CN112054222A - 用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其制备方法 - Google Patents

用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其制备方法 Download PDF

Info

Publication number
CN112054222A
CN112054222A CN202010921409.2A CN202010921409A CN112054222A CN 112054222 A CN112054222 A CN 112054222A CN 202010921409 A CN202010921409 A CN 202010921409A CN 112054222 A CN112054222 A CN 112054222A
Authority
CN
China
Prior art keywords
nickel
tantalum nitride
palladium
catalyst
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010921409.2A
Other languages
English (en)
Other versions
CN112054222B (zh
Inventor
姜召
野娜
方涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010921409.2A priority Critical patent/CN112054222B/zh
Publication of CN112054222A publication Critical patent/CN112054222A/zh
Application granted granted Critical
Publication of CN112054222B publication Critical patent/CN112054222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其制备方法,该催化剂由钯、镍、氮化钽、导电炭黑组成,其制备方法为在碱性乙二醇溶液中制备分散的碳载PdNi@TaN/C纳米电催化剂。本发明为首次制备合成导电炭黑负载氮化钽钯镍电催化剂,制备方法条件温和,操作简单可控,节能环保,具有良好的应用前景。本发明的电催化剂是第一次使用作为直接甲醇燃料电池阳极材料,与商业催化剂相比,贵金属用量显著降低、对碱性条件下甲醇的氧化反应具有极高电催化活性(为商业钯碳催化活性的17.8倍)、强抗CO中毒能力等优点。

Description

用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其 制备方法
技术领域
本发明属于燃料电池电催化剂技术领域,具体涉及一种用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其制备方法。
背景技术
直接甲醇燃料电池(DMFC)是将储存在燃料中的化学能(甲醇燃料)转变成电能,对外做功的发电装置。它具有理论比能量密度高,燃料来源丰富,价格低廉,环境友好等特点。对于燃料电池而言,催化剂是燃料电池的核心部分。
研究表明,钯(Pd)是碱性介质中甲醇氧化反应(MOR)的有效催化剂。然而,考虑到它是一种贵金属且容易被一氧化碳中毒,有必要进一步提高钯催化剂的催化活性和稳定性,以达到高效和低成本的目的,来满足燃料电池大规模的商业化需求。因此,开发高催化活性、稳定和低成本的催化剂是十分有必要的,但是迄今为止,有关直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂的研究还未见相关文献和专利报道。
当前制约直接甲醇燃料电池的关键因素在于如何设计开发同时具有高电催化活性、强抗CO中毒能力和较低贵金属用量的催化剂,从而推进直接甲醇燃料电池的规模化应用。
发明内容
为了解决上述现有技术瓶颈,本发明的目的在于提供一种用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其制备方法,本发明首次通过氮化钽修饰钯镍催化剂,制备合成导电炭黑负载氮化钽钯镍纳米电催化剂,制备方法条件温和,操作简单可控,节能环保。本发明电催化剂也是第一次作为直接甲醇燃料电池阳极材料,对碱性条件下甲醇的电氧化在降低贵金属用量的同时,通过镍和氮化钽的协同作用,依然具有高电催化活性、强抗CO中毒能力等优点,从而降低催化剂成本,提高燃料电池效率和贵金属利用率,加快其商业化应用的进程。
为达到上述目的,本发明采用以下技术方案:
一种用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂,该催化剂为钯镍氮化钽为壳、碳为核的核壳型催化剂,分子式为PdNi@TaN/C;该催化剂的钯、镍、氮化钽和导电炭黑组分在催化剂中所占的质量百分比分别为3-10%、0-10%、15-70%和15-70%。
所述用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂的制备方法,包括如下步骤:
1)在容器中加入氮化钽、导电炭黑、十六烷基三甲基溴化铵(CTAB)和乙二醇,放置于磁力搅拌器上搅拌使导电炭黑功能化,然后进行超声处理使氮化钽、CTAB、导电炭黑在乙二醇中分散均匀,得到混合物A;
2)将氯钯酸钠溶液、氯化镍溶液和氢氧化钾溶液加入到步骤1)得到的混合物A中,置于磁力搅拌器上搅拌均匀,得到混合物B,其中按照钯负载量为3-10%质量分数加入对应质量的氯钯酸钠溶液,按照镍负载量为0-10%质量分数加入对应质量的氯化镍溶液;
3)将步骤2)得到的混合物B升温至100-130℃搅拌1-6h,其中氯钯酸钠和氯化镍分别被还原为金属钯和镍,得到固液混合物,然后冷却至室温;
4)将冷却至室温后的固液混合物用去离子水和无水乙醇洗涤至无乙二醇、铵根离子以及氯离子残留,放入60~80℃的烘箱中干燥6~12h,经研磨得到用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂。
优选地,步骤(1)所述的磁力搅拌器上搅拌时间为15~30min;
优选地,步骤(1)所述的超声处理时间为60-120min;
优选地,步骤(1)所述氮化钽和导电炭黑的质量比0.5~3:1,氯钯酸钠和氢氧化钾的质量比1:5~65,氮化钽和乙二醇量的关系按照每4mg氮化钽对应1mL乙二醇。
步骤(2)所述氯钯酸钠溶液和氢氧化钾溶液加入的量使得氯钯酸钠和氢氧化钾的质量比1:5~65。所述催化剂作为直接甲醇燃料电池的阳极电催化剂。
上述用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂的制备方法,所用氯钯酸钠、氯化镍、氮化钽、乙二醇、CTAB的剂量可进行等比增加或减少。通过对最终产物进行结构表征分析,钯镍氮化钽均匀分散在载体导电炭黑的表面,催化剂平均粒径约3nm。通过对最终产物进行电化学分析测试可得,该产物表现出优越的甲醇电催化氧化性能,为商业钯碳的17.8倍。
本发明中,引入氮化物以及第二金属于碳载钯基催化剂中显著提高了催化剂的活性、抗毒化能力以及稳定性,同时也大大减少了贵金属的使用量,降低了催化剂的制备成本。和现有技术相比,本发明具有以下优点:
1、本发明为首次制备合成碳载氮化钽钯镍电催化剂,制备方法条件温和,操作简单可控,节能环保,有利于实现工业化生产。其中氮化钽首次与钯镍催化剂掺杂,得到负载在导电炭黑上分散均匀的氮化钽钯镍纳米催化剂,并且表现出优异的甲醇电催化氧化性能。
2、本发明使用乙二醇溶剂热法制备碳载氮化钽钯镍电催化剂,其中乙二醇溶液由于粘度较大,可有效防止团聚,从而使钯金属更加充分地与氮化钽混合,并均匀分散在导电炭黑上,最终增加了活性位点;本发明用碱性乙二醇溶液作为还原剂,其在100~130℃温度范围内表现出较温和的还原性,避免钯金属因被还原速度过快而团聚,产生较大颗粒。
3、本发明在钯镍催化剂中首次添加了过渡金属氮化钽。考虑到氮化钽类铂的电子特性,氮化钽的引入使核壳型钯镍氮化钽更加充分地利用钯镍和氮化钽之间的相互作用,改变了催化剂整体的电子特性,进而改善中间产物的吸附,同时提升了催化活性和稳定性、降低了钯使用量,还提高了催化剂抗中毒能力。
4、本发明所制碳载核壳型钯镍氮化钽(PdNi@TaN/C)纳米电催化剂首次应用到直接甲醇燃料电池方面。具体表现为对碱性条件下甲醇的电氧化在较低贵金属用量下,依然表现出高电催化活性(为商业钯碳催化活性的17.8倍)、强抗CO中毒能力和稳定性等优点,从而降低了成本,提高了燃料电池的效率和贵金属的利用率,为促进高效和低成本的燃料电池催化剂的发展提供了新思路。
附图说明
图1是实施例一制备得到的碳载氮化钽钯镍纳米电催化剂的X射线衍射照片。
图2是实施例一制备得到的碳载氮化钽钯镍纳米电催化剂的X射线光电子能谱图的钯元素分峰拟合。
图3是实施例一制备得到的碳载氮化钽钯镍纳米电催化剂的高清透射电子显微镜照片。
图4是实施例一制备得到的碳载氮化钽钯镍纳米电催化剂在氮气饱和的1M氢氧化钠和1M甲醇混合液中,扫描速度为50mV/s室温下测得的循环伏安图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
实施例一:
本实施例一种用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂的制备方法,在容器中加入270mg氮化钽、135mg导电炭黑、500mg CTAB和67.5mL乙二醇,放置于磁力搅拌器上搅拌15min,并超声处理120min,使氮化钽和导电炭黑在乙二醇中分散均匀,得到混合物A。
将4.9mg氯钯酸钠、1.3mg氯化镍和89.8mg氢氧化钾加入到8mL上述混合物A中,放置于磁力搅拌器上搅拌30min,然后升温至120℃搅拌2h,其中氯钯酸钠和氯化镍分别被还原为金属钯和镍,得到固液混合物,随后冷却至室温。
将冷却至室温后的固液混合物用去离子水和无水乙醇洗涤至无乙二醇、铵根离子以及氯离子残留,放入60℃的烘箱中干燥12h,经研磨得到用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂(钯、镍、氮化钽、导电炭黑组分的质量百分比为3.33%、0.60%、64.05%和32.02%)。
对本实施例所制备催化剂进行结构表征,X射线衍射照片(如图1)可以看出氮化钽的特征峰、X射线光电子能谱图(如图2)和透射电子显微镜照片(如图3),可以看出该催化剂钯的特征,其中催化剂平均粒径为3nm,分散均匀,其中大部分钯以零价态钯在催化剂表面上存在。其中氧化峰值电流强度(图4,表1)代表着电催化氧化性能,可见碳载钯镍氮化钽纳米电催化剂甲醇电催化性能是商业钯碳的17.8倍,说明了氮化钽和镍对钯催化剂的协同作用有效地提升了甲醇催化性能。
表1直接甲醇燃料电池的催化剂性能
Figure BDA0002666869110000071
实施例二:
本实施例一种用于直接甲醇燃料电池的碳载钯氮化钽纳米电催化剂的制备方法,在容器中加入270mg氮化钽、135mg导电炭黑、500mg CTAB和67.5mL乙二醇,放置于磁力搅拌器上搅拌30min,并超声处理120min,使氮化钽和导电炭黑在乙二醇中分散均匀,得到混合物A。
将4.9mg氯钯酸钠和89.8mg氢氧化钾加入到8mL上述混合物A中,放置于磁力搅拌器上搅拌30min,然后升温至120℃搅拌2h,其中氯钯酸钠被还原为金属钯,得到固液混合物,随后冷却至室温。
将冷却至室温后的固液混合物用去离子水和无水乙醇洗涤至无乙二醇、铵根离子以及氯离子残留,放入60℃的烘箱中干燥12h,经研磨得到用于直接甲醇燃料电池的碳载钯氮化钽纳米电催化剂(钯、氮化钽、导电炭黑组分的质量百分比为3.33%、64.44%和32.23%)。
对此催化剂的性能进行评价(如表1),其中氧化峰值电流强度代表着电催化氧化性能,可见碳载钯氮化钽纳米电催化剂甲醇催化性能是商业钯碳的9.1倍。
实施例三:
本实施例一种用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂的制备方法,在容器中加入270mg氮化钽、135mg导电炭黑、405mg CTAB和67.5mL乙二醇,放置于磁力搅拌器上搅拌20min,并超声处理60min,使氮化钽和导电炭黑在乙二醇中分散均匀,得到混合物A。
将4.9mg氯钯酸钠、1.3mg氯化镍和89.8mg氢氧化钾加入到8mL上述混合物A中,放置于磁力搅拌器上搅拌30min,然后升温至100℃搅拌2h,其中氯钯酸钠和氯化镍分别被还原为金属钯和镍,得到固液混合物,随后冷却至室温。
将冷却至室温后的固液混合物用去离子水和无水乙醇洗涤至无乙二醇、铵根离子以及氯离子残留,放入80℃的烘箱中干燥6h,经研磨得到用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂(钯、镍、氮化钽、导电炭黑组分的质量百分比为3.33%、0.60%、64.05%和32.02%)。
对此催化剂的性能进行评价,其中甲醇氧化峰值电流强度为1600.87A gPd -1
实施例四:
本实施例一种用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂的制备方法,在容器中加入270mg氮化钽、135mg导电炭黑、675mg CTAB和67.5mL乙二醇,放置于磁力搅拌器上搅拌15min,并超声处理70min,使氮化钽和导电炭黑在乙二醇中分散均匀,得到混合物A。
将4.9mg氯钯酸钠、1.3mg氯化镍和89.8mg氢氧化钾加入到8mL上述混合物A中,放置于磁力搅拌器上搅拌30min,然后升温至130℃搅拌2h,其中氯钯酸钠和氯化镍分别被还原为金属钯和镍,得到固液混合物,随后冷却至室温。
将冷却至室温后的固液混合物用去离子水和无水乙醇洗涤至无乙二醇、铵根离子以及氯离子残留,放入60℃的烘箱中干燥12h,经研磨得到用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂(钯、镍、氮化钽、导电炭黑组分的质量百分比为3.33%、0.60%、64.05%和32.02%)。
对此催化剂的性能进行评价,其中甲醇氧化峰值电流强度为2132.12AgPd -1
对比例一:
本对比例一种用于直接甲醇燃料电池的碳载钯镍纳米电催化剂的制备方法,在容器中加入135mg导电炭黑和67.5mL乙二醇,放置于磁力搅拌器上搅拌20min,并超声处理120min,使导电炭黑在乙二醇中分散均匀,得到混合物A。
将1.47mg氯钯酸钠、0.40mg氯化镍和89.8mg氢氧化钾加入到8mL上述混合物A中,放置于磁力搅拌器上搅拌30min,然后升温至120℃搅拌2h。其中氯钯酸钠和氯化镍分别被还原为金属钯和镍,得到固液混合物,随后冷却至室温。
将冷却至室温后的固液混合物用去离子水和无水乙醇洗涤至无乙二醇、铵根离子以及氯离子残留,放入60℃的烘箱中干燥12h,经研磨即得到用于直接甲醇燃料电池的碳载钯镍纳米电催化剂(钯、镍、导电炭黑组分的质量百分比为3.33%、0.60%、96.07%)。
对此催化剂的性能进行评价(如表1),其中氧化峰值电流强度代表着电催化氧化性能,可见碳载钯镍纳米电催化剂的甲醇性能是商业钯碳的5.9倍。
对比例二:
对比例二为购买的商业钯碳催化剂。
申请人声明,以上实施例仅为本发明的较佳实施例而已,并不用以限制本发明。即本发明通过上述实施例来说明本发明的详细方法,但并不局限于本发明的范围。所属技术领域的技术人员应该清楚,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均应包含在本发明的保护范围和公开范围之内。

Claims (7)

1.一种用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂,其特征在于:该催化剂为钯镍氮化钽为壳、碳为核的核壳型催化剂,分子式为PdNi@TaN/C;该催化剂中的钯、镍、氮化钽和导电炭黑组分在催化剂中所占的质量百分比分别为3-10%、0-10%、15-70%和15-70%。
2.如权利要求1所述的用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂,其特征在于:所述钯镍氮化钽均匀分散在载体导电炭黑的表面,催化剂的平均粒径为2-3nm,具有优越的甲醇电催化氧化性能。
3.权利要求1或2所述的用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂的制备方法,其特征在于,包括如下步骤:
1)在容器中加入氮化钽、导电炭黑、十六烷基三甲基溴化铵CTAB和乙二醇,放置于磁力搅拌器上搅拌使导电炭黑功能化,然后进行超声处理使氮化钽、CTAB、导电炭黑在乙二醇中分散均匀,得到混合物A;
2)将氯钯酸钠溶液、氯化镍溶液和氢氧化钾溶液加入到步骤1)得到的混合物A中,置于磁力搅拌器上搅拌均匀,得到混合物B,其中按照钯负载量为3-10%质量分数加入对应质量的氯钯酸钠溶液,按照镍负载量为0-10%质量分数加入对应质量的氯化镍溶液;
3)将步骤2)得到的混合物B升温至100-130℃搅拌1-6h,其中氯钯酸钠和氯化镍分别被还原为金属钯和镍,得到固液混合物,然后冷却至室温;
4)将冷却至室温后的固液混合物用去离子水和无水乙醇洗涤至无乙二醇、铵根离子以及氯离子残留,放入60~80℃的烘箱中干燥6~12h,经研磨得到用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂。
4.如权利要求3所述的的制备方法,其特征在于:步骤(1)所述氮化钽和导电炭黑的质量比0.5~3:1,CTAB和导电炭黑的质量比1:3~5,氮化钽和乙二醇量的关系按照每4mg氮化钽对应1mL乙二醇。
5.如权利要求3所述的的制备方法,其特征在于:步骤(2)所述氯钯酸钠溶液和氢氧化钾溶液加入的量使得氯钯酸钠和氢氧化钾的质量比1:5~65。
6.如权利要求3所述的的制备方法,其特征在于:步骤(1)所述的磁力搅拌器上搅拌时间为15~30min,步骤(1)所述的超声处理时间为60-120min。
7.如权利要求1所述的碳载钯镍氮化钽纳米电催化剂的应用,其特征在于:所述催化剂作为直接甲醇燃料电池的阳极电催化剂。
CN202010921409.2A 2020-09-04 2020-09-04 用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其制备方法 Active CN112054222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010921409.2A CN112054222B (zh) 2020-09-04 2020-09-04 用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010921409.2A CN112054222B (zh) 2020-09-04 2020-09-04 用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN112054222A true CN112054222A (zh) 2020-12-08
CN112054222B CN112054222B (zh) 2021-12-28

Family

ID=73606708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010921409.2A Active CN112054222B (zh) 2020-09-04 2020-09-04 用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN112054222B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328107A (zh) * 2021-05-25 2021-08-31 西安交通大学 一种钯镍碳电催化剂及其制备方法
CN113745552A (zh) * 2021-08-17 2021-12-03 西安交通大学 用于直接乙醇和甲醇燃料电池的碳载钯锡氮化钽纳米电催化剂及其制备方法
CN113839056A (zh) * 2021-08-28 2021-12-24 西安交通大学 用于直接甲醇和甲酸燃料电池的碳载钯氮化铌纳米电催化剂及其制备方法
CN113839053A (zh) * 2021-08-28 2021-12-24 西安交通大学 用于碱性直接甲醇燃料电池的非贵金属碳载镍锡氮化钽纳米电催化剂及其制备方法
CN114400341A (zh) * 2022-01-18 2022-04-26 中国科学院过程工程研究所 一种Pd-Ni氧还原催化剂及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730906A1 (en) * 1995-03-08 1996-09-11 Mitsubishi Chemical Corporation Catalyst and method for selective oxidation of hydrogen, and method for dehydrogenation of hydrocarbon
CN103191757A (zh) * 2013-03-26 2013-07-10 上海电力学院 一种PdNiW/C三元合金纳米催化剂及其制备方法
CN104409745A (zh) * 2014-11-19 2015-03-11 中国科学院长春应用化学研究所 高性能超低钯载量的直接甲酸用燃料电池阳极电催化剂Pd-CoP/C的制法
CN105032460A (zh) * 2015-06-23 2015-11-11 华南理工大学 基于氮化物纳米粒子的低铂催化剂及其制备方法
CN106964346A (zh) * 2017-03-16 2017-07-21 西安交通大学 一种用于十二氢乙基咔唑脱氢的钯/石墨烯催化剂及其制备方法
CN109987582A (zh) * 2019-04-15 2019-07-09 余菲 一种全液相加氢技术

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730906A1 (en) * 1995-03-08 1996-09-11 Mitsubishi Chemical Corporation Catalyst and method for selective oxidation of hydrogen, and method for dehydrogenation of hydrocarbon
CN103191757A (zh) * 2013-03-26 2013-07-10 上海电力学院 一种PdNiW/C三元合金纳米催化剂及其制备方法
CN104409745A (zh) * 2014-11-19 2015-03-11 中国科学院长春应用化学研究所 高性能超低钯载量的直接甲酸用燃料电池阳极电催化剂Pd-CoP/C的制法
CN105032460A (zh) * 2015-06-23 2015-11-11 华南理工大学 基于氮化物纳米粒子的低铂催化剂及其制备方法
CN106964346A (zh) * 2017-03-16 2017-07-21 西安交通大学 一种用于十二氢乙基咔唑脱氢的钯/石墨烯催化剂及其制备方法
CN109987582A (zh) * 2019-04-15 2019-07-09 余菲 一种全液相加氢技术

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKAHASHI S. ET AL.: "Oxygen Reduction Reaction Activity and Durability for Pt/TaNx Model Catalysts Fabricated in Ultra-High-Vacuum", 《POLYMER ELECTROLYTE FUEL CELLS 16》 *
WASSNER M. ET AL.: "Synthesis and electrocatalytic performance of spherical core-shell tantalum (oxy)nitride@nitrided carbon composites in the oxygen reduction reaction", 《ELECTROCHIMICA ACTA》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328107A (zh) * 2021-05-25 2021-08-31 西安交通大学 一种钯镍碳电催化剂及其制备方法
CN113745552A (zh) * 2021-08-17 2021-12-03 西安交通大学 用于直接乙醇和甲醇燃料电池的碳载钯锡氮化钽纳米电催化剂及其制备方法
CN113745552B (zh) * 2021-08-17 2024-04-09 西安交通大学 用于直接乙醇和甲醇燃料电池的碳载钯锡氮化钽纳米电催化剂及其制备方法
CN113839056A (zh) * 2021-08-28 2021-12-24 西安交通大学 用于直接甲醇和甲酸燃料电池的碳载钯氮化铌纳米电催化剂及其制备方法
CN113839053A (zh) * 2021-08-28 2021-12-24 西安交通大学 用于碱性直接甲醇燃料电池的非贵金属碳载镍锡氮化钽纳米电催化剂及其制备方法
CN113839056B (zh) * 2021-08-28 2024-04-09 西安交通大学 用于直接甲醇和甲酸燃料电池的碳载钯氮化铌纳米电催化剂及其制备方法
CN113839053B (zh) * 2021-08-28 2024-04-09 西安交通大学 用于碱性直接甲醇燃料电池的非贵金属碳载镍锡氮化钽纳米电催化剂及其制备方法
CN114400341A (zh) * 2022-01-18 2022-04-26 中国科学院过程工程研究所 一种Pd-Ni氧还原催化剂及其制备方法与应用
CN114400341B (zh) * 2022-01-18 2024-03-26 中国科学院过程工程研究所 一种Pd-Ni氧还原催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN112054222B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN112054222B (zh) 用于直接甲醇燃料电池的碳载钯镍氮化钽纳米电催化剂及其制备方法
CN111224116B (zh) 一种用于燃料电池的催化剂及其制备方法
CN105170169B (zh) 一种氮掺杂石墨烯‑铁基纳米颗粒复合型催化剂及其制备方法
CN111628178B (zh) 用于直接甲醇和甲酸燃料电池的碳载钯铜氮化钽纳米电催化剂及其制备方法
CN104353480B (zh) 三维氮掺杂石墨烯载铂铜复合电催化剂及其制备方法
CN101279255A (zh) 一种制备直接醇类燃料电池用Pd基纳米催化剂的方法
CN112436158B (zh) 一种醇类燃料电池的阳极催化剂
CN112652780B (zh) 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法
CN1428882A (zh) 一种质子交换膜燃料电池电极催化剂的制备方法
CN102078816A (zh) 硒/碳复合材料及制备和在制备燃料电池催化剂中的应用
CN112736257B (zh) 一种嵌入式多孔Fe-Nx@Pd-NC纳米棒的制备方法及其制备的纳米棒和应用
CN112002915B (zh) 一种氧电极双功能催化剂、制备方法及应用
CN108110260B (zh) 一种金属-有机框架修饰的燃料电池催化剂及制备方法
CN112421062A (zh) 一种单原子铁分散/银纳米颗粒复合结构催化剂的制备方法
CN111146460A (zh) 一种燃料电池合金催化剂、其制备方法和在燃料电池中的应用
CN103579639B (zh) 一种燃料电池用阴极催化剂及制备方法
CN110350213B (zh) 高效PtRu/C双功能燃料电池阳极催化剂及其制备方法
CN103401000B (zh) 质子交换膜燃料电池用催化剂、其制备方法及质子交换膜燃料电池
CN101596453A (zh) 一种以碳载体为载体的Pt催化剂的制备方法
CN100413131C (zh) 经导电聚合物修饰并以导电陶瓷为载体的燃料电池催化剂及制备
CN109802143B (zh) 一种燃料电池3D网状结构PdRh合金电催化剂的制备方法及应用
Yi et al. Carbon supported Pd–Sn nanoparticle eletrocatalysts for efficient borohydride electrooxidation
CN115241470A (zh) 碳纳米管交连铁氮掺杂碳骨架催化剂及其制备方法和应用
CN114388829A (zh) 一种直接甲醇燃料电池阳极用过渡金属基催化剂及其制备方法
CN113745552B (zh) 用于直接乙醇和甲醇燃料电池的碳载钯锡氮化钽纳米电催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant