为10.2nm。
上述催化剂对甲烷裂解反应性能评价在水平放置石英管反应器中进行。首先将10mg催化剂在800℃用H2还原30min,之后在25 mL/min N2气流下降至600℃,通入25mL/minCH4进行反应,用GC-2014气相色谱进行采集分析,反应结果如图12所示。氢气和碳的产率列于表一。可以看到,对比例催化剂虽然有较高的初始甲烷转化率,但是很快发生失活,氢气和碳的产率仅2.3 mol/g-cat、14.0 g-C/g-cat。添加助剂Ga对Ni/Al2O3催化剂的催化活性和寿命有显著影响。其中,实施例2催化剂显示了较高的催化寿命,氢气和碳的产率分别达到了10.2 mol/g-cat、61.1 g-C/g-cat,是对比例催化剂的约4.3倍。
表一600℃甲烷裂解反应的氢气和碳产率
Figure DEST_PATH_IMAGE002
用透射电镜分析实施例2催化剂在600℃催化甲烷裂解反应后生成的碳材料的形貌,如图13所示,所生成的碳纳米材料为碳纳米管,管外径约15 nm,内径约8 nm,壁厚约3.5nm,与对比例催化剂相比,其直径较小、壁较薄、内部空腔直径较大。
用透射电镜分析对比例催化剂在600℃催化甲烷裂解反应后生成的碳材料的形貌,如图14所示,所生成的碳纳米材料为碳纳米管,管外径约22 nm,内径约5 nm,壁厚约8.5nm。
图15和图16分别是实施例2催化剂和对比例催化剂在600℃甲烷裂解反应不同时间后的X射线粉末衍射图。由X射线粉末衍射峰(200)用谢乐公式计算得到的金属平均晶粒尺寸列于表二。可以看到,经30 min反应后,Ni/Al2O3催化剂的Ni金属衍射峰变得很尖锐,Ni金属晶粒尺寸从最初的8.7 nm长大到20.2 nm,说明Ni金属发生了明显烧结。与之相比,Ni‒Ga/Al2O3催化剂经60 min反应后,Ni‒Ga合金衍射峰基本不变,平均晶粒尺寸为7.5 nm,与还原样品6.6 nm相比只略微变大,说明Ni‒Ga合金具有良好的抗烧结性能。
表二反应不同时间后的金属平均晶粒尺寸
Figure DEST_PATH_IMAGE004
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (10)

1.一种镍镓合金催化剂,其特征在于:催化剂以Al2O3为载体、Ni为活性组分、Ga为助剂、Ni‒Ga合金为活性相,(Ni+Ga)/Al摩尔比为3,Ga/Ni摩尔比为1/9~2/3。
2.根据权利要求1所述的镍镓合金催化剂的制备方法,其特征在于:首先采用共沉淀法合成Ni3‒xGaxAl类水滑石前驱体,其中x = 0.3~1.2,然后经500℃空气焙烧和800℃氢气还原处理制得Ni‒Ga/Al2O3合金催化剂。
3.根据权利要求2所述的镍镓合金催化剂的制备方法,其特征在于:具体步骤如下:
a、采用共沉淀法合成Ni3‒xGaxAl类水滑石前驱体:称取Ni(NO3)2·6H2O、Ga(NO3)3·9H2O、Al(NO3)3·9H2O用去离子水溶解得到金属盐混合溶液,在室温和搅拌下,将金属盐混合溶液逐滴加入到Na2CO3溶液中,同时将NaOH溶液滴入Na2CO3溶液中调节溶液pH = 10 ± 0.5;滴加完毕后继续搅拌1 h,然后静置24 h,过滤并用去离子水洗涤至溶液呈中性,置于烘箱100℃干燥12 h,得到Ni3‒xGaxAl类水滑石;
b、将a步骤所得类水滑石置于马弗炉,经500℃空气焙烧分解生成混合金属氧化物,再经800℃氢气还原处理,即得到Ni‒Ga/Al2O3合金催化剂。
4.根据权利要求3所述的镍镓合金催化剂的制备方法,其特征在于:所述a步骤中n(Ni2++Ga3+)/n(Al3+)摩尔比为3/1,Ga3+/Ni2+摩尔比为1/9~2/3。
5.根据权利要求3所述的镍镓合金催化剂的制备方法,其特征在于:所述a步骤中Na2CO3溶液的Na2CO3摩尔用量为Ga(NO3)3·9H2O和Al(NO3)3·9H2O的摩尔用量之和的1/2。
6.根据权利要求3所述的镍镓合金催化剂的制备方法,其特征在于:所述a步骤中NaOH溶液的浓度为2 mol/L。
7.根据权利要求3所述的镍镓合金催化剂的制备方法,其特征在于:所述a步骤中搅拌的转速为800转/分钟;金属盐混合溶液逐滴加入到Na2CO3溶液中的滴速为30滴/分钟。
8.根据权利要求3所述的镍镓合金催化剂的制备方法,其特征在于:所述b步骤中类水滑石的焙烧温度为500℃,焙烧气氛为空气,升温速率为3℃/min,在500℃保持5 h;所述混合金属氧化物呈NiO晶相结构特征,为Ni(Ga,Al)O复合金属氧化物。
9.根据权利要求3所述的镍镓合金催化剂的制备方法,其特征在于:所述b步骤的还原温度为800℃,H2流速为30 mL/min,升温速率为10 ℃/min,在800℃保持30 min。
10.根据权利要求1所述的镍镓合金催化剂的应用,其特征在于:所述镍镓合金催化剂在催化甲烷裂解制备氢气和碳纳米管中的应用。
CN202110124161.1A 2021-01-29 2021-01-29 一种镍镓合金催化剂及其制备方法和应用 Pending CN112705208A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110124161.1A CN112705208A (zh) 2021-01-29 2021-01-29 一种镍镓合金催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110124161.1A CN112705208A (zh) 2021-01-29 2021-01-29 一种镍镓合金催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112705208A true CN112705208A (zh) 2021-04-27

Family

ID=75549803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110124161.1A Pending CN112705208A (zh) 2021-01-29 2021-01-29 一种镍镓合金催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112705208A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101455964A (zh) * 2008-12-18 2009-06-17 浙江工业大学 一种镍基金属负载型催化剂的制备方法
CN106732619A (zh) * 2016-11-23 2017-05-31 北京化工大学 一种合成CoGa合金高指数晶面的方法
US20190055173A1 (en) * 2017-08-21 2019-02-21 Palo Alto Research Center Incorporated System and method for pyrolysis using a liquid metal catalyst
CN111185179A (zh) * 2020-03-04 2020-05-22 福州大学 一种甲烷裂解催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101455964A (zh) * 2008-12-18 2009-06-17 浙江工业大学 一种镍基金属负载型催化剂的制备方法
CN106732619A (zh) * 2016-11-23 2017-05-31 北京化工大学 一种合成CoGa合金高指数晶面的方法
US20190055173A1 (en) * 2017-08-21 2019-02-21 Palo Alto Research Center Incorporated System and method for pyrolysis using a liquid metal catalyst
CN111185179A (zh) * 2020-03-04 2020-05-22 福州大学 一种甲烷裂解催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. CHESTER UPHAM ET AL: "Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon", 《SCIENCE》 *
LEI WANG ET AL: "Selective hydrogenation of acetylene on SiO2 -supported Ni-Ga alloy and intermetallic compound", 《JOURNAL OF ENERGY CHEMISTRY》 *
NING ZHAO ET AL: "Remarkably reducing carbon loss and H2 consumption on Ni-Ga intermetallic compounds in deoxygenation of methyl esters to hydrocarbons", 《JOURNAL OF ENERGY CHEMISTRY》 *
YANG HE ET AL: "The Origin of the Special Surface and Catalytic Chemistry of Ga-Rich Ni3Ga in the Direct Dehydrogenation of Ethane", 《ACS CATAL.》 *

Similar Documents

Publication Publication Date Title
Jana et al. Cobalt based catalysts prepared by Pechini method for CO2-free hydrogen production by methane decomposition
JP7427797B2 (ja) 六方晶構造の支持体に触媒金属が担持された触媒およびその製造方法
Dou et al. Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoOx@ NPC as high-efficiency catalyst for NaBH4 hydrolysis
US20150224479A1 (en) Method for preparing metal catalyst for preparing carbon nanotubes and method for preparing carbon nanotubes using the same
CN111167495B (zh) 一种氨硼烷制氢用催化剂Ni2-xFex@CN-G及其制备方法
Foo et al. Synthesis and characterization of NiO and Ni nanoparticles using nanocrystalline cellulose (NCC) as a template
CN109126844B (zh) 一种碳化钼纳米片及其制备方法和应用
WO2021135252A1 (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
CN111185179A (zh) 一种甲烷裂解催化剂及其制备方法
CN111167440A (zh) 一种氨硼烷水解析氢用催化剂及其制备方法
CN113522288A (zh) 用于催化氨硼烷水解制氢的催化剂及其制备方法和应用
Zakaria et al. Cyanide bridged coordination polymer nanoflakes thermally derived Ni 3 C and fcc-Ni nanoparticles for electrocatalysts
Ashik et al. Nanonickel catalyst reinforced with silicate for methane decomposition to produce hydrogen and nanocarbon: synthesis by co-precipitation cum modified Stöber method
Cai et al. One-pot microwave-assisted synthesis of Cu-Ce0. 8Zr0. 2O2 with flower-like morphology: Enhanced stability for ethanol dry reforming
CN114602474A (zh) 层状硅酸镍催化剂的制备方法
CN114100661A (zh) 一种钼基氨分解制氢催化剂及制备方法
US20050065024A1 (en) Catalyst for the generation of CO-free hydrogen from methane
CN112705208A (zh) 一种镍镓合金催化剂及其制备方法和应用
Li et al. CoNi alloy catalyst supported on Zr-modified Y2O3 for ammonia decomposition to COx-free hydrogen
Cao et al. Development and regeneration performance of LaNiO3 perovskite oxides for dry reforming of methane
US8716171B2 (en) Method of manufacturing a porous gallium (III) oxide photocatalyst for preparation of hydrocarbons
JP4639798B2 (ja) 気相成長法炭素繊維製造用触媒および炭素繊維の製造方法
Zhang et al. Hydrogen production from complete dehydrogenation of hydrazine borane on carbon-doped TiO 2-supported NiCr catalysts
JP2004324004A (ja) カーボン繊維及びその製造方法
JP2009062230A (ja) 気相成長炭素繊維の製造方法および気相成長炭素繊維

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210427

RJ01 Rejection of invention patent application after publication