CN112055714B - 二甲基氧膦类化合物 - Google Patents

二甲基氧膦类化合物 Download PDF

Info

Publication number
CN112055714B
CN112055714B CN201980026432.0A CN201980026432A CN112055714B CN 112055714 B CN112055714 B CN 112055714B CN 201980026432 A CN201980026432 A CN 201980026432A CN 112055714 B CN112055714 B CN 112055714B
Authority
CN
China
Prior art keywords
reaction
added
calculated value
400mhz
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980026432.0A
Other languages
English (en)
Other versions
CN112055714A (zh
Inventor
吴凌云
魏霞蔚
张鹏
陈兆国
王才林
赵乐乐
黎健
陈曙辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Inoqini Technology Co ltd
Original Assignee
Guizhou Inoqini Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Inoqini Technology Co ltd filed Critical Guizhou Inoqini Technology Co ltd
Publication of CN112055714A publication Critical patent/CN112055714A/zh
Application granted granted Critical
Publication of CN112055714B publication Critical patent/CN112055714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5325Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65583Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system each of the hetero rings containing nitrogen as ring hetero atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一系列二甲膦氧类化合物在制备LRRK2激酶活性抑制剂相关药物中的应用,具体公开了式(I)所示化合物或其药学上可接受的盐在制备LRRK2激酶活性抑制剂相关药物中的应用。
Figure DDA0002757351250000011

Description

二甲基氧膦类化合物
本申请主张如下优先权:
CN201810360120.0,申请日2018年4月20日。
技术领域
本发明涉及一系列二甲膦氧类化合物在制备LRRK2激酶活性抑制剂相关药物中的应用,具体涉及式(I)所示化合物或其药学上可接受的盐在制备LRRK2激酶活性抑制剂相关药物中的应用。
背景技术
LRRK2激酶的突变及过表达越来越多地被证明是诱发神经退行性疾病的根本因素,以黑质区中多巴胺能神经元的选择性变性和细胞死亡为主要特征。影响着1%的65岁以上的人群,其中遗传性患者占发病人群的5-10%。该疾病的早期,最明显的症状表现为摇动,活动缓慢和行走困难。后期还会出现认知和行为问题,晚期通常会出现痴呆。
越来越多的证据显示富含亮氨酸重复序列的激酶2(LRRK2)突变与神经退行性疾病有不可分割的联系,LRRK2是一种在催化磷酸化和GTP-GDP水解中涉及的2527氨基酸蛋白。人类LRRK2mRNA的NCBI参与序列是NM_198578.2。证据显示,LRRK2在丝氨酸-129处磷酸化a-突触核蛋白,并且这一磷酸化形式构成路易体的重要部分。另外,已经显示LRRK2的功能结构域中的单核苷酸多肽性引起常见性且散发性神经退行性疾病。目前为止,研究人员已经在患有迟发型神经退行性疾病的家族中识别了超过20个LRRK2突变。例如G2019S突变与常染色体显性共分离,并且其在欧洲导致约6%的家庭性病例和3%散发性病例。G2019S突变发生在高度保守的激酶结构域,因此G2019S突变可能对激酶活性有影响。此外,在另一残基R1441上的氨基酸取代也与神经退行性疾病有关,并且显示提高了LRRK2激酶的活性。在转基因小鼠模型中的突变体LRRK2蛋白R1441G的过度表达与多巴胺释放减少有关,显示LRRK2抑制剂也能积极地调节多巴胺的释放并且在治疗以及多巴胺释放减少有关,显示LRRK2抑制剂也能积极地调节多巴胺的释放并且在治疗以降低的多巴胺水平为特征的疾病中具有潜在效用。相关的数据进一步显示了LRRK2激酶活性抑制剂也可用于治疗相关的神经变性疾病。
因此,开发有效的LRRK2激酶以及突变的LRRK2激酶的抑制剂成为目前治疗神经退行性疾病的一条重要的途径。本发明旨在发明一种可以高度对LRRK2激酶抑制的化合物,从而进一步发明可以很好的治疗神经退行性疾病的药物。
ACS Med.Chem.Lett.2015,6,584-589公开了化合物JH-II-127,属于LRRK2激酶抑制剂,其结构式如下所示:
Figure GPA0000295128410000021
J.Med.Chem.2012,55,9416-9433也公开了化合物GNE-7915,属于LRRK2激酶抑制剂,其结构式如下所示:
Figure GPA0000295128410000031
发明内容
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure GPA0000295128410000032
其中,
R1选自卤素、OH、NH2和C1-6烷基,其中C1-6烷基任选被1、2或3个Ra取代;
W选自N,V选自C(R3);
或者,W选自C(R3),V选自N;
R2选自H,R3选自
Figure GPA0000295128410000033
或者,R2选自
Figure GPA0000295128410000034
R3选自H;
T1选自N和CH;
T2选自-O-、-CH2-和-CH2CH2-,其中-CH2-任选被1或2个Rb取代,-CH2CH2-任选被1、2或3个Rb取代;
D1、D2分别独立地选自单键、-CH2-和-CH2CH2-,其中-CH2-任选被1或2个Rc取代,-CH2CH2-任选被1、2或3个Rc取代,且D1和D2不同时选自单键;
D3、D4分别独立地选自单键、-O-、-CH2-和-CH2CH2-,其中-CH2-任选被1或2个Rd取代,-CH2CH2-任选被1、2或3个Rd取代,且D3和D4不同时选自单键;
Ra分别独立地选自F、Cl、Br、I、OH和NH2
Rb分别独立地选自F、Cl、Br、I、OH和NH2
Rc分别独立地选自F、Cl、Br、I、OH和NH2
Rd分别独立地选自F、Cl、Br、I、OH、NH2、C1-6烷基和C1-6杂烷基,其中,C1-6烷基和C1-6杂烷基任选被1、2或3个R取代;
R分别独立地选自F、Cl、Br、I、OH和NH2
所述C1-6杂烷基包含1、2或3个独立选自-O-、-S-和-NH-的杂原子和杂原子团。
本发明的一些方案中,上述R1选自F、Cl、Br、I、OH、NH2和C1-3烷基,其中C1-3烷基任选被1、2或3个Ra取代,其它变量如本发明所定义。
本发明的一些方案中,上述R1选自F、Cl、Br、I、OH、NH2和CF3,其它变量如本发明所定义。
本发明的一些方案中,上述D1、D2分别独立地选自单键、-CH2-和-CH2CH2-,且D1和D2不同时选自单键,其它变量如本发明所定义。
本发明的一些方案中,上述Rd分别独立地选自F、Cl、Br、I、OH、NH2、C1-3烷基和C1-3烷氧基,其中,C1-3烷基和C1-3烷氧基任选被1、2或3个R取代,其它变量如本发明所定义。
本发明的一些方案中,上述Rd分别独立地选自F、Cl、Br、I、OH、NH2、C1-3烷基和C1-3烷氧基,其它变量如本发明所定义。
本发明的一些方案中,上述Rd分别独立地选自F、Cl、Br、I、OH、NH2、Me、CF3
Figure GPA0000295128410000041
其它变量如本发明所定义。
本发明的一些方案中,上述D3、D4分别独立地选自单键、-O-、-CH2-、-CF2-、-CH2CF2-和
Figure GPA0000295128410000042
且D3和D4不同时选自单键,其它变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure GPA0000295128410000043
选自
Figure GPA0000295128410000044
Figure GPA0000295128410000045
其它变量如本发明所定义。
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自
Figure GPA0000295128410000051
其中,
R1、T1、T2、D1、D2、D3和D4如上述所定义。
本发明还有一些方案是由上述变量任意组合而来。
本发明还提供了下式化合物或其药学上可接受的盐,
Figure GPA0000295128410000052
Figure GPA0000295128410000061
本发明还提供了上述化合物或其药学上可接受的盐在制备与LRRK2激酶抑制相关药物中的应用。技术效果
本发明化合物对LRRK2具有显著的激酶抑制和细胞活性以及透膜性和溶解性,同时具有优良的药代动力学和药效动力学性质。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚(3H),碘-125(125I)或C-14(14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
除非另有规定,术语“C1-6烷基烷基”用于表示含有1、2、3、4、5或6个碳原子的直链或支链的饱和的碳氢基团。在一些实施方案中,所述C1-6烷基包括C1-6烷基,C1-5烷基,C1-4烷基,C1-3烷基,甲基(Me),乙基(Et),丙基(包括n-丙基和异丙基),丁基(包括n-丁基,异丁基,s-丁基和t-丁基),戊基(包括n-戊基,异戊基和新戊基)、己基等。其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。
除非另有规定,术语“C1-3烷基烷基”用于表示含有1、2或3个碳原子的直链或支链的饱和的碳氢基团。在一些实施方案中,所述C1-3烷基包括C1-3烷基,甲基(Me),乙基(Et),丙基(包括n-丙基和异丙基),等。其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。
除非另有规定,术语“C1-6杂烷基”表示由1、2、3、4、5或6个碳原子和至少一个杂原子或杂原子团组成的,稳定的直链或支链的烷基原子团或其组合物。在一些实施方案中,所述C1-6杂烷基包括C1-6杂烷基,C1-5杂烷基,C1-4杂烷基,C1-3杂烷基,-OCH3,-OCH2CH3,-OCH2CH2CH3,-OCH2(CH3)2,-CH2-CH2-O-CH3,-NHCH3,-N(CH3)2,-NHCH2CH3,-N(CH3)(CH2CH3),-CH2-CH2-NH-CH3,-CH2-CH2-N(CH3)-CH3,-SCH3,-SCH2CH3,-SCH2CH2CH3,-SCH2(CH3)2和-CH2-S-CH2-CH3等。杂原子或杂原子团可以位于杂烷基的任何内部位置,包括该烷基与分子其余部分的连接位置。至多两个杂原子可以是连续的,例如-CH2-NH-OCH3
除非另有规定,术语“C1-3杂烷基”表示由1、2或3个碳原子和至少一个杂原子或杂原子团组成的,稳定的直链或支链的烷基原子团或其组合物。在一些实施方案中,所述C1-3杂烷基包括C1-3杂烷基,-OCH3,-OCH2CH3,-OCH2CH2CH3,-OCH2(CH3)2,-CH2-CH2-O-CH3,-NHCH3,-N(CH3)2,-NHCH2CH3,-N(CH3)(CH2CH3),-CH2-CH2-NH-CH3,-CH2-CH2-N(CH3)-CH3,-SCH3,-SCH2CH3,-SCH2CH2CH3,-SCH2(CH3)2和-CH2-S-CH2-CH3等。杂原子或杂原子团可以位于杂烷基的任何内部位置,包括该烷基与分子其余部分的连接位置。至多两个杂原子可以是连续的,例如-CH2-NH-OCH3
术语“C1-6烷氧基”属于惯用表达,是指通过一个氧原子连接到分子的其余部分的C1-6烷基基团,包括C1、C2、C3、C4、C5和C6的烷氧基。在一些实施方案中,C1-6烷氧基包括但不限于:C1-6烷氧基、C1-5烷氧基、C1-4烷氧基、C1-3烷氧基、甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基和S-戊氧基等。
术语“C1-3烷氧基”属于惯用表达,是指通过一个氧原子连接到分子的其余部分的C1-3烷基基团,包括C1、C2和C3的烷氧基。在一些实施方案中,C1-6烷氧基包括但不限于:C1-3烷氧基、甲氧基、乙氧基、正丙氧基、异丙氧基等。
除非另有规定,Cn-n+m或Cn-Cn+m包括n至n+m个碳的任何一种具体情况,例如C1-6包括C1、C2、C3、C4、C5和C6,也包括n至n+m中的任何一个范围,例如C1-6包括C1-3、C1-4、C1-5、C2-6、C2-5、C2-4等;
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:CDCl3代表氘代氯仿,CD3OD代表氘代甲醇,DMSO-d6代表氘代二甲亚砜
化合物依据本领域常规命名原则或者使用
Figure GPA0000295128410000081
软件命名,市售化合物采用供应商目录名称。
附图说明
附图1为脑组织免疫印迹实验(Western Blot)结果。
附图2为外周血单核细胞(PBMC)的免疫印迹实验(Western Blot)结果。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。
实施例1
Figure GPA0000295128410000091
第一步
0摄氏度条件下,向甲基溴化镁(3.0M四氢呋喃溶液,160.00mL,480mmol)的四氢呋喃溶液(300mL)中缓慢滴加1a(20.00g,144.82mmol,18.69mL),控制内温低于10摄氏度。缓慢升温至室温搅拌5小时。反应结束,将反应液置于冰浴中依次加入饱和碳酸氢钠溶液40mL和乙醇160mL,有大量白色固体析出,过滤除去白色固体,滤液浓缩至40mL并加入150mL甲苯,浓缩后,加入二氯甲烷130mL,乙醇13mL,搅拌1小时,过滤,滤液浓缩得到粗品直接用于下一步1b。
1H NMR:(400MHz,CDCl3)δ1.59(dd,J=3.6,14.4Hz,6H).
第二步
将1c(12.50g,57.07mmol)和1b(5.35g,68.49mmol),磷酸钾(14.54g,68.49mmol),4,5-双(二苯基磷)-9,9-二甲基氧杂蒽(660.44mg,1.14mmol)和醋酸钯(256.26mg,1.14mmol)置于N,N-二甲基甲酰胺(80mL)中,反应混合物在氮气保护下,加热至150摄氏度并搅拌16小时。将混合物过滤并浓缩,将所得残余物用盐酸水溶液(1N,80mL)稀释,调节pH值至大约2,将所得混合物过滤。滤液用二氯甲烷(100mL×2)萃取,将水层分离出来,并且用碳酸氢钠水溶液将pH值调节至约9,然后用二氯甲烷(200mL×2)萃取。有机层用无水硫酸钠干燥并浓缩至干。将粗产物通过重结晶(石油醚∶乙酸乙酯=5∶1)纯化,得1d。1H NMR:(400MHz,CDCl3)δ7.20(m,1H),7.04(m,1H),6.69-6.58(m,2H),5.35(br s,2H),1.75(s,3H),1.71(s,3H).
MS-ESI计算值[M+H]+170,实测值170.1。
第三步
在16摄氏度下,向得1d(2.50g,14.8mmol)和1e(2.85g,15.5mmol)的N,N-二甲基甲酰胺(20mL)混合物中,加入二异丙基乙基胺(3.82g,29.6mmol)。然后将反应混合物加热至70摄氏度并搅拌16小时。将反应混合物用水(50mL)稀释,并用乙酸乙酯(40mL×3)萃取。将合并的有机相用饱和盐水(20mL×2)洗涤,无水硫酸钠干燥,过滤并真空浓缩。粗产物在乙醇中重结晶,得1f。1H NMR:(400MHz,CD3OD)δ8.50(m,1H),8.35-8.28(m,1H),7.69-7.59(m,2H),7.36-7.28(m,1H),1.91(s,3H),1.88(s,3H).
MS-ESI计算值[M+H]+316;317;318,实测值316;317;318。
第四步
向1g(50.0mg,265μmol)和1h(43.4mg,265μmol)的N,N-二甲基甲酰胺(1.00mL)溶液中加入碳酸钾(73.3mg,530μmol),反应液在50摄氏度下搅拌16个小时。将反应液蒸干,粗品用制备薄层色谱法板分离纯化得到1i。MS-ESI计算值[M+H]+280,实测值280。
第五步
向1i(60.0mg,215μmol)的乙酸乙酯(3.00mL)溶液中加入湿钯碳(5.00mg,含量为10%)在20摄氏度,氢气(50psi)条件下搅拌8小时。反应液过滤蒸干,得到1j。MS-ESI计算值[M+H]+250,实测值250。
第六步
向1j(50.0mg,200μmol),1f(63.4mg,200μmol)和叔丁醇钠(38.6mg,401μmol)的四氢呋喃(4.00mL)溶液中加入甲烷磺酸(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(7.97mg,10.0μmol),反应液在65摄氏度下搅拌16个小时。反应液过滤蒸干,粗品用高效液相色谱法分离纯化得到1。
1H NMR(400MHz,CD3OD)δ8.39-8.30(br s,1H),8.10-7.91(m,1H),7.72-7.52(m,2H),7.49-7.38(m,1H),7.26-7.15(m,1H),5.91(d,J=8.4Hz,1H),3.97(t,J=7.2Hz,2H),3.90(s,3H),3.77-3.67(m,2H),3.62-3.43(m,4H),2.15-1.97(m,4H),1.87(s,3H),1.84(s,3H)。MS-ESI计算值[M+H]+529和531,实测值529和531。
实施例2
Figure GPA0000295128410000101
第一步
参照实施例1第一步得到2b。MS-ESI计算值[M+H]+294,实测值294。
第二步
参照实施例1第二步得到2c。MS-ESI计算值[M+H]+264,实测值264。
第三步
参照实施例1第三步得到2。1H NMR(400MHz,CD3OD)δ8.35(br s,1H),8.00(s,1H),7.66-7.53(m,2H),7.46-7.38(m,1H),7.24-7.18(m,1H),5.91(d,J=8.4Hz,1H),3.91(s,3H),3.80-3.73(m,1H),3.70-3.63(m,1H),3.61-3.45(m,5H),3.26-3.20(m,1H),2.11-1.96(m,2H),1.87(s,3H),1.84(s,3H),1.82-1.68(m,4H)。MS-ESI计算值[M+H]+543和545,实测值543和545。
实施例3
Figure GPA0000295128410000111
第一步
参照实施例1第一步得到3b。MS-ESI计算值[M+H]+280,实测值280。
第二步
参照实施例1第二步得到3c。MS-ESI计算值[M+H]+250,实测值250。
第三步
参照实施例1第三步得到3。1H NMR(400MHz,CD3OD)δ8.33(br s,1H),8.02(s,1H),7.72(d,J=8.4Hz,1H),7.63-7.56(m,1H),7.53-7.44(m,1H),7.28-7.20(m,1H),5.89(d,J=8.4Hz,1H),3.91(s,3H),3.78(s,4H),3.74-3.67(m,4H),1.91-1.79(m,10H).MS-ESI计算值[M+H]+529和531,实测值529和531。
实施例4
Figure GPA0000295128410000121
第一步
参照实施例1第一步得到4b。MS-ESI计算值[M+H]+294,实测值294。
第二步
参照实施例1第二步得到4c。MS-ESI计算值[M+H]+264,实测值264。
第三步
参照实施例1第三步得到4。1H NMR(400MHz,CD3OD)δ8.34(br s,1H),7.99(s,1H),7.62(d,J=8.4Hz,1H),7.59-7.51(m,1H),7.45-7.37(m,1H),7.23-7.12(m,1H),5.89(d,J=8.4Hz,1H),3.90(s,3H),3.83-3.67(m,3H),3.60-3.46(m,2H),3.41-3.35(m,1H),2.39-2.27(m,1H),2.00-1.89(m,1H),1.87(s,3H),1.83(s,3H),1.80-1.68(m,4H),1.66-1.55(m,2H)MS-ESI计算值[M+H]+543和545,实测值543和545。
实施例5
Figure GPA0000295128410000122
第一步
参照实施例1第一步得到5a。MS-ESI计算值[M+H]+280,实测值280。
第二步
参照实施例1第二步得到5b。MS-ESI计算值[M+H]+250,实测值250。
第三步
参照实施例1第三步得到5。1H NMR(400MHz,CD3OD)δ8.31(br s,1H),8.02(s,1H),7.72(d,J=8.0Hz,1H),7.64-7.54(m,1H),7.52-7.44(m,1H),7.28-7.20(m,1H),5.91(d,J=8.4Hz,1H),3.93-3.87(m,5H),3.86-3.81(m,2H),3.75-3.69(m,2H),1.91-1.82(m,8H),1.79-1.71(m,2H),1.63-1.55(m,2H).MS-ESI计算值[M+H]+529和531,实测值529和531。
实施例6
Figure GPA0000295128410000131
第一步
参照实施例1第一步得到6b。MS-ESI计算值[M+H]+280,实测值280。
第二步
参照实施例1第二步得到6c。MS-ESI计算值[M+H]+250,实测值250。
第三步
参照实施例1第三步得到6。1H NMR(400MHz,CD3OD)δ8.33(br s,1H),8.02(s,1H),7.72(d,J=8.0Hz,1H),7.64-7.55(m,1H),7.51-7.45(m,1H),7.27-7.22(m,1H),5.88(d,J=8.4Hz,1H),3.90(s,3H),3.78-3.73(m,4H),3.69-3.63(m,4H),1.94-1.89(m,2H),1.87(s,3H),1.84(s,3H),1.70-1.63(m,2H)。MS-ESI计算值[M+H]+529和531,实测值529和531。
实施例7
Figure GPA0000295128410000132
Figure GPA0000295128410000141
第一步
参照实施例1第一步得到7b。MS-ESI计算值[M+H]+280,实测值280。
第二步
参照实施例1第二步得到7c。MS-ESI计算值[M+H]+250,实测值250。
第三步
参照实施例1第三步得到7。1H NMR(400MHz,CD3OD)δ8.34(br s,1H),7.99(s,1H),7.69-7.50(m,2H),7.42(br s,1H),7.24-7.14(m,1H),5.89(br d,J=8.4Hz,1H),3.90(s,5H),3.67-3.39(m,4H),2.29-1.95(m,6H),1.87(s,3H),1.84(s,3H).MS-ESI计算值[M+H]+529和531,实测值529和531。
实施例8
Figure GPA0000295128410000142
第一步
参照实施例1第一步得到8b。MS-ESI计算值[M+H]+308,实测值308。
第二步
参照实施例1第二步得到8c。MS-ESI计算值[M+H]+278,实测值278。
第三步
参照实施例1第三步得到8。1H NMR(400MHz,44)δ8.41-8.28m,1H),8.01(s,1H),7.75(d,J=8.4Hz,1H),7.64-7.53(m,1H),7.47(t,J=8.0Hz,1H),7.27-7.19(m,1H),6.20(d,J=8.4Hz,1H),3.89(s,3H),3.79-3.67(m,4H),3.58-3.44(m,4H),1.87(s,3H),1.83(s,3H),1.71-1.63(m,4H),1.62-1.54(m,4H).MS-ESI计算值[M+H]+557和559,实测值557和559。
实施例9
Figure GPA0000295128410000151
第一步
参照实施例1第一步得到9b。MS-ESI计算值[M+H]+266,实测值266。
第二步
参照实施例1第二步得到9c。MS-ESI计算值[M+H]+236,实测值236。
第三步
参照实施例1第三步得到9。1H NMR(400MHz,CD3OD)δ8.21(br s,1H),7.91(s,1H),7.65(d,J=8.4Hz,1H),7.53-7.44(m,1H),7.42-7.32(m,1H),7.18-7.09(m,1H),5.79(d,J=8.4Hz,1H),3.89-3.74(m,11H),2.13(t,J=7.2Hz,2H),1.76(s,3H),1.73(s,3H)。MS-ESI计算值[M+H]+515和517,实测值515和517。
实施例10
Figure GPA0000295128410000152
第一步
参照实施例1第一步得到10b。MS-ESI计算值[M+H]+294,实测值294。
第二步
参照实施例1第二步得到10c。MS-ESI计算值[M+H]+264,实测值264。
第三步
参照实施例1第三步得到10。1H NMR(400MHz,CD3OD)δ8.36(br s,1H),7.97(s,1H),7.64(d,J=8.4Hz,1H),7.58-7.47(m,1H),7.43-7.34(m,1H),7.24-7.12(m,1H),5.91-5.81(m,1H),3.89(s,3H),3.80-3.64(m,4H),3.55-3.44(m,2H),3.37(s,2H),1.98-1.90(m,2H),1.85(s,3H),1.82(s,3H),1.70-1.58(m,4H).MS-ESI计算值[M+H]+543和545,实测值543和545。
实施例11
Figure GPA0000295128410000161
第一步
将11a(320mg,1.50mmol)溶于四氢呋喃(8.0mL)中,在0摄氏度下加入钠氢(480mg,12.0mmol,60%纯度),搅拌10分钟,然后加入碘甲烷(1.70g,12.0mmol),室温搅拌2小时。加水淬灭,乙酸乙酯萃取,合并有机相,无水硫酸钠干燥,过滤并真空浓缩。剩余物用制备薄层色谱法板分离纯化得到11b。
1H NMR(400MHz,CDCl3)δ3.89(s,2H),3.86(s,2H),3.77-3.73(m,1H),3.21(s,3H),2.47-2.44(m,2H),2.09-2.04(m,2H),1.42(s,9H).
第二步
将11b(300mg,1.32mmol)溶于二氯甲烷(6.0mL)中.然后在0摄氏度加入三氟乙酸(1.51g,13.2mmol)。室温搅拌两小时。反应液直接浓缩,得到11c。
1H NMR(400MHz,CDCl3)δ4.09(s,2H),4.04(s,2H),3.84-3.81(m,1H),3.23(s,3H),2.64-2.59(m,2H),2.19-2.14(m,2H).
第三步
将1g(110mg,0.583mmol)和11c(148mg,1.17mmol)溶于N,N-二甲基甲酰胺(2.0mL),然后加入碳酸钾(322mg,2.33mmol)。50摄氏度下搅拌16h。反应完全,反应液冷至室温,加入水(2.0mL),用乙酸乙酯(8.0mL×3)萃取。合并有机相,用饱和食盐水洗涤(10.0mL×3),无水硫酸钠干燥,过滤,滤液减压浓缩,剩余物用制备薄层色谱法板分离纯化得到11d。
1H NMR(400MHz,CDCl3)δ8.24(d,J=8.0Hz,1H),5.77(d,J=9.2Hz,1H),4.15(s,2H),4.12(s,2H),4.03(s,3H),3.89-3.82(m,1H),3.26(s,3H),2.62-2.56(m,2H),2.23-2.18(m,2H).
第四步
将11d(74.0mg,0.265mmol)溶于乙酸乙酯(10.0mL)中,加入湿钯碳(7.0mg,含量为10%).反应液在氢气(50psi)氛围,25摄氏度下,搅拌8小时。反应完全,过滤,滤液减压浓缩得到11e。
1H NMR(400MHz,CDCl3)δ6.87(d,J=7.6Hz,1H),5.76(d,J=8.0Hz,1H),3.92(s,3H),3.88(s,2H),3.84(s,2H),3.82-3.79(m,1H),3.24(s,3H),2.54-2.50(m,2H),2.15-2.10(m,2H),1.60(s,2H).
第五步
将1f(85.0mg,0.269mmol),11e(67.0mg,0.269mmol)和叔丁基醇钠(51.7mg,0.537mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(10.7mg,0.0134μmol),于70摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到11。
1H NMR(400MHz,CDCl3)δ10.82(s,1H),8.58(dd,J=4.0,8.0Hz,1H),8.16(d,J=8.4Hz,1H),8.07(s,1H),7.47(t,J=8.0Hz,1H),7.31-7.28(m,1H),7.14-7.10(m,1H),6.91(s,1H),5.82(d,J=8.4Hz,1H),3.96(s,2H),3.94(s,3H),3.92(s,2H),3.87-3.80(m,1H),3.25(s,3H),2.57-2.52(m,2H),2.18-2.13(m,2H),1.85(s,3H),1.82(s,3H).
MS-ESI计算值[M+H]+529和531,实测值529和531。
实施例12
Figure GPA0000295128410000171
第一步
将1g(200mg,1.06mmol)和12a(116mg,1.17mmol)溶于N,N-二甲基甲酰胺(5.0mL),然后加入碳酸钾(366mg,2.65mmol),于25摄氏度下搅拌反应4小时。反应完全,加入水(5mL),用二氯甲烷(10mL×3)萃取。合并有机相,用饱和食盐水洗涤(40mL),无水硫酸钠干燥,过滤,滤液减压浓缩,剩余物加入石油醚/乙酸乙酯=1/1(20mL/20mL)搅拌0.5小时,过滤得到12b。
MS-ESI计算值[M+H]+252,实测值252
第二步
将12b(250mg,0.995mmol)溶于乙酸乙酯(10.0mL),加入湿钯碳(7.00mg,含量为10%)。在氢气(50psi)氛围下,25摄氏度下反应8h.反应完全,过滤浓缩得到12c)。
1H NMR(400MHz,DMSO-d6)δ6.84(d,J=8.0Hz,1H),5.77(d,J=8.0Hz,1H),4.68(s,4H),4.09(s,2H),3.90(s,4H),3.79(s,3H).
MS-ESI计算值[M+H]+222,实测值222
第三步
将1f(85.0mg,0.269mmol),12c(59.5mg,0.269mmol)和叔丁基醇钠(51.7mg,0.538mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(10.7mg,0.0134mmol),于70摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到12。
1H NMR(400MHz,CDCl3)δ10.85(s,1H),8.58(dd,J=4.0,8.4Hz,1H),8.22(d,J=8.4Hz,1H),8.07(s,1H),7.48(t,J=8.0Hz,1H),7.32-7(m,1H),7.15-7.11(m,1H),6.94(s,1H),5.86(d,J=8.4Hz,1H),4.85(s,4H),4.12(s,4H),3.95(s,3H),1.86(s,3H),1.82(s,3H).
MS-ESI计算值[M+H]+501和503,实测值501和503。
实施例13
Figure GPA0000295128410000181
第一步
将1g(80.0mg,0.424mmol)和13a(56.5mg,0.424mmol)溶于N,N-二甲基甲酰胺(5.0mL),然后加入碳酸钾(147mg,1.06mmol),于50摄氏度下搅拌反应16小时。反应完全,加入水(5mL),用二氯甲烷(10mL×3)萃取。合并有机相,用饱和食盐水洗涤(40mL),无水硫酸钠干燥,过滤,滤液减压浓缩,剩余物加入石油醚/乙酸乙酯=1/1(20mL/4mL)搅拌0.5小时,过滤得到13b。
1H NMR(400MHz,CDCl3)δ8.26(d,J=8.8Hz,1H),5.80(d,J=8.8Hz,1H),4.25(s,4H),4.04(s,3H),2.87(t,J=12.0Hz,4H).
MS-ESI计算值[M+H]+286,实测值286
第二步
将13b(75.0mg,0.263mmol)溶于乙酸乙酯(10.0mL),加入湿钯碳(7.00mg,含量为10%)。在氢气(50psi)氛围下,25摄氏度下反应8h。反应完全,过滤浓缩得到13c。
1H NMR(400MHz,CDCl3)δ6.88(d,J=8.0Hz,1H),5.79(d,J=8.0Hz,1H),3.96(s,4H),3.93(s,3H),3.31(s,2H),2.78(t,J=12.0Hz,4H).
MS-ESI计算值[M+H]+256,实测值256
第三步
将1f(70.0mg,0.221mmol),13c(56.5mg,0.221mmol)和叔丁基醇钠(53.2mg,0.553mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(8.8mg,0.0111mmol),于70摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到13。
1H NMR(400MHz,CDCl3)δ10.83(s,1H),8.58(dd,J=4.4,8.4Hz,1H),8.22(d,J=8.4Hz,1H),8.07(s,1H),7.48(t,J=8.0Hz,1H),7.31-7.28(m,1H),7.15-7.10(m,1H),6.95(s,1H),5.85(d,J=8.4Hz,1H),4.04(s,4H),3.94(s,3H),2.81(t,J=12.0Hz,4H),1.86(s,3H),1.82(s,3H).
MS-ESI计算值[M+H]+535和537,实测值535和537。
实施例14
Figure GPA0000295128410000191
第一步
将1g(100mg,0.530mmol)和14a(51.5mg,0.530mmol)溶于N,N-二甲基甲酰胺(5.0mL),然后加入碳酸钾(183mg,1.33mmol),于50摄氏度下搅拌反应16小时。反应完全,加入水(5mL),用二氯甲烷(10mL×3)萃取。合并有机相,用饱和食盐水洗涤(40mL),无水硫酸钠干燥,过滤,滤液减压浓缩,剩余物加入石油醚(20mL)搅拌0.5小时,过滤得到14b。
1H NMR(400MHz,CDCl3)δ8.23(d,J=9.2Hz,1H),5.76(d,J=9.2Hz,1H),4.11(s,4H),4.03(s,3H),2.26(t,J=7.6Hz,4H),1.95-1.87(m,2H).
第二步
将14b(50.0mg,0.201mmol)溶于乙酸乙酯(10.0mL),加入湿钯碳(7.00mg,含量为10%)。在氢气(50psi)氛围下,25摄氏度下反应8h.反应完全,过滤浓缩得到14c。
1H NMR(400MHz,CDCl3)δ6.87(d,J=8.0Hz,1H),5.76(d,J=8.0Hz,1H),3.93(s,3H),3.84(s,4H),3.26(s,2H),2.19(t,J=7.6Hz,4H),1.90-1.82(m,2H).
第三步
将1f(57.0mg,0.180mmol),14c(39.5mg,0.180mmol)和叔丁基醇钠(43.3mg,0.451mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(7.2mg,0.009mmol),于70摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到14。
1H NMR(400MHz,CDCl3)δ10.81(s,1H),8.58(dd,J=4.4,8.2Hz,1H),8.12(d,J=8.4Hz,1H),8.06(s,1H),7.47(t,J=7.6Hz,1H),7.30-7.24(m,1H),7.13-7.09(m,1H),6.91(s,1H),5.82(d,J=8.4Hz,1H),3.93(s,3H),3.92(s,4H),2.21(t,J=7.6Hz,4H),1.91-1.88(m,2H),1.85(s,3H),1.81(s,3H).
MS-ESI计算值[M+H]+499和501,实测值499和501
实施例15
Figure GPA0000295128410000201
第一步
将1g(100mg,0.530mmol)和15a(63.1mg,0.530mmol)溶于N,N-二甲基甲酰胺(5.0mL),然后加入碳酸钾(183mg,1.33mmol),于50摄氏度下搅拌反应16小时。反应完全,加入水(5mL),用二氯甲烷(10mL×3)萃取。合并有机相,用饱和食盐水洗涤(40mL),无水硫酸钠干燥,过滤,滤液减压浓缩,剩余物加入石油醚/乙酸乙酯(20mL/2mL)搅拌2小时,过滤得到15b。
1H NMR(400MHz,CDCl3)δ8.29(d,J=8.8Hz,1H),5.86(d,J=8.8Hz,1H),4.38(d,J=9.2Hz,2H),4.22(d,J=9.2Hz,2H),4.05(s,3H),1.60(t,J=8.4Hz,2H).
第二步
将15b(100mg,0.369mmol)溶于乙酸乙酯(10.0mL),加入湿钯碳(7.00mg,含量为10%)。在氢气(50psi)氛围下,25摄氏度下反应8h.反应完全,过滤浓缩得到。剩余物用柱层析分离纯化得到15c。
1H NMR(400MHz,CDCl3)δ6.91(d,J=7.6Hz,1H),5.83(d,J=7.6Hz,1H),4.14(d,J=8.0Hz,2H),3.96(d,J=8.0Hz,2H),3.94(s,3H),3.33(s,2H),1.46(t,J=8.4Hz,2H).
第三步
将1f(55.0mg,0.174mmol),15c(42.0mg,0.174mmol)和叔丁基醇钠(41.8mg,0.435mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(6.9mg,0.009mmol),于70摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到15。
1H NMR(400MHz,CDCl3)δ10.84(s,1H),8.58(dd,J=4.4,8.4Hz,1H),8.24(d,J=8.4Hz,1H),8.08(s,1H),7.48(t,J=7.6Hz,1H),7.32-7.26(m,1H),7.12(t,J=7.6Hz,1H),6.97(s,1H),5.90(d,J=8.4Hz,1H),4.21(d,J=8.4Hz,2H),4.04(d,J=8.4Hz,2H),3.95(s,3H),1.86(s,3H),1.83(s,3H),1.50(t,J=8.4Hz,2H).
MS-ESI计算值[M+H]+521和523,实测值521和523。
实施例16
Figure GPA0000295128410000211
第一步
将16a(300mg,1.29mmol)和氯化铵(345mg,6.45mmol)溶于乙醇(6.0mL)和水(2.0mL),加入铁粉(720mg,12.9mmol)。25摄氏度下搅拌6小时。反应完成,将混合物过滤并浓缩,滤液用乙酸乙酯(5mL×3)萃取,将水层分离出来,有机层用无水硫酸钠干燥并浓缩至干。得到16b。
1H NMR(400MHz,DMSO-d6)δ7.38(d,J=2.4Hz,1H),6.98(d,J=2.4Hz,1H),5.29(s,2H),3.83(s,3H).
第二步
将16b(255mg,1.26mmol)和三乙胺(152mg,1.51mmol)溶于二氯甲烷(5mL),向其加入溶于二氯甲烷(5ml)的二碳酸二叔丁酯(329mg,1.51mmol)和4-二甲基胺基吡啶(154mg,1.26mmol)的混合液。在50摄氏度下搅拌16h。反应完成,加入水(10mL),用二氯甲烷(10mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物用柱层析分离纯化得到16c。
1H NMR(400MHz,CDCl3)δ8.48(s,1H),7.82(d,J=2.4Hz,1H),6.95(s,1H),3.98(s,3H),1.54(s,9H)
第三步
将16c(90.0mg,0.297mmol),9a(33.6mg,0.297mmol)和叔丁基醇钠(71.3mg,0.742mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(11.8mg,0.0148mmol),于70摄氏度下搅拌反应16小时。反应液过滤蒸干,剩余物用制备薄层色谱法板分离纯化得到16d。
1H NMR(400MHz,CDCl3)δ7.66(s,1H),7.02(d,J=2.4Hz,1H),6.97(s,1H),3.93(s,3H),3.92(s,2H),3.87-3.84(m,6H),1.53(s,9H).
MS-ESI计算值[M+H]+336,实测值336。
第四步
将16d(75.0mg,0.224mmol)溶于二氯甲烷(3.0mL).0摄氏度下加入三氟乙酸(1.00mL),25摄氏度下搅拌4小时。反应液直接浓缩得到16e。
1H NMR(400MHz,CDCl3)δ7.02(d,J=2.4Hz,1H),6.64(d,J=2.4Hz,1H),4.19(s,3H),4.08(s,4H),3.98(s,2H),3.93(t,J=7.2Hz,2H),2.28(t,J=7.2Hz,2H).
第五步
将1f(70.0mg,0.221mmol),16e(52.0mg,0.221mmol)和叔丁基醇钠(85.1mg,0.886mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(8.8mg,0.0111mmol),于70摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到16。
1H NMR(400MHz,CDCl3)δ10.95(s,1H),8.59(dd,J=4.4,8.4Hz,1H),8.17(s,1H),7.99(d,J=2.4Hz,1H),7.60(t,J=8.0Hz,1H),7.44(s,1H),7.35-7.29(m,1H),7.17-7.13(m,1H),7.03(d,J=2.8Hz,1H),3.99(s,3H),3.90(s,2H),3.85(t,J=8.0Hz,2H),3.69(s,4H),2.17(t,J=8.0Hz,2H),1.89(s,3H),1.86(s,3H).
MS-ESI计算值[M+H]+515和517,实测值515和517。
实施例17
Figure GPA0000295128410000231
第一步
将16c(100mg,0.330mmol),10a(46.6mg,0.297mmol)和叔丁基醇钠(79.3mg,0.825mmol,)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(13.1mg,0.0165mmol),于70摄氏度下搅拌反应16小时。反应液加水(1.0mL),用乙酸乙酯(5.0mLx 3)萃取,有机相用无水硫酸钠干燥,有机相过滤旋干,剩余物用制备薄层色谱法板分离纯化得到17a。
1H NMR:(400MHz,CDCl3)δ7.77(s,1H),7.08(d,J=2.8Hz,1H),6.97(s,1H),3.93(s,3H),3.76-3.66(m,4H),3.35(t,J=6.8Hz,2H),3.18(s,2H),1.92(t,J=6.8Hz,2H),1.68-1.60(m,4H),1.54(s,9H).
第二步
将17a(45.0mg,0.124mmol)溶于二氯甲烷(3.00mL).0摄氏度下加入三氟乙酸(1.0mL),25摄氏度下搅拌4小时。反应液直接浓缩得到17b。
MS-ESI计算值[M+H]+264,实测值264。
第三步
将17b(32.0mg,0.120mmol),1f(38.0mg,0.120mmol)和叔丁基醇钠(46.2mg,0.480mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(4.8mg,0.006mmol),于100摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到17。
1H NMR(400MHz,CDCl3)δ10.94(s,1H),8.62(dd,J=4.4,8.4Hz,1H),8.18(s,1H),8.07(d,J=2.4Hz,1H),7.51(t,J=8.0Hz,1H),7.38(s,1H),7.33-7.28(m,1H),7.15-7.07(m,2H),3.97(s,3H),3.76-3.68(m,2H),3.67-3.59(m,2H),3.22(t,J=6.8Hz,2H),3.05(s,2H),1.88(s,3H),1.86(s,2H),1.84(s,3H),1.63-1.59(m,4H)
MS-ESI计算值[M+H]+543和545,实测值543和545。
实施例18
Figure GPA0000295128410000241
第一步
将18a(100mg,0.330mmol),12a(32.7mg,0.297mmol)和叔丁基醇钠(79.3mg,0.825mmol,)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(13.1mg,0.0165mmol),于70摄氏度下搅拌反应16小时。反应液加水(3.0mL),用乙酸乙酯(8.0mLx 3)萃取,有机相用无水硫酸钠干燥,有机相过滤旋干,剩余物用制备薄层色谱法板分离纯化分离纯化得到18a。
1H NMR(400MHz,CDCl3)δ7.64(s,1H),7.00(d,J=2.8Hz,1H),6.97(s,1H),4.83(s,4H),4.00(s,4H),3.93(s,3H),1.53(s,9H)
MS-ESI计算值[M+H]+322,实测值322。
第二步
将18a(70.0mg,0.218mmol)溶于二氯甲烷(3.0mL)。0摄氏度下加入三氟乙酸(1.0mL),25摄氏度下搅拌4小时。反应液直接浓缩得到18b。
MS-ESI计算值[M+H]+222,实测值222。
第三步
将18b(48.0mg,0.218mmol),1f(69.0mg,0.218mmol)和叔丁基醇钠(83.9mg,0.873mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(8.70mg,0.0109mmol),于100摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到18。
1H NMR(400MHz,CDCl3)δ10.97(s,1H),8.57(dd,J=4.4,8.4Hz,1H),8.16(s,1H),7.98(d,J=2.4Hz,1H),7.57(t,J=7.6Hz,1H),7.42(s,1H),7.36-7.30(m,1H),7.17-7.12(m,1H),6.99(d,J=2.4Hz,1H),4.80(s,4H),3.97(s,3H),3.83(s,4H),1.89(s,3H),1.86(s,3H)
MS-ESI计算值[M+H]+501和503,实测值501和503。
实施例19
Figure GPA0000295128410000251
第一步
将16c(100mg,0.330mmol),3a(42.0mg,0.330mmol)和叔丁基醇钠(79.3mg,0.825mmol,)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(13.1mg,0.0165mmol),于70摄氏度下搅拌反应16小时。反应液加水(3.0mL),用乙酸乙酯(8.0mLx 3)萃取,有机相用无水硫酸钠干燥,有机相过滤旋干,剩余物用制备薄层色谱法板分离纯化得到19a。
第二步
将19a(40.0mg,0.114mmol)溶于二氯甲烷(3.0mL).0摄氏度下加入三氟乙酸(1.0mL),25摄氏度下搅拌3小时。反应液直接浓缩得到19b。
MS-ESI计算值[M+H]+250,实测值250。
第三步
将1f(35.0mg,0.111mmol),19b(27.6mg,0.111mmol)和叔丁基醇钠(42.6mg,0.443mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(4.4mg,0.006mmol),于100摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到19。
1H NMR(400MHz,CDCl3)δ10.95(s,1H),8.58(dd,J=4.4,8.4Hz,1H),8.42(d,J=2.4Hz,1H),8.18(s,1H),7.54(t,J=7.6Hz,1H),7.39-7.37(m,2H),7.34-7.29(m,1H),7.16-7.12(m,1H),4.45(s,4H),3.99(s,3H),2.93-2.90(m,4H),1.96-1.93(m,4H),1.88(s,3H),1.85(s,3H)
实施例20
Figure GPA0000295128410000252
Figure GPA0000295128410000261
第一步
将20a(1.24g,7.82mmol)和三乙胺(949mg,9.38mmol)溶于二氯甲烷(10.0mL)中,向反应液中滴加二碳酸二叔丁酯(2.05g,9.38mmol)和4-二甲基胺基吡啶(955mg,7.82mmol)的二氯甲烷溶液(10.0mL),于50摄氏度下搅拌反应16小时。反应完成,加入水(20mL),用二氯甲烷(20.0mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物用柱层析分离纯化得到20b。
MS-ESI计算值[M+H]+259和261,实测值259和261。
第二步
将20b(120.0mg,0.464mmol),9a(52.5mg,0.464mmol),1,1’-联萘-2,2’-双二苯膦(28.9mg,0.046mmol)和叔丁醇钠(111mg,1.16mmol)溶于1,4-二氧六环(2.00mL)中,在氮气保护下向反应液中加入醋酸钯(5.2mg,0.023mmol),于110摄氏度下搅拌反应16小时。加入水(1mL),用乙酸乙酯(5mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物用制备薄层色谱法板分离纯化得到20c。
MS-ESI计算值[M+H]+336,实测值336。
第三步
将20c(60.0mg,0.179mmol)溶于二氯甲烷(3.0mL),0摄氏度下加入三氟乙酸(1.0mL),25摄氏度下搅拌3小时。反应液直接浓缩得到20d。
MS-ESI计算值[M+H]+236,实测值236。
第四步
将1f(55.0mg,0.174mmol),20d(40.9mg,0.174mmol)和叔丁基醇钠(66.9mg,0.696mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(6.9mg,0.0087mmol),于100摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到20。
1H NMR(400MHz,CDCl3)δ10.99(s,1H),8.56(dd,J=4.4,8.0Hz,1H),8.17(s,1H),7.86-7.85(m,1H),7.81-7.80(m,1H),7.62(s,1H),7.55(t,J=8.0Hz,1H),7.36-7.29(m,1H),7.22-7.15(m,1H),4.07(s,4H),3.95(s,2H),3.88(t,J=6.8Hz,2H),3.72(s,3H),2.21(t,J=6.8Hz,2H),1.88(s,3H),1.84(s,3H)
MS-ESI计算值[M+H]+515和517,实测值515和517。
实施例21
Figure GPA0000295128410000271
第一步
将20b(100mg,0.387mmol),14a(37.5mg,0.387mmol),1,1’-联萘-2,2’-双二苯膦(24.1mg,0.039mmol)和叔丁醇钠(92.9mg,0.966mmol)溶于1,4-二氧六环(2.00mL)中,在氮气保护下向反应液中加入醋酸钯(3.4mg,0.023mmol),于110摄氏度下搅拌反应16小时。加入水(2mL),用乙酸乙酯(5mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物用制备薄层色谱法板分离纯化得到21a。
1H NMR(400MHz,CDCl3)δ7.83(d,J=5.6Hz,1H),7.45(d,J=5.6Hz,1H),7.12(s,1H),4.01(s,4H),3.66(s,3H),2.20(t,J=7.2Hz,4H),1.91-1.83(m,2H),1.53(s,9H).
第二步
将21a(55.0mg,0.172mmol)溶于二氯甲烷(3.0mL),0摄氏度下加入三氟乙酸(1.0mL),25摄氏度下搅拌3小时。反应液直接浓缩得到21b。
MS-ESI计算值[M+H]+220,实测值220。
第三步
将21b(36.9mg,0.111mmol),1f(35.0mg,0.111mmol)和叔丁基醇钠(42.6mg,0.443mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(4.4mg,0.0055mmol),于90摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到21。
1H NMR(400MHz,CDCl3)δ10.88(s,1H),8.48(dd,J=4.4,8.4Hz,1H),8.08(s,1H),7.73-7.70(m,2H),7.55(s,1H),7.47(t,J=8.0Hz,1H),7.27-7.22(m,1H),7.12-7.08(m,1H),3.97(s,4H),3.62(s,3H),2.14(t,J=7.8Hz,4H),1.84-1.82(m,1H),1.80(s,3H),1.78-1.77(m,1H),1.76(s,3H).
MS-ESI计算值[M+H]+499和501,实测值499和501。
实施例22
Figure GPA0000295128410000281
第一步
将21b(100mg,0.387mmol),12a(38.3mg,0.387mmol),1,1’-联萘-2,2’-双二苯膦(24.1mg,0.039mmol)和叔丁醇钠(92.9mg,0.966mmol)溶于1,4-二氧六环(2.00mL)中,在氮气保护下向反应液中加入醋酸钯(3.4mg,0.023mmol),于110摄氏度下搅拌反应16小时。加入水(3mL),用乙酸乙酯(6mL×3)萃取。合并有机相,无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物用制备薄层色谱法板分离纯化得到22a。
1H NMR(400MHz,CDCl3)δ7.84(d,J=5.6Hz,1H),7.51(d,J=5.6Hz,1H),7.12(s,1H),4.85(s,4H),4.21(s,4H),3.66(s,3H),1.54(s,9H).
第二步
将22a(100mg,0.311mmol)溶于二氯甲烷(3.0mL).0摄氏度下加入三氟乙酸(1.0mL),25摄氏度下搅拌3小时。反应液直接浓缩得到22b。
MS-ESI计算值[M+H]+222,实测值222。
第三步
将22b(63.0mg,0.285mmol),1f(90.0mg,0.111mmol)和叔丁基醇钠(109mg,1.14mmol)溶于四氢呋喃(2.0mL),在氮气保护下向反应液中加入(2-二-叔丁基膦基-2′,4′,6′-三异丙基-1,1′-联苯)(2′-氨基-1,1′-联苯-2-基)钯(II)(11.3mg,0.014mmol),于100摄氏度下搅拌反应16小时。反应液过滤蒸干,用制备高效液相色谱法纯化得到22。
1H NMR(400MHz,CDCl3)δ10.98(s,1H),8.55(dd,J=4.4,8.4Hz,1H),8.16(s,1H),7.88-7.83(m,1H),7.82-7.76(m,1H),7.61(s,1H),7.55(t,J=7.6Hz,1H),7.35-7.30(m,1H),7.20-7.16(m,1H),4.86(s,4H),4.24(s,4H),3.70(s,3H),1.87(s,3H),1.84(s,3H).
MS-ESI计算值[M+H]+501和503,实测值501和503。
实验例1:体外评价LRRK2激酶抑制活性
实验目的:通过均相时间分辨荧光检测磷酸化Fluorescein-ERM(LRRKtide)peptide的磷酸基团与
Figure GPA0000295128410000292
Tb-pERM(pLRRKtide)Antibody抗体结合后产生的能量信号转移(520nM/485nM荧光信号比值)。计算待测化合物的LRRK2激酶抑制IC50值。
实验材料:
1.反应溶液:10mM羟乙基哌嗪乙磺酸(PH7.5);2mM氯化镁;0.5mM乙二醇二乙醚二胺四乙酸;0.002%聚氧乙烯脂肪醇醚;1mM二硫苏糖醇和1%DMSO;
2.检测溶液:TR-FRET Dilution Buffer;
3.LRRK2人源重组蛋白:使用GST标签用杆状病毒在昆虫Sf9细胞中表达重组全长人LRRK2蛋白;
4.底物:0.4uM Fluorescein-ERM(LRRKtide)peptide;57uM ATP。
检测方法:
均相时间分辨荧光技术(HTRF);
Fluorescein-ERM(LRRKtide)peptide多肽与
Figure GPA0000295128410000293
Tb-pERM(pLRRKtide)Antibody抗体在485nM和520nM之间的能量共振转移。
实验操作:
1.通过Echo550非接触式纳升级声波移液系统加入待测化合物的DMSO溶液;
2.用新鲜制备的反应溶液配置酶和多肽混合溶液,加入到反应孔穴中,室温下预温育20分钟;
3.加入57uMATP引发反应,室温反应90分钟;
4.加入检测系统(Fluorescein-ERM(LRRKtide)peptide多肽,
Figure GPA0000295128410000294
Tb-pERM(pLRRKtide)Antibody抗体及10mM乙二胺四乙酸),室温反应60分钟,用Em/Ex 520/485检测荧光信号;
5.通过信号比值计算相对DMSO空白的相对酶活性抑制,利用软件XLfit5拟合曲线计算IC50值。
实验结果:
表1 LRRK2激酶抑制活性测试结果
Figure GPA0000295128410000291
Figure GPA0000295128410000301
实验例2:体外评价LRRK2细胞(pSer935)抑制活性
细胞准备:
1.细胞解冻
将293T细胞从液氮中取出,放入37摄氏度的水中。待冰完全融化后,将细胞转移至5毫升温暖培养液内,离心,弃去上清液,并把悬浮的细胞作新的细胞在培养基中培养。
2.细胞的培养和传代
将293T细胞在培养基里培养两至三天
3.细胞冷冻
将培养好的细胞株放入新鲜的培养液中并稀释浓度至1*10^7,然后与等量的培养液混合。等分成每份1mL,置于零下80度一天,转移至液氮中保存。
实验步骤:
1.(第一天)293T细胞播种
种植1.4×10^6/293T细胞于一块培养板上,两天的培养后,细胞数量可以成长为5×10^6,所以种子N+1块板子足够N个96孔板的实验。
2.(第二天)转染293T细胞
一、添加5微升0.5微克/微升pcmv-flag-1rrk2到145微升DMEM培养液中,用吸管调匀;
二、添加15微升转染试剂,吸管调匀;
三、室温平衡10分钟;
四、添加0.5毫升预热的细胞培养基,调匀;
五、滴加650微升混合物到6孔板中,搅拌彻底;
六、培养板在37摄氏度含5%二氧化碳的加湿孵化器中培养20-24小时。
3.(第三天)293T细胞种植到96孔板上
4.(第4天)抑制剂处理
一、将化合物用离心机处理;
二、添加55微升细胞培养基到抑制剂板中。把盘子放在37摄氏度预热;
三、转移50微升含抑制剂的细胞培养至细胞培养板;
四、培养板在37摄氏度含5%二氧化碳的加湿孵化器中培养20-24小时;
五、用滴管抽取300微升含有抑制剂的培养液,取其中200微升,向其中加入100微升的分解剂,密封板子后于4摄氏度摇30分钟;
六、板子于零下20摄氏度保存直至使用。
5.(第5天)MSD程序
一、添加2微克/25微升/标记抗体到MSD板中,孵育2小时,(50微升3.9微克/微升Flag抗体+2.5毫升胎牛血清/每盘)。离心10秒(1000rpm);
二、丢弃标志抗体,用300微升/洗涤缓冲液低速多点洗涤两次;
三、添加50微升/块缓冲液、孵化2小;
四、丢弃缓冲液,以300微升/洗涤缓冲液手动洗2次;
五、转移12.5微升裂解缓冲液和细胞裂解液12.5微升至MSD板,室温孵育1小时;
六、丢弃裂解液,用300微升/洗涤缓冲液多点、低速度洗3次;
七、稀释ps935(1∶200)抗,加入25微升/抗体,室温培育1小时;
八、弃第一抗体,用300微升/洗涤缓冲液多点、低速度洗3次;
九、稀释山羊抗兔抗体1∶500,添加25微升/抗体至孵育板,室温培养1小时;
十、弃第二抗体,用300微升/洗涤缓冲液多点、低速度洗3次。最后一次的洗涤缓冲液到MSD阅读器;
十一、采集两次数据;
十二、放弃最后一次的清洗液,添加150微升/2倍缓冲液至待读取孔板;
十三、孵化后约3分钟,于15分钟读取数据。
实验结果:
表2 pSer935细胞抑制活性测试结果
供试品(各实施例所制得的化合物) LRRK2细胞抑制活性(nM)
实施例3 4.3
实施例5 4.0
实施例6 3.3
实施例7 10.9
实施例9 4.7
实施例11 4.5
实施例12 3.7
实施例18 86.1
实施例20 22.0
实施例22 44.0
结论:本发明化合物具有显著的LRRK2酶和细胞(pSer935)抑制活性。
实验例3:化合物药代动力学评价
实验目的:研究化合物在C57BL/6小鼠体内药代动力学---脑组织和血浆药物浓度比
实验材料:C57BL/6小鼠(雄性,8周龄,体重25g-30g)
实验操作:
以标准方案测试化合物口服给药后的啮齿类动物药代特征,实验中候选化合物配成1mg/mL混悬液,给予小鼠单次口服给药。口服溶媒为10%二甲亚砜/10%吐温80/20%聚乙二醇400水溶液。该项目使用雄性C57BL/6小鼠,口服灌胃给药,给药剂量为5mg/kg。在给药后0.5,1,2和4小时,将收集全脑。将组织样品用15mM胎牛血清[胎牛血清(pH=7.4)缓冲液∶甲醇(体积比,2∶1)]匀浆,均质比为1∶5(w∶v),并将匀浆液分成2个等分样品,一个用于分析,另一个用于备份。另外,收集给药后0.5,1,2,4h的血浆,血浆样品在收集半小时内,通过在约4℃,3000g,15分钟离心处理分离上清得血浆样品。将血浆样品储存在聚丙烯管中,在干冰上快速冷冻并保持在-80℃直至LC/MS/MS分析。加入含内标的乙腈溶液沉淀蛋白,充分混匀离心取上清液进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度(Cmax),半衰期(T1/2),达峰时间(Tmax),药时不同组织药物浓度(AUC0-last),脑组织和血浆药物浓度比例(B/P)等。
本发明实施例在小鼠体内的药代动力学相关参数如下表3所示。
表3体内药代动力学测试结果
Figure GPA0000295128410000321
结论:本发明化合物具有良好的体内药代动力学性质,包括良好的脑组织药物浓度以及脑组织和血浆药物浓度比例(B/P)等。
实验例4:体内药效实验
实验目的:测试化合物对小鼠脑组织LRRK2磷酸化和外周血单核细胞(PBMC)里面LRRK2和Rab10磷酸化抑制效果。
实验材料:
动物:C57BL/6J小鼠(雄性,6~7周龄,体重20g-22g)。
实验过程:
1.实验分组:所有小鼠在实验前一天称取体重,按照体重随机分为6组,每组4只,体重过大和过小的小鼠剔除,保证每组的平均体重一致。实验分组如下表4所示,共6组,即空白组(组-1,n=4,溶媒),阳性对照药物(组-2~3,n=4,GNE-7915和MLi-2),受试药物实施例11(组4~6,n=4,11)。
表4实验分组和剂量设计
Figure GPA0000295128410000331
溶媒:10%二甲亚砜/10%吐温80/20%聚乙二醇400水溶液
2.实验操作:
2.1给药和组织收集
各组动物按照表4中设计按时间顺序依次口服给予溶媒或待测化合物,2分钟一只,给药1小时后所有动物依次按时间给予CO2安乐死,心脏穿刺采集全血600微升置于含EDTA-K2的抗凝管中,全血分出100微升于4℃、8000rpm离心10分钟,分离血浆并冻存于液氮中,后转移至干冰中供后续研究。剩下的血液用细胞分离液密度梯度离心分离外周血单核细胞(PBMC)。同时采集动物的脑、肺和肾脏组织置于干冰急冻,然后转运至-80℃。
2.2外周血单核细胞(PBMC)的分离
在每组剩余的血样中(500微升)加入2倍体积(1mL)胎牛血清稀释,轻轻混匀,在50ml离心管中加入3mL分离液,将稀释好的血液样品轻轻加入离心液的上层液面上,800g常温下离心20分钟,升速降速都是0;离心结束后会显示三层,上层是血浆,中层是分离液,下层是红细胞,在血浆和分离液的中间有一层云雾层,将云雾层轻轻吸出放入一个新的15mL离心管中,加胎牛血清稀释至8mL,离心800g,4℃,5分钟;弃上清,确保上清吸干净,每管加入1mL的ACK红细胞裂解液,室温放置10分钟。10分钟后加入胎牛血清至10mL,混匀,离心800g,4℃,5分钟;弃上清,加入1ml胎牛血清重悬,混匀。吸出50微升细胞溶液加入450微升的胎牛血清细胞计数。所有样品计数完全后,离心800g,4℃,5分钟,弃上清,将细胞插入干冰速冻,放入-80冰箱储存。
2.3药效检测
(1)用BCA法对脑组织样品进行蛋白定量后并上等量的蛋白样品到4~15%梯度预制胶。
(2)根据外周血单核细胞(PBMC)细胞计数来加相应体积SDS Lysis缓冲液,所有样品上等量体积13微升至4~15%预制胶。
(3)用200V电压进行蛋白电泳30min,然后用Midi PVDF Transfer Packs进行转膜7min,然后用TBS Blocker室温封闭1小时。
(4)用脱脂奶粉配置5%牛奶,然后配置抗体p-LRRK2(按照1∶250的比例,将20微升抗体加入到5ml5%牛奶中)、total-LRRK2(按照1∶500的比例,将10微升抗体加到5ml的5%的脱脂牛奶中)、p-Rab10(按照1∶500比例,将10微升抗体加到5毫升的5%的脱脂牛奶中)和β-actin(按照1∶1000的比例,将5微升抗体加入到5ml 5%牛奶中),孵育过夜。
(5)回收一抗,然后用TBS洗膜3次,每次10分钟。
(6)上兔二抗(按照1∶2000的比例,将5微升抗体加入到10ml 5%牛奶中)在室温封闭一个小时,用TBS洗膜3次,然后显色条带。
3实验结果
3.1脑组织免疫印迹实验(Western Blot)结果见图1。
3.2外周血单核细胞(PBMC)的免疫印迹实验(Western Blot)结果见图2。
结论:本发明化合物在小鼠脑组织中,对LRRK2磷酸化水平有明显地抑制作用,并且在3mg/kg、10mg/kg和30mg/kg剂量下对LRRK2磷酸化水平的抑制呈现一个剂量依赖性的趋势;本发明化合物在3mpk剂量下对LRRK2磷酸化水平的抑制程度相当于参考化合物GNE-7915在10mg/kg剂量下对LRRK2磷酸化水平的抑制;在小鼠外周血单核细胞(PBMC)中,本发明化合物对LRRK2及其下游蛋白Rab10的磷酸化水平有明显地抑制作用,在3mg/kg、10mg/kg和30mg/kg剂量下对LRRK2磷酸化水平的抑制呈现一个剂量依赖性的趋势,并且本发明化合物在10mg/kg剂量下优于参考化合物GNE-7915对LRRK2和Rab10磷酸化水平的抑制。

Claims (5)

1.式(I)所示化合物或其药学上可接受的盐,
Figure FDA0003265145440000011
其中,
R1选自F、Cl、Br、I、OH、NH2和CF3
W选自N,V选自C(R3);
或者,W选C(R3),V选自N;
R2选自H,R3选自
Figure FDA0003265145440000012
或者,R2选自
Figure FDA0003265145440000013
R3选自H;
T1选自N;
T2选自-O-、-CH2-和-CH2CH2-,其中-CH2-任选被l或2个Rb取代,-CH2CH2-任选被l、2或3个Rb取代;
D1、D2分别独立地选自单键、-CH2-和-CH2CH2-,且D1和D2不同时选自单键;
D3、D4分别独立地选自单键、-O-、-CH2-、-CF2-、-CH2CH2-和
Figure FDA0003265145440000014
D3和D4不同时选自单键;
Rb分别独立地选自F、Cl、Br、I、OH和NH2
2.根据权利要求1所述化合物或其药学上可接受的盐,其中,结构单元
Figure FDA0003265145440000021
选自
Figure FDA0003265145440000022
Figure FDA0003265145440000023
3.根据权利要求1或2所述化合物或其药学上可接受的盐,其选自
Figure FDA0003265145440000024
其中,
R1、T1、T2、D1、D2、D3和D4如权利要求1或2所定义。
4.下列化合物或其药学上可接受的盐,
Figure FDA0003265145440000031
5.根据权利要求l~4任意一项所述化合物或其药学上可接受的盐在制备与LRRK2激酶抑制相关药物中的应用。
CN201980026432.0A 2018-04-20 2019-04-19 二甲基氧膦类化合物 Active CN112055714B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810360120 2018-04-20
CN2018103601200 2018-04-20
PCT/CN2019/083462 WO2019201334A1 (zh) 2018-04-20 2019-04-19 二甲基氧膦类化合物

Publications (2)

Publication Number Publication Date
CN112055714A CN112055714A (zh) 2020-12-08
CN112055714B true CN112055714B (zh) 2021-10-22

Family

ID=68239328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980026432.0A Active CN112055714B (zh) 2018-04-20 2019-04-19 二甲基氧膦类化合物

Country Status (5)

Country Link
US (1) US11046720B2 (zh)
EP (1) EP3783005B1 (zh)
JP (1) JP7138768B2 (zh)
CN (1) CN112055714B (zh)
WO (1) WO2019201334A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538072B (zh) * 2019-09-21 2024-02-06 齐鲁制药有限公司 氨基嘧啶类egfr抑制剂
CN114746431A (zh) * 2019-10-18 2022-07-12 贵州伊诺其尼科技有限公司 一种lrrk2抑制剂的晶型及其制备方法
EP4129996A4 (en) * 2020-03-23 2023-07-12 Qilu Pharmaceutical Co., Ltd. NEW EGFR AMINOPYRIMIDINE INHIBITOR
TW202319050A (zh) * 2021-11-05 2023-05-16 大陸商南京明德新藥研發有限公司 氮雜螺環化合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151561A1 (en) * 2011-05-04 2012-11-08 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in egfr-driven cancers
WO2013169401A1 (en) * 2012-05-05 2013-11-14 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in egfr-driven cancers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127642A2 (en) * 2008-04-15 2009-10-22 Cellzome Limited Use of lrrk2 inhibitors for neurodegenerative diseases
US9440952B2 (en) * 2013-03-04 2016-09-13 Merck Sharp & Dohme Corp. Compounds inhibiting leucine-rich repeat kinase enzyme activity
JP6487527B2 (ja) * 2014-07-04 2019-03-20 チル ファーマシューティカル カンパニー リミテッド スピロ環アリールリン酸化物及びアリールリン硫化物(spirocyclic aryl phosphorus oxide and aryl phosphorus sulfide)
WO2016130920A2 (en) * 2015-02-13 2016-08-18 Dana-Farber Cancer Institute, Inc. Lrrk2 inhibitors and methods of making and using the same
RU2607371C1 (ru) * 2015-11-19 2017-01-10 Закрытое акционерное общество "Р-Фарм"(ЗАО "Р-Фарм") Замещенные N2-(4-амино-2-метоксифенил)-N4-[2-(диметилфосфорил)-фенил]-5-хлор-пиримидин-2,4-диамины в качестве модуляторов ALK и EGFR, предназначенные для лечения рака
EP3715350B1 (en) 2017-12-21 2024-05-08 Shenzhen TargetRx, Inc. Arylphosphine oxides for inhibiting kinase activity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151561A1 (en) * 2011-05-04 2012-11-08 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in egfr-driven cancers
WO2013169401A1 (en) * 2012-05-05 2013-11-14 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in egfr-driven cancers

Also Published As

Publication number Publication date
JP2021526156A (ja) 2021-09-30
JP7138768B2 (ja) 2022-09-16
EP3783005A1 (en) 2021-02-24
EP3783005B1 (en) 2023-12-06
US11046720B2 (en) 2021-06-29
EP3783005A4 (en) 2022-03-02
US20210147453A1 (en) 2021-05-20
WO2019201334A1 (zh) 2019-10-24
CN112055714A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
CN112055714B (zh) 二甲基氧膦类化合物
EP3621960B1 (en) Thienopyridines and benzothiophenes useful as irak4 inhibitors
JP6948659B1 (ja) ピリダジニルチアアゾールカルボキシアミド化合物
WO2021129824A1 (zh) 新型K-Ras G12C抑制剂
JP2023514782A (ja) 芳香族化合物および抗腫瘍薬物の調製におけるその使用
JP7200120B2 (ja) Mk2阻害剤として有用なヘテロアリール化合物
CN112608318B (zh) 一种作为蛋白质激酶抑制剂的化合物及其用途
UA123689C2 (uk) Імідазопіролопіридинові сполуки як інгібітори кіназ родини jак
WO2019127008A1 (zh) 一种靶向降解btk的化合物及其应用
MX2014014961A (es) Compuestos y composiciones que modulan la actividad del receptor del factor de crecimiento epidermico (egfr).
AU2016203343A1 (en) Salts of an epidermal growth factor receptor kinase inhibitor
US20240350643A1 (en) Protein degradation agent
JP2007532601A (ja) 選択されたcgrp−拮抗薬、その調製方法および薬剤としてのその使用
EP4455133A1 (en) Multi-protein degradation agent having imide skeleton
JP2019526574A (ja) 化合物(2s,3r)−イソプロピル2−(((2−(1,5−ジメチル−6−オキソ−1,6−ジヒドロピリジン−3−イル)−1−((テトラヒドロ−2h−ピラン−4−イル)メチル)−1h−ベンゾ[d]イミダゾール−5−イル)メチル)アミノ)−3−ヒドロキシブタノエートエジシレートの水和物結晶
ES2379242B1 (es) Derivados de cromeno.
WO2021129841A1 (zh) 用作ret激酶抑制剂的化合物及其应用
CN109641909A (zh) 雷帕霉素信号通路抑制剂的机理靶标及其治疗应用
US11466008B2 (en) Co-crystals of neflamapimod (VX-745)
CN117751107A (zh) 有机吡啶-吡唑化合物及其用途
CN115368355A (zh) 一种吡唑并杂芳基类衍生物的结晶形式
CN113999235A (zh) 含氮杂环化合物的固体形式及其药物组合物和用途
CN113999236A (zh) 含氮杂环化合物的盐及其盐的固体形式、药物组合物和用途
CN114685449A (zh) 氟取代西洛他唑衍生物的制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant