CN112054219B - 氢燃料电池用阴极催化剂活性材料、制备方法及催化剂 - Google Patents

氢燃料电池用阴极催化剂活性材料、制备方法及催化剂 Download PDF

Info

Publication number
CN112054219B
CN112054219B CN202010977089.2A CN202010977089A CN112054219B CN 112054219 B CN112054219 B CN 112054219B CN 202010977089 A CN202010977089 A CN 202010977089A CN 112054219 B CN112054219 B CN 112054219B
Authority
CN
China
Prior art keywords
nanowire
containing salt
fuel cell
ptnigare
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010977089.2A
Other languages
English (en)
Other versions
CN112054219A (zh
Inventor
黄宏文
高磊
王雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202010977089.2A priority Critical patent/CN112054219B/zh
Publication of CN112054219A publication Critical patent/CN112054219A/zh
Application granted granted Critical
Publication of CN112054219B publication Critical patent/CN112054219B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种氢燃料电池用阴极催化剂活性材料,由Pt、Ni、Ga和Re金属元素形成的一维PtNiGaRe四元合金纳米线;并提供了在碳上负载一维PtNiGaRe四元合金纳米线可得到氢燃料电池用阴极催化剂。也提供了一种四元合金纳米线的制备方法,将含Pt的盐、含Ni的盐、含Ga的盐、高铼酸盐和含有十六烷基三甲基分子链的季铵盐分散在油胺中,超声形成均匀体系,再向其中加入W(CO)6加入上述体系中于一定温度下,反应一定时间后,经离心分离—清洗得到一维超细PtNiGaRe纳米线。本发明的四元一维合金纳米线材料,是一种全新的四元合金催化体系,不仅增加了表面铂原子的利用率,而且提高催化剂的活性和稳定性。本发明首次采用湿化学法一步合成四种金属的合金纳米线,不仅操作简单,且反应条件相较温和,可大幅减少Pt的使用。

Description

氢燃料电池用阴极催化剂活性材料、制备方法及催化剂
技术领域
本发明涉及一种用于氢燃料电池的材料及制备方法,特别涉及一种氢燃料电池用阴极催化剂活性材料、制备方法及催化剂。
背景技术
氢燃料电池具有高能量转换率和零排放等独特的技术优势,已被公认为是一种极为有前途的清洁能源转换技术。尽管氢燃料电池具有广阔的应用前景,但需要在阴极上负载大量的贵金属Pt以改善缓慢的氧还原反应(ORR)的反应动力学以及在实际应用中的耐久性问题,其大规模商业化应用依然受到限制。因此,如何降低Pt的载量并同时提高催化剂的催化活性和稳定性,是目前研究的焦点之一。针对上述问题,研究人员主要从两方面对催化剂进行优化:1)通过减小材料尺寸,构建特定的核壳结构及中孔结构,提高催化剂的活性位点;2)或者调整Pt基催化剂的结构进而改变与碳载体接触的表面积,从而提高催化剂的耐久性来减低成本。一维超薄Pt纳米线由于其独特的结构优势,能够提高Pt原子的利用率,从而提高氧还原的催化活性。同时,一维纳米线结构能够增大与碳载体接触的表面积,加强了材料与碳载体之间的相互作用,从而大大提高催化剂的稳定性。因此,一维超薄Pt纳米线显示出同时解决氧还原活性和耐久性不足问题的巨大前景。基于一维Pt纳米线,研究人员将其与其他金属合金化形成Pt基纳米线,通过不同合金组分之间的协同作用进一步增强了催化剂的活性和稳定性。专利CN106925771A得到的超细PtRh合金纳米线的面积活性和质量活性比商用Pt/C催化剂分别提高了约5和8倍,且稳定性也得到明显提高。专利CN111224117A得到PtFe、PtCo、PtNi、PtMo超细纳米线,且均展现出了较为优异的氧还原催化活性。但值得注意的是,上述纳米线结构研究主要集中于对Pt基二元合金的成分调控,材料虽已具有较优的氧还原催化活性,但稳定性却欠佳。多元合金化被认为是一种解决途径。但多元合金因为各个元素的还原电位截然不同,较二元合金纳米线的制备方法,其合成方法也极具挑战性。
发明内容
本发明旨在提供一种氢燃料电池用阴极催化剂活性材料,具有较优的氧还原催化活性和催化稳定性,并提供了其制备方法。本发明通过以下方案实现。
一种氢燃料电池用阴极催化剂活性材料,其特征在于:由Pt、Ni、Ga和Re金属元素形成的一维PtNiGaRe四元合金纳米线,合金纳米线长度为50~100nm,直径为0.8~1.2nm。
材料中Pt、Ni、Ga和Re的原子比为(2.80~3.63):1.00:(0.06~0.25):(0.07~0.20)时,材料的性能更佳。
在碳上负载如上述的一维PtNiGaRe四元合金纳米线可得到氢燃料电池用阴极催化剂,其旋转圆盘电极测试的半波电位较活性碳负载金属Pt的催化剂的半波电位向正偏移76mV。活性碳负载该一维PtNiGaRe四元合金纳米线可基本采用现有技术中制备碳负载铂的制备方法,将待负载的金属铂更换为一维PtNiGaRe四元合金纳米线,并包含一个用适当的有机溶剂去除纳米线表面的表面活性剂的步骤。
制备上述的氢燃料电池用阴极催化剂活性材料的方法,可溶于醇类的含Pt的盐、可溶于醇类的含Ni的盐、可溶于醇类的含Ga的盐、高铼酸盐和含有十六烷基分子链的季铵盐分散在油胺中,超声形成均匀体系,再向其中加入W(CO)6加入上述体系中,在温度为160~180℃条件下,反应1~4小时后,将得到的反应产物与溶液离心分离后用混合有机试剂清洗,得到一维超细PtNiGaRe纳米线;所述混合有机试剂由碳原子数小于6的液态烷烃与原子数小于6的液态醇组成,且液态烷烃与液态醇的体积比为2:1;W(CO)6的质量与所述油胺的体积比为(4~7):1,分散于油胺中的物质的总质量与油胺体积比为(30~50):1。
所述的含Pt的盐选自乙酰丙酮铂,含Ni的盐选自乙酰丙酮镍,含Ga的盐选自乙酰丙酮镓,高铼酸盐选自高铼酸铵,含有十六烷基分子链的季铵盐选自十六烷基三甲基溴化铵。分散于油胺中的含Pt的盐、含Ni的盐、含Ga的盐和高铼酸盐的Pt、Ni、Ga、Re的原子摩尔比为:(1.64~2.01):1.00:(0.78~1.46):(0.25~0.43)。
与现有技术相比,本发明的有益效果在于:
1)本发明的PtNiGaRe四元一维合金纳米线材料,是一种全新的四元合金催化体系,增加了表面铂原子的利用率,进而提高催化剂的活性;纳米线结构增大与碳载体接触的表面积,加强了纳米线与碳载体之间的相互作用,有助于防止纳米线的脱落,从而大大提高催化剂的稳定性。
2)本发明制备的一维PtNiGaRe四元合金材料,独特的超细纳米线结构大大地提高了表面铂原子的利用率,而各元素组分的协同作用,能够大幅度提高氧还原活性。材料经氧还原催化测试表明,碳负载的一维超细PtNiGaRe合金纳米线制备得到的催化剂的半波电位比商用Pt/C催化剂向正偏移76mV,质量活性相较于商用Pt/C催化剂提高19.6倍,且加速循环稳定性测试20000圈后,质量活性仅衰减10.6%。
3)本发明制备的一维PtNiGaRe四元合金材料,经燃料电池性能测试表明,碳负载的一维超细PtNiGaRe合金纳米线制备的催化剂在0.75V的放电电压下持续测试100h,其输出电流密度只有4.9%的衰减,表现出极好的稳定性。
4)多合金材料因为元素之间不同的还原电位是很难合成成功的,本发明提供了一种将Pt、Ni、Ga、Re四种还原电位相差较大的元素合成为一种元素均匀分布的一维超细合金纳米线的制备方法,且首次采用湿化学法一步合成四种金属的合金纳米线,不仅操作简单,且反应条件相较温和,可大幅减少Pt的使用。
附图说明
图1一维PtNiGaRe四元合金纳米线的透射电子显微镜(TEM)图
图2一维PtNiGaRe四元合金纳米线的STEM-EDS元素映射图和EDS线扫描图
图3 PtNiGaRe/C纳米催化剂与现有Pt/C催化剂的氧还原极化曲线对比图
图4 PtNiGaRe/C纳米催化剂的稳定性测试前后的氧还原极化曲线图
图5以PtNiGaRe/C为阴极米催化剂的燃料电池的电性能持续100h测试图
具体实施方式
实施例1
称取20.0mg Pt(acac)2、10.0mg Ni(acac)2、11.0mg Ga(acac)3、2.4mg NH4ReO4、75.0mg CTAB倒入反应瓶中,向其中加入4.0mL油胺,接着在超声机中超声30min形成均匀体系。再称取20.0mg W(CO)6加入至上述经超声后形成的均匀体系内,拧紧瓶盖,转动反应瓶,使W(CO)6相对均匀的铺在反应瓶底部,最后转移至170℃的油浴锅中反应2h。之后冷却至室温,在13000转/min下离心分离,将所得分离后的固体部分的样品用体积比为2:1己烷和乙醇的混合有机溶剂清洗4次,之后再于真空下干燥,获得一维PtNiGaRe合金纳米线材料。
图1为上述制备的由Pt、Ni、Ga和Re金属元素形成的一维PtNiGaRe四元合金纳米线的透射电子显微镜(TEM)图,从图1中可得到,合成的一维PtNiGaRe四元合金纳米线的直径约为1nm,纳米线长度分布在50~100nm。
图2a和图2b分别为上述一维PtNiGaRe四元合金纳米线的STEM-EDS元素映射图和EDS线扫描图。从图2a和图2b)可以清晰地看出,Pt、Ni、Ga、Re元素均匀地分布在整个纳米线中;纳米线样品通过电感耦合等离子体原子发射光谱法(ICP-AES)进行元素含量分析,可知Pt、Ni、Ga、Re的原子比为2.98:1.00:0.11:0.09。
实施例2
称取4.0mg实例1制备的一维PtNiGaRe合金纳米线材料,将其溶解于8mL氯仿溶液中,并超声处理1h,将上述分散均匀的溶液滴加到含有16mg炭黑的乙醇溶液中并剧烈搅拌30min;将所得混合物在10000转/min下离心分离,将分离后的固体样品用己烷清洗两次,再将其重新分散在乙酸中,在70℃加热12h以去除纳米线表面上的表面活性剂;之后再通过离心分离,将分离后的固体样品用用乙醇洗涤5次,干燥后得到碳负载的一维PtNiGaRe合金纳米线材料的催化剂(即PtNiGaRe/C纳米催化剂)。
为对比本实施例催化剂的催化活性,将实施例2的PtNiGaRe/C纳米催化剂与现有Pt/C催化剂在相同测试条件下,采用三电体系分别进行氧还原测试,图3为实例2的PtNiGaRe/C纳米催化剂与现有Pt/C催化剂的氧还原极化曲线对比图。从图3中可以看出,PtNiGaRe/C纳米催化剂半波电位比现有Pt/C催化剂向正偏移76mV,说明本发明制备的PtNiGaRe/C合金纳米线催化剂对氧还原反应具有优异的催化活性。
图4为采用本实施例的PtNiGaRe/C纳米催化剂的稳定性测试前后的氧还原极化曲线图,稳定性测试条件为:以O2饱和的0.1M的HClO4作为电解质溶液,测试电压范围为0.6~1.1VRHE,以100mV/s的扫描速度进行扫描测试。从图5中可以看出,在加速稳定性测试中经20000次循环后,PtNiGaRe/C纳米催化剂的极化曲线位移几乎可以忽略不计,表现出极好的稳定性。
实施例3
称取5mg实例2步所得的PtNiGaRe/C纳米催化剂与1.16mL异丙醇、0.289mL去离子水和0.054mL Nafion酒精溶液混合,超声处理1h后形成均匀混合的催化剂墨水溶液。将上述催化剂墨水溶液喷涂在碳纸上,用作燃料电池膜电极组件的阴极催化剂,进行一维PtNiGaRe合金纳米线的燃料电池性能测试。
在恒电位0.75V下持续测试上述燃料电池的电性能100h,其结果如图5所示。从图中可看到,上述采用PtNiGaRe/C纳米催化剂的燃料电池输出电流密度衰减几乎可以忽略不计,仅下降4.9%,表现出极佳的稳定性。
以上所述,仅为本发明较优的具体实施方式,但本发明的保护范围不局限于此。对于任何熟悉本领域技术的人员,显然可以容易地利用上述技术内容对本发明技术方案进行各种变动或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,根据本发明的技术方案所做的任何修改和等同替换,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种氢燃料电池用阴极催化剂活性材料,其特征在于:由Pt、Ni、Ga和Re金属元素形成的一维PtNiGaRe四元合金纳米线,合金纳米线长度为50~100 nm,直径为0.8~1.2 nm,Re为金属元素铼;合金纳米线中Pt、Ni、Ga和Re的原子比为(2.80~3.63):1.00:(0.06~0.25):(0.07~0.20)。
2.一种氢燃料电池用阴极催化剂,其特征在于:在碳上负载如权利要求1所述的氢燃料电池用阴极催化剂活性材料。
3.一种制备权利要求1所述的氢燃料电池用阴极催化剂活性材料的方法,其特征在于:将可溶于醇类的含Pt的盐、可溶于醇类的含Ni的盐、可溶于醇类的含Ga的盐、高铼酸盐和含有十六烷基三甲基分子链的季铵盐分散在油胺中,超声形成均匀体系,再向其中加入W(CO)6,所述分散于油胺中的含Pt的盐、含Ni的盐、含Ga的盐和高铼酸盐的Pt、Ni、Ga、Re的原子摩尔比为(1.64~2.01):1.00:(0.78~1.46):(0.25~0.43);在温度为160~180℃条件下,反应1~4小时后,将得到的反应产物与溶液离心分离后用混合有机试剂清洗,得到一维超细PtNiGaRe纳米线;所述混合有机试剂由碳原子数小于6的液态烷烃与原子数小于6的液态醇组成,且液态烷烃与液态醇的体积比为2:1;所述W(CO)6的质量与所述油胺的体积比为(4~7):1;分散于油胺中的物质的总质量与油胺体积比为(30~50):1。
4.如权利要求3所述的制备氢燃料电池用阴极催化剂活性材料的方法,其特征在于:所述的含Pt的盐选自乙酰丙酮铂,含Ni的盐选自乙酰丙酮镍,含Ga的盐选自乙酰丙酮镓,高铼酸盐选自高铼酸铵。
CN202010977089.2A 2020-09-16 2020-09-16 氢燃料电池用阴极催化剂活性材料、制备方法及催化剂 Active CN112054219B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010977089.2A CN112054219B (zh) 2020-09-16 2020-09-16 氢燃料电池用阴极催化剂活性材料、制备方法及催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010977089.2A CN112054219B (zh) 2020-09-16 2020-09-16 氢燃料电池用阴极催化剂活性材料、制备方法及催化剂

Publications (2)

Publication Number Publication Date
CN112054219A CN112054219A (zh) 2020-12-08
CN112054219B true CN112054219B (zh) 2021-10-08

Family

ID=73602978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010977089.2A Active CN112054219B (zh) 2020-09-16 2020-09-16 氢燃料电池用阴极催化剂活性材料、制备方法及催化剂

Country Status (1)

Country Link
CN (1) CN112054219B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599797B (zh) * 2020-12-16 2022-06-24 上海电力大学 一种高活性燃料电池用双金属PtSn/C催化剂及其制备与应用
CN114497603B (zh) * 2021-12-17 2023-07-11 深圳航天科技创新研究院 一种燃料电池用催化剂及其制备方法和燃料电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1802762A (zh) * 2003-07-16 2006-07-12 景垣实业株式会社 用于燃料电池电极催化剂的纳米结构金属-碳复合物及其制备方法
CN101926034A (zh) * 2008-01-28 2010-12-22 丰田自动车株式会社 燃料电池用电极催化剂、其制造方法以及使用该催化剂的固体高分子型燃料电池
CN106816606A (zh) * 2017-01-19 2017-06-09 广西师范大学 一种凹立方体PtLa合金纳米晶催化剂的制备与应用
CN108736030A (zh) * 2018-05-17 2018-11-02 福州大学 一种质子交换膜燃料电池用多孔无碳催化剂及其制备方法
CN109921046A (zh) * 2017-12-12 2019-06-21 中国科学院大连化学物理研究所 成分和结构形貌可控的Pt合金氧还原催化剂及其制备方法
CN110137517A (zh) * 2019-05-28 2019-08-16 湖南大学 一种用于质子交换膜燃料电池阴极催化剂的金属材料及制备方法
CN111068713A (zh) * 2019-12-03 2020-04-28 华侨大学 一种多金属一维纳米材料、制备方法及催化剂

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140051013A1 (en) * 2012-08-14 2014-02-20 Yossef A. Elabd Ion conducting nanofiber fuel cell electrodes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1802762A (zh) * 2003-07-16 2006-07-12 景垣实业株式会社 用于燃料电池电极催化剂的纳米结构金属-碳复合物及其制备方法
CN101926034A (zh) * 2008-01-28 2010-12-22 丰田自动车株式会社 燃料电池用电极催化剂、其制造方法以及使用该催化剂的固体高分子型燃料电池
CN106816606A (zh) * 2017-01-19 2017-06-09 广西师范大学 一种凹立方体PtLa合金纳米晶催化剂的制备与应用
CN109921046A (zh) * 2017-12-12 2019-06-21 中国科学院大连化学物理研究所 成分和结构形貌可控的Pt合金氧还原催化剂及其制备方法
CN108736030A (zh) * 2018-05-17 2018-11-02 福州大学 一种质子交换膜燃料电池用多孔无碳催化剂及其制备方法
CN110137517A (zh) * 2019-05-28 2019-08-16 湖南大学 一种用于质子交换膜燃料电池阴极催化剂的金属材料及制备方法
CN111068713A (zh) * 2019-12-03 2020-04-28 华侨大学 一种多金属一维纳米材料、制备方法及催化剂

Also Published As

Publication number Publication date
CN112054219A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
Wang et al. Novel flower-like PdAu (Cu) anchoring on a 3D rGO-CNT sandwich-stacked framework for highly efficient methanol and ethanol electro-oxidation
CN101305485B (zh) 燃料电池用电催化剂及其制备方法
Hernandez-Pichardo et al. The role of the WO3 nanostructures in the oxygen reduction reaction and PEM fuel cell performance on WO3–Pt/C electrocatalysts
US20180254490A1 (en) Catalyst comprising cobalt core and carbon shell for alkaline oxygen reduction and method for preparing the same
Wang et al. Low temperature and surfactant-free synthesis of Pd2Sn intermetallic nanoparticles for ethanol electro-oxidation
Su et al. Development of Au promoted Pd/C electrocatalysts for methanol, ethanol and isopropanol oxidation in alkaline medium
Moura Souza et al. Niobium: a promising Pd co-electrocatalyst for ethanol electrooxidation reactions
CN112054219B (zh) 氢燃料电池用阴极催化剂活性材料、制备方法及催化剂
CN108878911B (zh) 一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用
CN109930165B (zh) 用于二氧化碳电催化还原的Bi/C催化剂制备方法
CN103346331A (zh) 一种钯/二氧化钛/石墨烯催化剂及其制备方法
Li et al. Platinum-tellurium alloy metallene toward formic acid oxidation reaction
Romero-Cano et al. Solvent effect in the synthesis of nanostructured Pt–Sn/CNT as electrocatalysts for the electrooxidation of ethanol
CN106784901A (zh) 基于多壁碳纳米管载PdCd合金催化剂及其制备方法和应用
JP4678244B2 (ja) 燃料電池用触媒及びダイレクトメタノール型燃料電池
CN113258085A (zh) 一种含氧硅纳米片负载型贵金属催化剂及其制备方法和应用
CN110931804B (zh) Pt-Ni-Cu三元合金担载CeO2复合材料制备及其甲酸催化性能研究
Cai et al. Facile Synthesis of Quasi‐One‐Dimensional Au/PtAu Heterojunction Nanotubes and Their Application as Catalysts in an Oxygen‐Reduction Reaction
CN114959792B (zh) 一种单原子Pt催化剂的制备方法及其析氢应用
Zhang et al. Au Nanochains Anchored on 3D Polyaniline/Reduced Graphene Oxide Nanocomposites as a High‐Performance Catalyst for Ethanol Electrooxidation
CN114497603B (zh) 一种燃料电池用催化剂及其制备方法和燃料电池
CN114530608B (zh) 一种燃料电池用催化剂及其制备方法和燃料电池
CN113909487B (zh) 一种卷曲PtPd纳米枝晶及其制备方法和应用
CN114525542A (zh) 用于电催化还原co2的纳米钯合金催化剂及其制备方法与应用
CN110718695B (zh) 一种用于甲酸燃料电池铂基催化体系及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant