CN112059172B - 一种对微米级颗粒进行SiO2包覆的方法 - Google Patents

一种对微米级颗粒进行SiO2包覆的方法 Download PDF

Info

Publication number
CN112059172B
CN112059172B CN202010972493.0A CN202010972493A CN112059172B CN 112059172 B CN112059172 B CN 112059172B CN 202010972493 A CN202010972493 A CN 202010972493A CN 112059172 B CN112059172 B CN 112059172B
Authority
CN
China
Prior art keywords
micron
sio
water
coating
sized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010972493.0A
Other languages
English (en)
Other versions
CN112059172A (zh
Inventor
刘宗健
梁金鑫
田友文
罗伟
唐浩东
张歌珊
郑遗凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202010972493.0A priority Critical patent/CN112059172B/zh
Publication of CN112059172A publication Critical patent/CN112059172A/zh
Application granted granted Critical
Publication of CN112059172B publication Critical patent/CN112059172B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种对微米级颗粒进行SiO2包覆的方法,该方法是界面限制的溶胶‑凝胶法,具体为先将水溶性高粘度醇、水、表面活性剂、水解缩合催化剂依次加入到微米级粉体中,充分搅拌使微米级颗粒表面覆盖一层含水液膜,然后在超声波作用下,将上述含水液膜覆盖的微米级颗粒分散于油相中,最后在超声条件下,向油相中加入正硅酸乙酯,在油‑含水液膜的界面上进行水解、缩合反应,反应结束后,离心分离、焙烧得到SiO2包覆的微米级颗粒。本发明与传统的溶胶‑凝胶法相比,能大大提高微米级颗粒的SiO2包覆率与厚度,缩短包覆时间,在大尺寸的微米级颗粒的SiO2包覆上有很好的效果。

Description

一种对微米级颗粒进行SiO2包覆的方法
技术领域
本发明属于核壳结构材料的制备技术领域,特别涉及一种对微米级颗粒进行SiO2包覆的方法。
背景技术
核壳结构材料因其独特的结构在光、电、磁、催化等许多领域表现出优异的性能。SiO2作为核壳结构材料中的壳,具有化学稳定性好、光学透明性好、能与生物相容以及容易在壳层接枝上各种官能团等优点。因此,SiO2包覆材料,尤其SiO2包覆的纳米材料在近十几年备受人们关注。在这种核壳结构材料的制备领域,人们已经开发出许多包覆方法如Stŏber 法即溶胶-凝胶法(C. Graf, D.L. J. Vossen , et al.,Langmuir 2003, 19, 6693-6700)、反相微乳液法(S.Y. Chang, L. Liu, et al.,J. Am. Chem. Soc., 1994,116,6739–6744,Y. Han, J. Jiang, et al.,Langmuir 2008, 24, 5842-5848)以及自组装法(J.J. Yuan, S.X. Zhou, et al.,Chem Mater, 2005, 17, 3587–3594)等,这些方法均能非常有效地对纳米粒子进行SiO2包覆。
相较于SiO2包覆的纳米材料,人们对SiO2包覆的微米级粉体的关注度要大大减少。相应地,对微米级颗粒的SiO2包覆方法也研究较少,目前主要是基于Stŏber 法即传统的溶胶-凝胶法。如Wang and Harrison采用明胶存在下的Stŏber 法包覆1微米左右的Fe颗粒(G.H. Wang, A. Harrison,Journal of Colloid and Interface Science 1999, 217,203–207)。中国专利(申请号201310122112.X)公开了一种以硅溶胶为硅源的方法包覆2微米以下的二氧化钛粉体。专利(申请号CN201510308321.2)也公开了一种以溶胶-凝胶法包覆1-20微米六方氮化硼的方法。最近,中国专利(申请号201811493564.8)还介绍了一种以丙酮为溶剂的溶胶-凝胶法用于包覆金属镁微球。由于微米级颗粒的尺寸大于纳米粒子,在包覆实验中它们在介质中很容易沉降,特别是对密度大的金属粉体。因此,采用上述传统的溶胶-凝胶法包覆微米颗粒时,除了需要较长的包覆时间外(正硅酸乙酯水解缩合一般需要12h及以上),常常还存在如下问题:(1)包覆层不完整且厚度薄;(2)颗粒包覆率不高,样品中存在许多游离的SiO2,这些问题严重影响着这些核壳结构材料的使用,比如当它们用作相变材料时,常常会导致内核材料泄漏,影响使用效果。
发明内容
针对现有溶胶-凝胶法制备技术中存在的上述问题,本发明的目的在于提供一种对微米级颗粒进行SiO2包覆的方法。
所述的一种对微米级颗粒进行SiO2包覆的方法,其特征在于该方法是界面限制的溶胶-凝胶法。
所述的一种对微米级颗粒进行SiO2包覆的方法,其特征在于包括以下步骤:
1)将水溶性高粘度醇、水、表面活性剂和水解缩合催化剂按一定比例依次加入到微米级粉体中,充分搅拌使微米级粉体中的每个微米级颗粒表面覆盖一层含水液膜;
2)在超声波作用下,将通过步骤1)制备得到的含水液膜覆盖的微米级颗粒分散于油相中;
3)在超声波作用下,向步骤2)中的油相中加入正硅酸乙酯,在油-含水液膜的界面上进行水解、缩合反应,反应结束后,离心分离、焙烧得到SiO2包覆的微米级颗粒。
所述的一种对微米级颗粒进行SiO2包覆的方法,其特征在于,步骤1)中的水溶性高粘度醇为丙三醇;水解缩合催化剂为氟化铵;表面活性剂为能溶于丙三醇的表面活性剂。
所述的一种对微米级颗粒进行SiO2包覆的方法,其特征在于,步骤2)中的油相,是指室温下难以溶于水的液态有机物。
所述的一种对微米级颗粒进行SiO2包覆的方法,法,其特征在于步骤1)中的水溶性高粘度醇与水的体积比为3-5:1;水与微米级粉体的体积比为1.2-1.5:1;水溶性高粘度醇与表面活性剂的体积比为160-200:1。
所述的一种对微米级颗粒进行SiO2包覆的方法,其特征在于步骤2)中的油相与步骤1)中加入的水溶性高粘度醇的体积比为20-32:1。
所述的一种对微米级颗粒进行SiO2包覆的方法,法,其特征在于,步骤1)中的水解缩合催化剂与步骤3)中加入的正硅酸乙酯的摩尔比为0.006-0.015:1,步骤1)中的水与步骤3)中加入的正硅酸乙酯的摩尔比为2.0-2.5:1。
本发明通过采用上述技术,与现有技术相比,具有如下优点:
1)本发明通过采用高粘度的丙三醇代替传统溶胶-凝胶法中的乙醇、甲醇、丙酮等低粘度的有机溶剂,能使醇粘附在微米级颗粒上,通过控制醇与水的量,使水解缩合反应限制于水-油界面上,可以大大减少游离SiO2的存在,提高SiO2包覆率与包覆层厚度;
2)本发明通过采用氟化铵代替传统溶胶-凝胶法中的氨水作为正硅酸乙酯的水解缩合催化剂,以及采用超声波技术,可以大大缩短正硅酸乙酯水解缩合所需要的时间。
附图说明
图1为实施例1中锡微米级颗粒的扫描电镜像(a)以及透射电镜像(b);
图2为实施例1中制备的 SiO2包覆的锡微米级颗粒的扫描电镜像(a)以及透射电镜像(b);
图3为对比实施例1中制备的 SiO2包覆的锡微米级颗粒的透射电镜像;
图4为对比实施例2中制备的SiO2包覆的锡微米级颗粒的透射电镜像。
具体实施方式
以下结合说明书附图和实施例对本发明作进一步的描述,但本发明的保护范围并不仅限于此。
实施例1
将1g Sn微米级粉体(颗粒粒径为1-20mm,其SEM像和TEM像分别见图1a和图1b)置于容器中,室温下依次加入0.8ml丙三醇、0.2ml H2O、0.005g span-80以及0.002g氟化铵,手动搅拌使锡粉与醇、水以及表面活性剂混合均匀且氟化铵完全溶解,然后向混合物中加入25ml环己烷,超声波(功率为240W)超声5min使混合物分散于环己烷中,继续超声15min,期间同时滴加1.15mL正硅酸乙酯,超声停止后,机械搅拌(速率为800rpm)1h,搅拌结束后,将混合物进行离心分离(转速5000 rpm),最后在氮气保护下将分离得到的下层物质以200℃焙烧3h得到产物,其SEM像和TEM像分别见图2a和图2b,其SiO2包覆层的平均厚度约为450nm。
对比实施例1
将1g Sn微米级粉体(颗粒粒径为1-20mm)与20ml乙醇、9ml水以及0.5ml浓氨水混合,在室温下搅拌(搅拌速率为800rpm)1h后,往上述混合物中滴加(1滴/分钟)1.15 mL正硅酸乙酯,滴加完毕后,继续搅拌20h(搅拌速率为800rpm),搅拌结束后,离心分离(转速5000rpm),最后在氮气保护下将分离得到的下层物质以200℃焙烧3h得到产物,其TEM像见图3。
显然,与实例1中界面限制的溶胶-凝胶法相比,对比实施例1采用传统溶胶-凝胶法所得到的SiO2包覆层薄且不均一。
对比实施例2
将1g Sn微米级粉体(颗粒粒径为1-20mm)置于容器中,室温下依次加入0.8ml乙醇、0.2ml H2O、0.005g span-80以及0.002g氟化铵,手动搅拌使锡粉与醇、水以及表面活性剂混合均匀且氟化铵完全溶解,然后往上述混合物中加入25ml环己烷,超声波超声(功率为240W)5min使混合物分散于环己烷中,继续超声15min,期间同时滴加1.15mL正硅酸乙酯,超声停止后,机械搅拌(速率为800rpm)1h,搅拌结束后,离心分离(转速5000 rpm),最后在氮气保护下将分离得到的下层物质以200℃焙烧3h得到产物,其TEM像见图4。
与实例1对比可知,用低粘度的乙醇代替高粘度的丙三醇导致大量游离SiO2的存在,有些锡微粒表面SiO2层很薄,甚至没有SiO2层。
实施例2
将0.5g Sn微米级粉体(颗粒粒径1-20mm)置于容器中,依次加入0.4ml丙三醇、0.1ml H2O、0.002g span-80以及0.001g氟化铵,手动搅拌使锡粉与醇、水以及表面活性剂混合均匀且氟化铵完全溶解,然后往上述混合物中加入8ml环己烷,超声波超声(功率为240W)5min使混合物分散于环己烷中,继续超声15min,期间同时滴加0.58mL正硅酸乙酯。超声停止后,机械搅拌(速率为800rpm)1h,搅拌结束后,离心分离(转速5000 rpm),最后在氮气保护下将分离得到的下层物质以200℃焙烧3h得到产物,其SiO2包覆层的平均厚度约为400nm。
实施例3
将0.2g Sn0.99Cu0.01微米级粉体(颗粒粒径为1-20mm)置于容器中,依次加入0.2ml丙三醇、0.04ml H2O、0.001g span-80以及0.0004g氟化铵,手动搅拌使锡粉与醇、水以及表面活性剂混合均匀且氟化铵完全溶解,然后往上述混合物中加入5ml环己烷,超声波超声(功率为240W)5min使混合物分散于环己烷中,继续超声15min,期间同时滴加0.23mL正硅酸乙酯,超声停止后,机械搅拌(速率为800rpm)1h,搅拌结束后,离心分离(转速5000 rpm),最后在氮气保护下将分离得到的下层物质以200℃焙烧3h得到产物,其SiO2包覆层的平均厚度约为400 nm。
实施例4
将1g Sn微米粉(颗粒粒径为1-20mm)体置于容器中,室温下依次加入1.0ml丙三醇、0.2ml H2O、0.005g span-80以及0.0015g氟化铵,手动搅拌使锡粉与醇、水以及表面活性剂混合均匀且氟化铵完全溶解,然后往上述混合物中加入25ml环己烷,超声波超声(功率为240W)5min使混合物分散于环己烷中,继续超声15min,期间同时滴加1.15mL正硅酸乙酯,超声停止后,继续机械搅拌(速率为800rpm)1h,搅拌结束后,离心分离(转速5000 rpm),最后在氮气保护下将分离得到的下层物质以200℃焙烧3h得到产物,其SiO2包覆层的平均厚度约为350nm。
实施例5
将1g Sn微米粉(颗粒粒径为1-20mm)体置于容器中,室温下依次加入0.8ml丙三醇、0.2ml H2O、0.005g span-80以及0.003g氟化铵,手动搅拌使锡粉与醇、水以及表面活性剂混合均匀且氟化铵完全溶解。然后往上述混合物中加入20ml环己烷,超声波超声(功率为240W)5min使混合物分散于环己烷中,继续超声15min,期间同时滴加1.0mL正硅酸乙酯,超声停止后,继续机械搅拌(速率为800rpm)1h,搅拌结束后,离心分离(转速5000 rpm),最后在氮气保护下将分离得到下层物质以200℃焙烧3h得到产物,其SiO2包覆层的平均厚度约为200nm。
实施例6
将1g Sn微米级粉体(颗粒粒径为1-20mm)置于容器中,室温下依次加入0.6ml丙三醇、0.2ml H2O、0.004g span-80以及0.002g氟化铵,手动搅拌使锡粉与醇、水以及表面活性剂混合均匀且氟化铵完全溶解,然后向混合物中加入18ml环己烷,超声波(功率为240W)超声5min使混合物分散于环己烷中,继续超声15min,期间同时滴加1.15mL正硅酸乙酯,超声停止后,机械搅拌(速率为800rpm)1h,搅拌结束后,将混合物进行离心分离(转速5000rpm),最后在氮气保护下将分离得到的下层物质以200℃焙烧3h得到产物,其SiO2包覆层的平均厚度约为400nm。
实施例7
将1g Sn微米级粉体(颗粒粒径为1-20mm)置于容器中,室温下依次加入0.8ml丙三醇、0.16ml H2O、0.005g span-80以及0.002g氟化铵,手动搅拌使锡粉与醇、水以及表面活性剂混合均匀且氟化铵完全溶解,然后向混合物中加入20ml环己烷,超声波(功率为240W)超声5min使混合物分散于环己烷中,继续超声15min,期间同时滴加0.80mL正硅酸乙酯,超声停止后,机械搅拌(速率为800rpm)1h,搅拌结束后,将混合物进行离心分离(转速5000rpm),最后在氮气保护下将分离得到的下层物质以200℃焙烧3h得到产物,其SiO2包覆层的平均厚度约为350nm。

Claims (4)

1.一种对微米级颗粒进行SiO2包覆的方法,其特征在于该方法是界面限制的溶胶-凝胶法,包括以下步骤:
1)将水溶性高粘度醇、水、表面活性剂和水解缩合催化剂按一定比例依次加入到微米级粉体中,充分搅拌使微米级粉体中的每个微米级颗粒表面覆盖一层含水液膜;
2)在超声波作用下,将通过步骤1)制备得到的含水液膜覆盖的微米级颗粒分散于油相中;
3)在超声波作用下,向步骤2)中的油相中加入正硅酸乙酯,在油-含水液膜的界面上进行水解、缩合反应,反应结束后,离心分离、焙烧得到SiO2包覆的微米级颗粒;
步骤1)中的水溶性高粘度醇为丙三醇;水解缩合催化剂为氟化铵;表面活性剂为能溶于丙三醇的表面活性剂。
2.根据权利要求1所述的一种对微米级颗粒进行SiO2包覆的方法,法,其特征在于步骤1)中的水溶性高粘度醇与水的体积比为3-5:1;水与微米级粉体的体积比为1.2-1.5:1;水溶性高粘度醇与表面活性剂的体积比为160-200:1。
3.根据权利要求1所述的一种对微米级颗粒进行SiO2包覆的方法,其特征在于步骤2)中的油相与步骤1)中加入的水溶性高粘度醇的体积比为20-32:1。
4.根据权利要求1所述的一种对微米级颗粒进行SiO2包覆的方法,法,其特征在于,步骤1)中的水解缩合催化剂与步骤3)中加入的正硅酸乙酯的摩尔比为0.006-0.015:1,步骤1)中的水与步骤3)中加入的正硅酸乙酯的摩尔比为2.0-2.3:1。
CN202010972493.0A 2020-09-16 2020-09-16 一种对微米级颗粒进行SiO2包覆的方法 Active CN112059172B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010972493.0A CN112059172B (zh) 2020-09-16 2020-09-16 一种对微米级颗粒进行SiO2包覆的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010972493.0A CN112059172B (zh) 2020-09-16 2020-09-16 一种对微米级颗粒进行SiO2包覆的方法

Publications (2)

Publication Number Publication Date
CN112059172A CN112059172A (zh) 2020-12-11
CN112059172B true CN112059172B (zh) 2022-06-17

Family

ID=73696873

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010972493.0A Active CN112059172B (zh) 2020-09-16 2020-09-16 一种对微米级颗粒进行SiO2包覆的方法

Country Status (1)

Country Link
CN (1) CN112059172B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101637434B (zh) * 2009-08-27 2012-09-05 天津大学 核壳型CaCO3/SiO2牙膏磨擦剂的制备方法
DE102010050644A1 (de) * 2010-11-09 2012-05-10 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von mit Kohlenstoff geschützten superparamagnetischen oder magnetischen Nanosphären
CN103012828A (zh) * 2013-01-21 2013-04-03 苏州知益微球科技有限公司 一种聚合物氧化铁微球的制备方法
CN105858725A (zh) * 2016-04-14 2016-08-17 上海大学 一种醇水溶液法制备二氧化硅包覆二氧化钒纳米粒子方法

Also Published As

Publication number Publication date
CN112059172A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
CN102430375B (zh) 二氧化硅-银纳米复合微球的制备方法
CN102604102B (zh) 一种聚倍半硅氧烷空心微球的制备方法
CN105149612A (zh) 一种SiO2包覆Au@Ag核壳纳米棒的方法
CN104448168B (zh) 一种有机无机杂化中空微球的制备方法及其产物和应用
CN108384284B (zh) 一种超疏水无机材料粉体及其制备方法
CN111620342B (zh) 一种小尺寸单分散中空二氧化硅微球及其制备方法和应用
CN109985584B (zh) 一种可调控的草莓状二氧化硅-有机杂化复合微球的制备方法
CN101225249B (zh) 一种亲油性纳米SiO2粉体的制备方法
CN108793226B (zh) 一种超重力技术制备透明氧化锌液相分散体的方法
CN104874789A (zh) 一种超薄壳层Au@SiO2纳米复合材料的可控制备方法
CN114177893B (zh) 磁性微球、制备方法及应用
CN103788385B (zh) 一种使用喷雾干燥法制备水凝胶光子晶体颗粒的方法
CN106430222B (zh) 一种纳米二氧化硅微球及其制备方法
JP2021075431A (ja) 親水性と疎水性の双極性複合コアシェルエアロゲル粉末の連続的な製造方法
JP6283847B2 (ja) コア・シェル複合粒子の製造方法
JP2007084396A (ja) 多孔質シリカ系粒子の製造方法および該方法から得られる多孔質シリカ系粒子
CN1200006C (zh) 窄分散无机/聚合物核壳纳米微球的合成方法
CN112059172B (zh) 一种对微米级颗粒进行SiO2包覆的方法
JP2006176343A (ja) 多孔質シリカ系粒子の製造方法および該方法から得られる多孔質シリカ系粒子
CN109455730B (zh) 一种球形二氧化硅纳米颗粒的制备方法
CN114656935A (zh) 一种液态金属相变微胶囊及其制备方法
CN107998997B (zh) 一种类树莓状微球、超疏水涂层及其制备方法
CN108822302B (zh) 一种Janus纳米颗粒及其制备方法与应用
CN110240117B (zh) 超薄透明纳米/微米结构自组装薄膜及其绿色制备方法
Morita et al. Hetero-assembly of colloidal particles in concentrated non-aqueous suspensions by polymer dispersant design

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant