CN108878911B - 一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用 - Google Patents

一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN108878911B
CN108878911B CN201810626696.7A CN201810626696A CN108878911B CN 108878911 B CN108878911 B CN 108878911B CN 201810626696 A CN201810626696 A CN 201810626696A CN 108878911 B CN108878911 B CN 108878911B
Authority
CN
China
Prior art keywords
mwcnts
nitrogen
doped
carbon nanotube
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810626696.7A
Other languages
English (en)
Other versions
CN108878911A (zh
Inventor
樊友军
黄聪聪
项胜
唐华果
钟静萍
李丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Normal University
Original Assignee
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Normal University filed Critical Guangxi Normal University
Priority to CN201810626696.7A priority Critical patent/CN108878911B/zh
Publication of CN108878911A publication Critical patent/CN108878911A/zh
Application granted granted Critical
Publication of CN108878911B publication Critical patent/CN108878911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用,所述方法包括如下步骤:1)以氯化胆碱/尿素低共熔溶剂为介质,通过溶剂热法处理MWCNTs来制备氮掺杂MWCNTs复合材料;2)然后以氮掺杂MWCNTs为载体沉积Pt纳米颗粒,即制得氮掺杂MWCNTs载Pt催化剂。这种方法工艺简单、操作过程温和、环保,成本低廉,制得的Pt纳米颗粒催化剂电化学性能优良,具有良好的应用前景。这种方法所制备的Pt纳米颗粒催化剂能提高对甲醇氧化的电催化活性、稳定性和抗CO毒化的能力。

Description

一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备 方法与应用
技术领域
本发明涉及电催化和燃料电池领域,具体是一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用。
背景技术
电催化剂较高的成本和较慢的反应动力学一直是制约电催化相关领域(如燃料电池、电化学传感等)发展的关键因素。因此,如何提高催化剂中贵金属Pt的利用效率和电催化性能受到了人们的广泛重视,电催化剂中贵金属Pt纳米颗粒的分散性、利用效率和反应性能与所用的催化剂载体及其表面性质密切相关。目前,碳黑、碳纳米管、碳纳米纤维和石墨烯等多种碳纳米材料被广泛用作直接甲醇燃料电池阳极电催化剂的载体材料,其中,碳纳米管具有成本低、比表面积高、导电性和电化学稳定性优良等优点而倍受关注。然而,结构完整的原始碳纳米管其表面呈惰性状态,缺乏足够的表面活性位点来固定催化剂前驱体和催化纳米颗粒,容易引起负载催化纳米颗粒的团聚现象,这显然不利于碳纳米管基燃料电池催化剂的设计和构建,因此,提高碳纳米管的表面活性和分散性能仍然是人们面临的一大挑战。
近年来的研究发现,碳纳米管的外来原子(如:N,B,P和S等)掺杂能明显改善其表面性质并增强其表面沉积金属纳米颗粒的电化学活性,其中,碳纳米管的N掺杂最为常见。目前,尽管有较多的文献报道了N掺杂碳纳米管复合材料的制备,但所制得材料一般均用作燃料电池的阴极电催化剂来研究其对氧还原反应的活性。有关N掺杂碳纳米管用作燃料电池阳极电催化剂载体的研究文献报道不多,主要涉及如下的几篇文献报道:(1) 2009年《Electrochimica Acta》报道了N掺杂碳纳米管载PtRu纳米颗粒催化剂对甲醇电催化氧化性能的研究;(2) 2011年《International Journal of Hydrogen Energy》报道了N掺杂碳纳米管载Pt-SnO2复合催化剂分别对氧还原反应和甲醇氧化反应的电催化性能研究;(3)2013年《International Journal of Hydrogen Energy》报道了N掺杂碳纳米管载Ru修饰Pt纳米颗粒催化剂对甲醇氧化的电催化性能;(4) 2014年《Journal of Catalysis》报道了N掺杂碳纳米管上原子层沉积的PtRu催化剂的甲醇氧化反应电催化活性;(5) 2016年《Electrochemistry Communications》报道了N掺杂碳纳米管载Pd催化剂对碱性介质中乙醇氧化反应的电催化活性;(6) 2018年《ACS Sustainable Chemistry & Engineering》报道了三维N掺杂碳纳米管载Pd纳米颗粒催化剂对乙醇氧化反应的电催化活性。然而,上述的N掺杂碳纳米管材料均采用化学气相沉积(CVD)或含N的小分子物质(如:氨气、尿素、三聚氰胺)为前驱体等方法制备,通过低共熔溶剂(DES)一步溶剂热处理碳纳米管来制备N掺杂碳纳米管复合材料并将其应用于燃料电池阳极电催化剂载体的研究尚未见文献和专利报道。
发明内容
本发明的目的是针对现有技术的不足,而提供一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用。这种方法工艺简单、操作过程温和、环保,成本低廉,制得的Pt纳米颗粒催化剂电化学性能优良,具有良好的应用前景。这种方法所制备的Pt纳米颗粒催化剂能提高对甲醇氧化的电催化活性、稳定性和抗CO毒化的能力。
实现本发明目的的技术方案是:
一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂的制备方法,与现有技术不同的是,包括如下步骤:
1)在装有20 mL低共熔溶剂的容器中加入20mg酸化的多壁碳纳米管MWCNTs,常温下超声1小时,再磁力搅拌1 小时后转移至25mL反应釜中,110℃-230℃下反应1小时-10小时,所得产物经离心、洗涤和真空干燥后,即得到氮掺杂MWCNTs复合材料(N-MWCNTs);
2)在20mL乙二醇中按照一定的质量比(Pt/氮掺杂MWCNTs=1/4)加入10mg氮掺杂MWCNTs和19.3mM 的H2PtCl6溶液,超声处理2 小时后移入25mL反应釜中,90℃-200℃下反应24小时,反应产物经离心、洗涤和真空干燥后,得到氮掺杂MWCNTs载Pt催化剂(Pt/N-MWCNTs)。
用上述制备方法制得的氮掺杂MWCNTs载Pt催化剂(Pt/N-MWCNTs)。
用上述制备方法制得的氮掺杂MWCNTs载Pt催化剂(Pt/N-MWCNTs)在直接甲醇燃料电池中作为阳极电催化剂的应用。
掺杂碳纳米材料的电化学性质与掺杂原子的种类及其合成方法密切相关。本技术方案以氯化胆碱/尿素低共熔溶剂(DES)为介质,通过溶剂热法处理多壁碳纳米管(MWCNTs)来制备氮掺杂碳纳米管复合材料载体,不仅能显著改善负载Pt纳米颗粒的分散度,提高贵金属Pt的利用效率和和电化学活性表面积,还增强了Pt纳米颗粒与氮掺杂MWCNTs之间的电子转移相互作用。所制备的Pt纳米颗粒催化剂明显提高了对甲醇氧化的电催化活性、稳定性和抗CO毒化的能力。
本技术方案制备氮掺杂碳纳米管所采用的方法工艺简单,无需添加其他任何化学试剂即可实现碳纳米管的氮掺杂并调控其掺杂量,操作过程温和、环保,成本低廉,以该掺杂碳纳米管为载体制得的Pt纳米颗粒催化剂电化学性能优良,具有良好的应用前景。
这种方法工艺简单、操作过程温和、环保,成本低廉,制得的Pt纳米颗粒催化剂电化学性能优良,具有良好的应用前景。这种方法所制备的Pt纳米颗粒催化剂能提高对甲醇氧化的电催化活性、稳定性和抗CO毒化的能力。
附图说明
图1为实施例中制备氮掺杂碳纳米管载Pt催化剂的流程示意图;
图2为实施例中制备的氮掺杂MWCNTs载Pt催化剂的TEM图;
图3为实施例中制备的Pt/N-MWCNTs,Pt/AO-MWCNTs和商业Pt/C催化剂在 0.5MCH3OH + 0.5 M H2SO4 溶液中的循环伏安曲线示意图。
具体实施方式
下面结合附图和实施例对本发明内容作进一步的阐述,但不是对本发明的限定。
实施例:
参照图1,一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂的制备方法,包括如下步骤:
1)在装有20mL低共熔溶剂的容器中加入20mg酸化的多壁碳纳米管MWCNTs,常温下超声1小时,再磁力搅拌1小时后转移至25mL反应釜中,110℃-230℃下反应1小时-10小时,所得产物经离心、洗涤和真空干燥后,即得到氮掺杂MWCNTs复合材料(N-MWCNTs);
2)在20mL乙二醇中按照一定的质量比(Pt/氮掺杂MWCNTs=1/4)加入10mg氮掺杂MWCNTs和19.3mM 的H2PtCl6溶液,超声处理2小时后移入25mL反应釜中,90℃-200℃下反应24小时,反应产物经离心、洗涤和真空干燥后,得到氮掺杂MWCNTs载Pt催化剂(Pt/N-MWCNTs)。
用上述制备方法制得的氮掺杂MWCNTs载Pt催化剂(Pt/N-MWCNTs)。
用上述制备方法制得的氮掺杂MWCNTs载Pt催化剂(Pt/N-MWCNTs)在直接甲醇燃料电池中作为阳极电催化剂的应用。
如图2所示,TEM分析表明,本例所制备催化剂中Pt纳米颗粒的尺寸显著降低,且在氮掺杂MWCNTs上分散均匀,其平均粒径为3.0nm,明显小于同样条件下制备的酸化MWCNTs载Pt催化剂(记为Pt/AO-MWCNTs)中Pt纳米颗粒的尺寸(平均粒径3.4nm)。
通过循环伏安法和计时电流法比较了所制备的Pt/N-MWCNTs、Pt/AO-MWCNTs和商业Pt/C催化剂对甲醇氧化的电催化性能。结果表明,本例所制备Pt/N-MWCNTs催化剂具有较高的电化学活性表面积(149.6m2 g−1),其对甲醇氧化的电催化活性(784.6mA mgPt −1)分别为Pt/AO-MWCNTs(392.7mA mgPt −1)和商业Pt/C(163.1mA mgPt −1)催化剂的2.0和4.8倍,此外,Pt/N-MWCNTs催化剂还表现出优良的甲醇氧化电化学稳定性,如图3所示,分别给出了不同催化剂在0.5M CH3OH + 0.5M H2SO4溶液中的循环伏安曲线。
通过电化学CO溶出伏安法比较了所制备的Pt/N-MWCNTs、Pt/AO-MWCNTs和商业Pt/C催化剂的抗CO毒化的性能。结果指出,CO在Pt/N-MWCNTs催化剂上氧化的峰电位(0.62V)分别比Pt/AO-MWCNTs(0.66V)和商业Pt/C(0.65V)催化剂负移了40mV和30mV,这表明本例所制备的氮掺杂MWCNTs载Pt催化剂具有优良的抗CO毒化的能力。

Claims (3)

1.一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂的制备方法,其特征是,包括如下步骤:
1)在装有20 mL氯化胆碱/尿素低共熔溶剂的容器中加入20 mg酸化的多壁碳纳米管MWCNTs,常温下超声1小时,再磁力搅拌1 小时后转移至25 mL反应釜中,110℃-230℃下反应1小时-10 小时,所得产物经离心、洗涤和真空干燥后,即得到氮掺杂MWCNTs复合材料N-MWCNTs;
2)在20 mL乙二醇中按照Pt:氮掺杂MWCNTs的质量比为1:4加入10 mg氮掺杂MWCNTs和19.3 mM 的H2PtCl6溶液,超声处理2 小时后移入25 mL反应釜中,90℃-200℃下反应24 小时,反应产物经离心、洗涤和真空干燥后,得到氮掺杂MWCNTs载Pt催化剂Pt/N-MWCNTs。
2.用权利要求1所述制备方法制得的氮掺杂MWCNTs载Pt催化剂Pt/N-MWCNTs。
3.权利要求2所述氮掺杂MWCNTs载Pt催化剂Pt/N-MWCNTs在直接甲醇燃料电池中作为阳极电催化剂的应用。
CN201810626696.7A 2018-06-19 2018-06-19 一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用 Active CN108878911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810626696.7A CN108878911B (zh) 2018-06-19 2018-06-19 一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810626696.7A CN108878911B (zh) 2018-06-19 2018-06-19 一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN108878911A CN108878911A (zh) 2018-11-23
CN108878911B true CN108878911B (zh) 2021-06-08

Family

ID=64339281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810626696.7A Active CN108878911B (zh) 2018-06-19 2018-06-19 一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN108878911B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768218A (zh) * 2019-03-04 2019-05-17 浙江众泰汽车制造有限公司 一种氮掺杂的硬碳锂离子电池负极材料及其制备方法及锂离子电池负极片和锂离子电池
CN112490453B (zh) * 2020-11-26 2021-09-14 中国科学院大连化学物理研究所 一种氮磷共掺杂碳载铂钴基纳米合金催化剂及其制备方法与应用
CN114914456B (zh) * 2021-02-08 2023-11-07 中国科学院大连化学物理研究所 一种高载量铂碳催化剂及其尿素辅助制备方法
CN114276522B (zh) * 2021-12-29 2023-05-19 河北大学 低共熔溶剂修饰的酸性羟基共轭微孔聚合物及其制备方法
CN114620712A (zh) * 2022-03-21 2022-06-14 陕西艾诺威邦信息科技有限公司 一种用于直接甲醇燃料电池阳极催化剂载体的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538642A (zh) * 2014-12-15 2015-04-22 广西师范大学 一种直接甲醇燃料电池硫掺杂碳纳米管载Pt催化剂及其制备方法
CN104549407A (zh) * 2015-02-03 2015-04-29 哈尔滨工业大学 一种铂基/氮掺杂碳量子点-碳纳米管催化剂的制备方法
CN104607206A (zh) * 2015-02-05 2015-05-13 广西师范大学 基于低共熔溶剂的多壁碳纳米管载PtCo催化剂及其制备方法与应用
CN104607205A (zh) * 2015-02-05 2015-05-13 广西师范大学 基于低共熔溶剂的多壁碳纳米管载PtCu催化剂及其制备方法与应用
CN104607186A (zh) * 2015-02-05 2015-05-13 广西师范大学 基于低共熔溶剂的多壁碳纳米管载PdSn催化剂及其制备方法与应用
CN106495131A (zh) * 2016-10-31 2017-03-15 天津农学院 一种在类离子液体中分散碳纳米管的制备方法及应用
WO2017164963A3 (en) * 2016-01-07 2017-10-26 William Marsh Rice University Facile preparation of carbon nanotube hybrid materials by catalyst solutions
CN107749484A (zh) * 2017-09-11 2018-03-02 江苏师范大学 一种担载型凹立方体铂纳米晶体催化剂的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538642A (zh) * 2014-12-15 2015-04-22 广西师范大学 一种直接甲醇燃料电池硫掺杂碳纳米管载Pt催化剂及其制备方法
CN104549407A (zh) * 2015-02-03 2015-04-29 哈尔滨工业大学 一种铂基/氮掺杂碳量子点-碳纳米管催化剂的制备方法
CN104607206A (zh) * 2015-02-05 2015-05-13 广西师范大学 基于低共熔溶剂的多壁碳纳米管载PtCo催化剂及其制备方法与应用
CN104607205A (zh) * 2015-02-05 2015-05-13 广西师范大学 基于低共熔溶剂的多壁碳纳米管载PtCu催化剂及其制备方法与应用
CN104607186A (zh) * 2015-02-05 2015-05-13 广西师范大学 基于低共熔溶剂的多壁碳纳米管载PdSn催化剂及其制备方法与应用
WO2017164963A3 (en) * 2016-01-07 2017-10-26 William Marsh Rice University Facile preparation of carbon nanotube hybrid materials by catalyst solutions
CN106495131A (zh) * 2016-10-31 2017-03-15 天津农学院 一种在类离子液体中分散碳纳米管的制备方法及应用
CN107749484A (zh) * 2017-09-11 2018-03-02 江苏师范大学 一种担载型凹立方体铂纳米晶体催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nitrogen-doped carbons prepared from eutectic mixtures as metal-free oxygen reduction catalysts;Nieves Lopez-Salas等;《Journal of Materials Chemistry A》;20151127;第4卷(第2期);第478-488页 *

Also Published As

Publication number Publication date
CN108878911A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
Li et al. Engineering three-dimensional nitrogen-doped carbon black embedding nitrogen-doped graphene anchoring ultrafine surface-clean Pd nanoparticles as efficient ethanol oxidation electrocatalyst
CN108878911B (zh) 一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用
Wu et al. Black phosphorus–graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation
Wang et al. Anchoring ultrafine Pt electrocatalysts on TiO2-C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction
Xue et al. Fabrication of PdCo bimetallic nanoparticles anchored on three-dimensional ordered N-doped porous carbon as an efficient catalyst for oxygen reduction reaction
Wong et al. Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications
Liu et al. Phosphorus‐doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium
Chen et al. Functionalized carbon nanomaterial supported palladium nano-catalysts for electrocatalytic glucose oxidation reaction
Zhu et al. The construction of nitrogen-doped graphitized carbon–TiO2 composite to improve the electrocatalyst for methanol oxidation
Wei et al. Nitrogen-doped carbon nanotube-supported Pd catalyst for improved electrocatalytic performance toward ethanol electrooxidation
Peera et al. MXene (Ti3C2Tx) supported electrocatalysts for methanol and ethanol electrooxidation: A review
Yang et al. Pd nanoparticles supported on phenanthroline modified carbon as high active electrocatalyst for ethylene glycol oxidation
Lou et al. Optimized synthesis of nitrogen and phosphorus dual-doped coal-based carbon fiber supported Pd catalyst with enhanced activities for formic acid electrooxidation
Zhang et al. Pd nanoparticles assembled on Ni-and N-doped carbon nanotubes towards superior electrochemical activity
CN108539219B (zh) 一种硫氮共掺杂碳纳米管载PtCu合金催化剂及其制备方法与应用
Kakaei et al. Alcohol oxidation and hydrogen evolution
Shi et al. Three dimensional nitrogen, phosphorus and sulfur doped porous graphene as efficient bifunctional electrocatalysts for direct methanol fuel cell
CN104538642A (zh) 一种直接甲醇燃料电池硫掺杂碳纳米管载Pt催化剂及其制备方法
Qin et al. MXene supported rhodium nanocrystals for efficient electrocatalysts towards methanol oxidation
Liu et al. Subnano amorphous Fe-based clusters with high mass activity for efficient electrocatalytic oxygen reduction reaction
Chen et al. Nanostructured coral-like carbon as Pt support for fuel cells
Guo et al. Heterostructure-induced enhanced oxygen catalysis behavior based on metal cobalt coupled with compound anchored on N-doped carbon nanofiber for microbial fuel cell
Zhang et al. Superior catalytic performance and CO tolerance of PtCu/graphdiyne electrocatalyst toward methanol oxidation reaction
Yu et al. Recent progress on reduced graphene oxide supported Pt-based catalysts and electrocatalytic oxidation performance of methanol
Xu et al. Facile preparation of N-doped porous carbon matrix with Mo2C/Ni supported for hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant