CN112053935A - 一种高k值氧化锆钛复合绝缘层薄膜及其晶体管制备方法 - Google Patents

一种高k值氧化锆钛复合绝缘层薄膜及其晶体管制备方法 Download PDF

Info

Publication number
CN112053935A
CN112053935A CN202010967368.0A CN202010967368A CN112053935A CN 112053935 A CN112053935 A CN 112053935A CN 202010967368 A CN202010967368 A CN 202010967368A CN 112053935 A CN112053935 A CN 112053935A
Authority
CN
China
Prior art keywords
thin film
zrtiox
insulating layer
preparation
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010967368.0A
Other languages
English (en)
Inventor
谢应涛
陈鹏龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN202010967368.0A priority Critical patent/CN112053935A/zh
Publication of CN112053935A publication Critical patent/CN112053935A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及一种高K值氧化锆钛复合绝缘层薄膜及其晶体管制备方法,属于晶体管技术领域。该方法包括以下步骤:S1:乙酰丙酮锆溶解于二甲基甲酰胺DMF中,浓度为0.1~0.5摩尔/升;然后加入一定体积的二乙醇胺;最后加热搅拌形成透明澄清的氧化锆前驱体溶液;S2:将钛酸四丁酯或者钛酸异丙酯与上述氧化锆前驱体溶液按一定体积比混合;最后搅拌形成透明澄清的混合氧化锆钛ZrTiOx前驱体溶液;S3:将不同体积比的ZrTiOx前驱体溶液通过旋涂或打印方式涂覆于基板上,然后通过紫外光照射,形成ZrTiOx绝缘层薄膜。S4:基于上述ZrTiOx薄膜作为薄膜晶体管的绝缘层,实现不同结构和类型的薄膜晶体管的制备。

Description

一种高K值氧化锆钛复合绝缘层薄膜及其晶体管制备方法
技术领域
本发明属于晶体管技术领域,涉及一种高K值氧化锆钛复合绝缘层薄膜及其晶体管制备方法。
背景技术
现阶段薄膜晶体管一般以二氧化硅或有机材料为绝缘层,其绝缘层介电常数均较低,器件的工作电压较高(>30V),而在实际应用中希望薄膜晶体管的工作电压在10V以内,因为较高的工作电压会增加驱动电路设计难度和器件功耗,这在很大程度上限制了其应用场景。针对于此,高介电常数材料作为薄膜晶体管的绝缘层是一个被广受关注的解决方案,因为其单位面积电容更大,可以极大地降低薄膜晶体管的工作电压,更便于其实际应用。同时可溶液法具有低成本、易于制备等诸多优点,使其正在逐渐代替传统的真空制备技术,因此采用溶液法制备具有高K值的绝缘层正在成为该领域的研究热点。基于此,本案提出一种基于溶液法制备具有高K值的非晶态ZrTiOx绝缘层薄膜的方法,及其低功耗薄膜晶体管制备方法,以期实现大面积、低成本制备。
发明内容
有鉴于此,本发明的目的在于提供一种高K值氧化锆钛复合绝缘层薄膜及其晶体管制备方法。
为达到上述目的,本发明提供如下技术方案:
一种高K值氧化锆钛复合绝缘层薄膜的制备方法,该方法包括以下步骤:
S1:乙酰丙酮锆溶解于二甲基甲酰胺DMF中,浓度为0.1~0.5摩尔/升;然后加入一定体积的二乙醇胺,其中体积比乙醇胺:DMF=1:3~1:6;最后加热搅拌形成透明澄清的氧化锆前驱体溶液;
S2:将钛酸四丁酯或者钛酸异丙酯与上述氧化锆前驱体溶液按一定体积比混合,范围为0%<x≤30%;最后搅拌形成透明澄清的混合氧化锆钛前驱体溶液;
S3:将不同体积比的ZrTiOx前驱体溶液通过旋涂或者打印方式涂覆于基板上,然后通过365nm紫外光照射0.5~2小时,形成具有高K值的、低漏电特性的ZrTiOx绝缘层薄膜。
可选的,所述制备方法具体为:
(1)先将488mg的乙酰丙酮锆溶解于2.8ml的二甲基甲酰胺DMF中,然后再加入0.5ml的二乙醇胺,形成氧化锆前驱体溶液;为加速溶解,将上述混合溶液70℃加热搅拌3小时,并过滤后备用;
(2)为更好的溶解,将上述氧化锆前驱体溶液70℃加热并磁力搅拌3小时,并过滤后备用;
(3)接着取1ml上述氧化锆前驱体溶液,为对比不同浓度下薄膜性能,添加100ul、200ul、300ul钛酸四丁酯溶液,比例分别用10%、20%、30%表示,形成不同浓度的混合氧化锆钛前驱体溶液;
(4)为使上述氧化锆钛前驱体溶液得到充分溶解,在室温条件下磁力搅拌20分钟,并过滤后备用;
(5)将不同浓度的混合氧化锆钛前驱体溶液旋涂于已清洗的硅片或者玻璃基板上,得到约30~100纳米后的ZrTiOx薄膜,然后在空气环境下,通过365nm紫外光照射0.5~2小时,形成具有高K值的ZrTiOx绝缘层薄膜,完成薄膜制备。
可选的,该方法包括以下步骤:
底栅顶接触BG-TC结构的氧化物薄膜晶体管具体制备步骤如下:
(1)在玻璃基板或者硅片上,通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的栅电极图案;
(2)接着通过旋涂或者打印的方式沉积10~100nm的具有高K值的ZrTiOx绝缘层;
(3)接着采用旋涂或者磁控溅射的方法沉积约20~60nm厚的氧化物半导体薄膜,然后进行退火处理,形成空缺较少的半导体层;
(4)最后通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的源漏电极图案;
至此完成BG-TC氧化物薄膜晶体管制备。
可选的,该方法包括以下步骤:
顶栅底接触TG-BC结构的氧化物薄膜晶体管具体制备步骤如下:
(1)在玻璃基板,通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的源漏电极图案;
(2)接着采用旋涂或者磁控溅射的方法沉积约20~60nm厚的氧化物半导体薄膜,然后进行退火处理,形成空缺较少的半导体层;
(3)接着通过旋涂或者打印的方式沉积10~100nm的具有高K值的ZrTiOx绝缘层;
(4)最后通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的栅电极图案;
至此完成TG-BC氧化物薄膜晶体管制备。
可选的,该方法包括以下步骤:
底栅顶接触BG-TC结构的有机薄膜晶体管具体制备步骤如下:
(1)在玻璃基板或者硅片上,通过喷墨打印或者旋涂的方法,控制滴入导电墨水剂量,形成栅电极图案;
(2)接着通过旋涂或者打印的方式沉积10~100nm的具有高K值的ZrTiOx绝缘层;
(3)接着采用旋涂或者喷墨打印的方法沉积约20~60nm厚的有机半导体薄膜,并进行退火处理;
(4)最后通过喷墨打印的方法,控制滴入导电墨水剂量,形成源漏电极图案;
至此完成BG-TC有机薄膜晶体管制备。
可选的,该方法包括以下步骤:
顶栅底接触TG-BC结构的有机薄膜晶体管具体制备步骤如下:
(1)在玻璃基板或者硅片上,通过喷墨打印的方法,控制滴入导电墨水剂量,形成源漏电极图案;
(2)接着对源漏电极进行表面自组装处理,进而提高源漏金属电极的功函数;
(3)接着采用旋涂或者喷墨打印的方法沉积约20~60nm厚的有机半导体薄膜,并进行退火处理;
(4)接着通过旋涂或者打印的方式沉积10~100nm的ZrTiOx绝缘层;
(5)最后通过喷墨打印的方法,控制滴入导电墨水剂量,形成栅电极图案;
至此完成TG-BC有机薄膜晶体管制备。
本发明的有益效果在于:
(1)解决溶液法制备氧化物绝缘层薄膜及其器件,实现低成本制备;
(2)解决目前绝缘层K值较低的问题,可降低器件驱动电压及实现低功耗应用。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为氧化物薄膜晶体管底栅顶接触BG-TC结构;
图2为氧化物薄膜晶体管顶栅底接触TG-BC结构;
图3为有机薄膜晶体管底栅顶接触BG-TC结构;
图4为有机薄膜晶体管顶栅底接触TG-BC结构。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
(一)本发明提供的新的前驱体溶液制备ZrTiOx绝缘层薄膜的方法,具体步骤如下:
(1)先将488mg的乙酰丙酮锆溶解于2.8ml的二甲基甲酰胺(DMF)中,然后再加入0.5ml的二乙醇胺,形成氧化锆前驱体溶液。为了加速其溶解,需将上述混合溶液70℃加热搅拌3小时,并过滤后备用。
(2)为了更好的溶解,将上述氧化锆前驱体溶液70℃加热并磁力搅拌3小时,并过滤后备用。
(3)接着取1ml上述氧化锆前驱体溶液,为了对比不同浓度下薄膜性能,在此可添加100ul、200ul、300ul钛酸四丁酯溶液,比例分别用10%、20%、30%表示,形成不同浓度的混合氧化锆钛前驱体溶液。
(4)为使上述氧化锆钛前驱体溶液得到充分溶解,可在室温条件下磁力搅拌20分钟,并过滤后备用。
(5)将不同浓度的混合氧化锆钛前驱体溶液旋涂于已清洗的硅片或玻璃基板上,得到约30~100纳米后的ZrTiOx薄膜,然后在空气环境下,通过365nm紫外光照射0.5~2小时,形成具有高K值的ZrTiOx绝缘层薄膜,完成薄膜制备。
(二)以上述制备的ZrTiOx薄膜作为绝缘层材料,可制备不同结构和类型的薄膜晶体管。
氧化物薄膜晶体管制备方案:
方案一:底栅顶接触(BGTC)结构的氧化物薄膜晶体管具体制备步骤如下:
(1)在玻璃基板或者硅片上,通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的栅电极图案;
(2)接着通过旋涂或者打印等方式沉积10~100nm的具有高K值的ZrTiOx绝缘层,具体制备方法如上所述。
(3)接着采用旋涂或者磁控溅射等方法沉积约20~60nm厚的氧化物半导体薄膜(如IGZO),然后进行退火处理,形成空缺较少的半导体层;
(4)最后通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的源漏电极图案。
至此完成BG-TC氧化物薄膜晶体管制备,如图1所示。
方案二:顶栅底接触(TG-BC)结构的氧化物薄膜晶体管具体制备步骤如下:
(1)在玻璃基板,通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的源漏电极图案;
(2)接着采用旋涂或者磁控溅射等方法沉积约20~60nm厚的氧化物半导体薄膜(如IGZO),然后进行退火处理,形成空缺较少的半导体层;
(3)接着通过旋涂或者打印等方式沉积10~100nm的具有高K值的ZrTiOx绝缘层,具体制备方法如上所述。
(4)最后通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的栅电极图案;至此完成TG-BC氧化物薄膜晶体管制备,如图2所示。
有机薄膜晶体管制备:
方案一:底栅顶接触(BG-TC)结构的有机薄膜晶体管具体制备步骤如下:
(1)在玻璃基板或者硅片上,通过喷墨打印或者旋涂等方法,控制滴入导电墨水剂量(可以为金、银或者PDOT:PSS导电墨水),形成栅电极图案;
(2)接着通过旋涂或者打印等方式沉积10~100nm的具有高K值的ZrTiOx绝缘层,具体制备方法如上所述。
(3)接着采用旋涂或者喷墨打印等方法沉积约20~60nm厚的有机半导体薄膜,并进行退火处理;
(4)最后通过喷墨打印的方法,控制滴入导电墨水剂量(可以为金或PDOT:PSS导电墨水),形成源漏电极图案。
至此完成BG-TC有机薄膜晶体管制备,如图3所示。
方案二:顶栅底接触(TG-BC)结构的有机薄膜晶体管具体制备步骤如下:
(1)在玻璃基板或者硅片上,通过喷墨打印的方法,控制滴入导电墨水剂量(可以为金、银或PDOT:PSS导电墨水),形成源漏电极图案;
(2)接着对源漏电极进行表面自组装处理(self-assembly monolayers,SAMs),进而提高源漏金属电极的功函数;
(3)接着采用旋涂或者喷墨打印等方法沉积约20~60nm厚的有机半导体薄膜,并进行退火处理;
(4)接着通过旋涂或者打印等方式沉积10~100nm的ZrTiOx绝缘层,具体制备方法如上所述。
(5)最后通过喷墨打印的方法,控制滴入导电墨水剂量(可以为金、银或者PDOT:PSS导电墨水),形成栅电极图案;
至此完成TG-BC有机薄膜晶体管制备,如图4所示。
关键词(根据上述技术内容总结出行业内的技术术语及相应的英文术语):
Thin-film transistor(TFT):薄膜晶体管;bottom gate top contact(BG-TC):底栅顶接触;top gate bottom contact(TG-BC):顶栅底接触;gate insulator(GI):绝缘层;source/drain:源/漏极;gate:栅电极;substrate:基板;
表1为不同浓度的混合氧化锆钛前驱体溶液与ZrTiOx薄膜性能参数对比结果
表1不同浓度的混合氧化锆钛前驱体溶液与ZrTiOx薄膜性能参数对比
Figure BDA0002682834930000061
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种高K值氧化锆钛复合绝缘层薄膜的制备方法,其特征在于:该方法包括以下步骤:
S1:乙酰丙酮锆溶解于二甲基甲酰胺DMF中,浓度为0.1~0.5摩尔/升;然后加入一定体积的二乙醇胺,其中体积比乙醇胺:DMF=1:3~1:6;最后加热搅拌形成透明澄清的氧化锆前驱体溶液;
S2:将钛酸四丁酯或者钛酸异丙酯与上述氧化锆前驱体溶液按一定体积比混合,范围为0%<x≤30%;最后搅拌形成透明澄清的混合氧化锆钛ZrTiOx前驱体溶液;
S3:将不同体积比的ZrTiOx前驱体溶液通过旋涂或者打印方式涂覆于基板上,然后通过365nm紫外光照射0.5~2小时,形成具有高K值的、低漏电特性的ZrTiOx绝缘层薄膜。
2.根据权利要求1所述的一种高K值氧化锆钛复合绝缘层薄膜的制备方法,其特征在于:所述制备方法具体为:
(1)先将488mg的乙酰丙酮锆溶解于2.8ml的二甲基甲酰胺DMF中,然后再加入0.5ml的二乙醇胺,形成氧化锆前驱体溶液;为加速溶解,将上述混合溶液70℃加热搅拌3小时,并过滤后备用;
(2)为更好的溶解,将上述氧化锆前驱体溶液70℃加热并磁力搅拌3小时,并过滤后备用;
(3)接着取1ml上述氧化锆前驱体溶液,为对比不同浓度下薄膜性能,添加100ul、200ul、300ul钛酸四丁酯溶液,比例分别用10%、20%、30%表示,形成不同浓度的混合氧化锆钛ZrTiOx前驱体溶液;
(4)为使上述氧化锆钛ZrTiOx前驱体溶液得到充分溶解,在室温条件下磁力搅拌20分钟,并过滤后备用;
(5)将不同浓度的混合氧化锆钛前驱体溶液旋涂或者打印于已清洗的硅片或玻璃基板上,得到约30~100纳米后的ZrTiOx薄膜,然后在空气环境下,通过365nm紫外光照射0.5~2小时,形成具有高K值的ZrTiOx绝缘层薄膜,完成薄膜制备。
3.根据权利要求2所述方法的高K值氧化锆钛复合绝缘层薄膜晶体管的制备方法,其特征在于:该方法包括以下步骤:
底栅顶接触BG-TC结构的氧化物薄膜晶体管具体制备步骤如下:
(1)在玻璃基板或者硅片上,通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的栅电极图案;
(2)接着通过旋涂或者打印的方式沉积10~100nm的具有高K值的ZrTiOx绝缘层;
(3)接着采用旋涂或者磁控溅射的方法沉积约20~60nm厚的氧化物半导体薄膜,然后进行退火处理,形成空缺较少的半导体层;
(4)最后通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的源漏电极图案;
至此完成BG-TC氧化物薄膜晶体管制备。
4.根据权利要求2所述方法的高K值氧化锆钛复合绝缘层薄膜晶体管的制备方法,其特征在于:该方法包括以下步骤:
顶栅底接触TG-BC结构的氧化物薄膜晶体管具体制备步骤如下:
(1)在玻璃基板,通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的源漏电极图案;
(2)接着采用旋涂或者磁控溅射的方法沉积约20~60nm厚的氧化物半导体薄膜,然后进行退火处理,形成空缺较少的半导体层;
(3)接着通过旋涂或者打印的方式沉积10~100nm的具有高K值的ZrTiOx绝缘层;
(4)最后通过喷墨打印或者标准光刻工艺技术,形成Al或者Mo/Al/Mo的栅电极图案;
至此完成TG-BC氧化物薄膜晶体管制备。
5.根据权利要求2所述方法的高K值氧化锆钛复合绝缘层薄膜晶体管的制备方法,其特征在于:该方法包括以下步骤:
底栅顶接触BG-TC结构的有机薄膜晶体管具体制备步骤如下:
(1)在玻璃基板或者硅片上,通过喷墨打印或者旋涂的方法,控制滴入导电墨水剂量,形成栅电极图案;
(2)接着通过旋涂或者打印的方式沉积10~100nm的具有高K值的ZrTiOx绝缘层;
(3)接着采用旋涂或者喷墨打印的方法沉积约20~60nm厚的有机半导体薄膜,并进行退火处理;
(4)最后通过喷墨打印的方法,控制滴入导电墨水剂量,形成源漏电极图案;
至此完成BG-TC有机薄膜晶体管制备。
6.根据权利要求2所述方法的高K值氧化锆钛复合绝缘层薄膜晶体管的制备方法,其特征在于:该方法包括以下步骤:
顶栅底接触TG-BC结构的有机薄膜晶体管具体制备步骤如下:
(1)在玻璃基板或者硅片上,通过喷墨打印的方法,控制滴入导电墨水剂量,形成源漏电极图案;
(2)接着对源漏电极进行表面自组装处理,进而提高源漏金属电极的功函数;
(3)接着采用旋涂或者喷墨打印的方法沉积约20~60nm厚的有机半导体薄膜,并进行退火处理;
(4)接着通过旋涂或者打印的方式沉积10~100nm的ZrTiOx绝缘层;
(5)最后通过喷墨打印的方法,控制滴入导电墨水剂量,形成栅电极图案;
至此完成TG-BC有机薄膜晶体管制备。
CN202010967368.0A 2020-09-15 2020-09-15 一种高k值氧化锆钛复合绝缘层薄膜及其晶体管制备方法 Pending CN112053935A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010967368.0A CN112053935A (zh) 2020-09-15 2020-09-15 一种高k值氧化锆钛复合绝缘层薄膜及其晶体管制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010967368.0A CN112053935A (zh) 2020-09-15 2020-09-15 一种高k值氧化锆钛复合绝缘层薄膜及其晶体管制备方法

Publications (1)

Publication Number Publication Date
CN112053935A true CN112053935A (zh) 2020-12-08

Family

ID=73602963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010967368.0A Pending CN112053935A (zh) 2020-09-15 2020-09-15 一种高k值氧化锆钛复合绝缘层薄膜及其晶体管制备方法

Country Status (1)

Country Link
CN (1) CN112053935A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297107B1 (en) * 2000-10-19 2001-10-02 Advanced Micro Devices, Inc. High dielectric constant materials as gate dielectrics
JP2003078030A (ja) * 2001-08-31 2003-03-14 Matsushita Electric Ind Co Ltd 半導体装置および容量素子およびそれらの製造方法
US20060134849A1 (en) * 2004-12-20 2006-06-22 Lim Jae-Soon Methods of manufacturing a thin film including zirconium titanium oxide and methods of manufacturing a gate structure, a capacitor and a flash memory device including the same
KR100666917B1 (ko) * 2005-12-02 2007-01-10 삼성전자주식회사 텅스텐 탄소 질화막을 포함하는 반도체 장치의 제조 방법.
CN107331622A (zh) * 2017-07-04 2017-11-07 华南理工大学 一种采用溶液加工的高介电氧化物绝缘层薄膜晶体管的制备方法
CN108232013A (zh) * 2017-11-29 2018-06-29 华南师范大学 制备氧化锆薄膜和柔性晶体管的方法
CN111029402A (zh) * 2019-11-14 2020-04-17 天津大学 锆钛氧化物栅介质层柔性底栅薄膜晶体管及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297107B1 (en) * 2000-10-19 2001-10-02 Advanced Micro Devices, Inc. High dielectric constant materials as gate dielectrics
JP2003078030A (ja) * 2001-08-31 2003-03-14 Matsushita Electric Ind Co Ltd 半導体装置および容量素子およびそれらの製造方法
US20060134849A1 (en) * 2004-12-20 2006-06-22 Lim Jae-Soon Methods of manufacturing a thin film including zirconium titanium oxide and methods of manufacturing a gate structure, a capacitor and a flash memory device including the same
KR100666917B1 (ko) * 2005-12-02 2007-01-10 삼성전자주식회사 텅스텐 탄소 질화막을 포함하는 반도체 장치의 제조 방법.
CN107331622A (zh) * 2017-07-04 2017-11-07 华南理工大学 一种采用溶液加工的高介电氧化物绝缘层薄膜晶体管的制备方法
CN108232013A (zh) * 2017-11-29 2018-06-29 华南师范大学 制备氧化锆薄膜和柔性晶体管的方法
CN111029402A (zh) * 2019-11-14 2020-04-17 天津大学 锆钛氧化物栅介质层柔性底栅薄膜晶体管及其制作方法

Similar Documents

Publication Publication Date Title
WO2011143887A1 (zh) 金属氧化物薄膜晶体管及其制备方法
CN110047915B (zh) 一种基于二维半导体材料薄膜晶体管及其制备方法
TW200908333A (en) Field-effect transistor and process for producing field-effect transistor
CN105308753A (zh) 稳定高迁移率的motft和低温下的制备
CN105428247B (zh) 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN105489486B (zh) 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN110265548A (zh) 一种铟掺杂n型有机薄膜晶体管及其制备方法
CN108232013B (zh) 制备氧化锆薄膜和柔性晶体管的方法
CN104009093A (zh) 一种高k介电层水性氧化铟薄膜晶体管的制备方法
CN103325842B (zh) 氧化物半导体薄膜及一种薄膜晶体管
CN103928350B (zh) 一种双沟道层薄膜晶体管的制备方法
CN103022077B (zh) 一种含氧化物薄膜晶体管的oled装置
CN209747517U (zh) 一种基于二维半导体材料薄膜晶体管
CN101339959A (zh) 薄膜晶体管及其半导体薄膜的制备方法
CN112053935A (zh) 一种高k值氧化锆钛复合绝缘层薄膜及其晶体管制备方法
CN110061061B (zh) 一种基于纳米簇绝缘层的高性能薄膜晶体管及制备方法
CN108987469B (zh) 一种非晶ZnMgSnO薄膜与薄膜晶体管及其制备方法
CN104599947A (zh) 氧化锆绝缘薄膜及其制备方法
CN109887991A (zh) 一种叠层硅掺杂氧化锡薄膜晶体管及其制备方法
CN105355663B (zh) 一种氢钝化氧化锌基双沟道层薄膜晶体管及其制备方法
Wang et al. Pentacene thin-film transistors with sol–gel derived amorphous Ba0. 6Sr0. 4TiO3 gate dielectric
CN108987471B (zh) 工况nbts稳定性良好的氧化物半导体薄膜及其晶体管
CN109698276A (zh) 一种薄膜晶体管器件及其制备方法
CN111129159B (zh) 一种掺铕的二氧化锡基薄膜晶体管及其制备方法
CN111969067A (zh) 一种氧化铟薄膜晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201208