CN110047915B - 一种基于二维半导体材料薄膜晶体管及其制备方法 - Google Patents

一种基于二维半导体材料薄膜晶体管及其制备方法 Download PDF

Info

Publication number
CN110047915B
CN110047915B CN201910292559.9A CN201910292559A CN110047915B CN 110047915 B CN110047915 B CN 110047915B CN 201910292559 A CN201910292559 A CN 201910292559A CN 110047915 B CN110047915 B CN 110047915B
Authority
CN
China
Prior art keywords
solution
thin film
film transistor
gate electrode
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910292559.9A
Other languages
English (en)
Other versions
CN110047915A (zh
Inventor
赵天石
赵春
赵策洲
杨莉
于水长
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong Liverpool University
Original Assignee
Xian Jiaotong Liverpool University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong Liverpool University filed Critical Xian Jiaotong Liverpool University
Priority to CN201910292559.9A priority Critical patent/CN110047915B/zh
Publication of CN110047915A publication Critical patent/CN110047915A/zh
Application granted granted Critical
Publication of CN110047915B publication Critical patent/CN110047915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • H01L21/445Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种利用溶液法制备的可应用于大规模柔性集成电路的高性能薄膜晶体管。该薄膜晶体管器件以柔性材料为基底,在上面设置有利用电子束蒸发制备的电极以及基于溶液法制备的绝缘层与二维材料半导体层。其中电极分为栅、源、漏三电极,材料为氮化钛与钛金属结合,并且利用光刻剥离工艺将栅极图案化。绝缘层成份为水溶液法制备的氧化铝纳米簇材料,并且在制备中通过双氧水处理来减少氧空位缺陷,起到提高整个器件性能的作用。半导体层为二硫化钨二维材料,其结构为原子级纳米薄层结构,这种结构可以为电子传输提供优异的通道,从而提高器件的电学性能。整个制备工艺可在温度不超过110度的条件先进行,生产成本较低,同时由于有源层具有良好的光吸收特性,可在光学领域中有重要应用。

Description

一种基于二维半导体材料薄膜晶体管及其制备方法
技术领域
本发明涉及微电子技术领域,具体是一种基于二维半导体材料的薄膜晶体管及其制备方法。
背景技术
近些年来,包括有源矩阵液晶显示器(AMLCD)与有源矩阵有机发光二极体(AMOLED)的平板显示器(FPD)在提高分辨率、屏幕面积与降低功耗方面的需求与日俱增。薄膜晶体管(TFT)是FPD在生产应用中的关键器件。传统半导体的载流子迁移率受材料本身特性所限,往往比较低(如非晶硅,a-Si,的迁移率约为1cm2V-1s-1),不利于电子在器件工作时的传输。作为改进器件性能的半导体材料,近些年来,具有原子级厚度的二维层状纳米材料(下简称二维材料)如石墨烯、二硫化钼(MoS2)如二硫化钨(WS2)等等由于其超高的载流子迁移率、高电子饱和速度和高热导率等优点吸引了大量研究人员的关注。而在其中WS2除了拥有较好的电学性能外,其价格相比于其它材料也显著降低,因此WS2在TFT制备领域具有很好的应用前景。
目前,二维材料半导体层的制备工艺主要为光刻和金线掩膜两种。光刻工艺较为复杂,成本较高;金线掩膜技术虽然工艺简单,但是当一块衬底上同时有多片二维材料时,采用金线掩膜技术则只能选择其中一片二维材料来制备器件,因此成品率不高,不适宜大规模生产。
发明内容
本发明的目的是提供一种薄膜晶体管,能满足大批量低成本的工业化生产需求。
本发明是通过以下技术方案实现的:
本发明第一方面提供基于二维半导体材料的薄膜晶体管,结构为底栅顶接触型,包括由下至上的六个部分:柔性衬底、栅电极、绝缘层、半导体层以及源、漏电极,所述栅电极位于柔性衬底上,且只覆盖了部分的柔性衬底,所述半导体层为二维结构WS2层;源电极和漏电极分别位于半导体层上且位于薄膜晶体管的最顶层。
本发明优选技术方案中,所述柔性衬底为柔性透明绝缘材料,选自PI、PET或PEN,厚度为100μm。
本发明优选技术方案中,栅电极为TiN/Ti叠层图案化栅电极,优选为电子束蒸发工艺制备得到。
本发明优选技术方案中,所述绝缘层为Al2O3纳米簇结构,优选为水溶液法制备,并在制备过程中添加过氧化氢进行处理,该层厚度为30nm左右。Al2O3纳米簇结构薄膜相比于传统的溶液法Al2O3薄膜具有更质密的结构,可提高绝缘层的均匀性以及减少其中的缺陷能级。
所述半导体层优选为以溶液法制备的二维结构WS2半导体层;厚度为5nm。
其中,所述绝缘层和半导体层均为溶液旋涂后,再用紫外照射处理后,退火成膜得到,具体为:在波长为253.7nm(90%)与184.9nm(10%)的紫外线灯照射下,以110℃的温度退火一个小时成膜制备得到。
所述薄膜晶体管衬底以及绝缘层皆为疏水材料,旋涂上层溶液时皆需要利用紫外灯照射工艺来改善亲水性。
所述栅电极以及绝缘层、半导体层可用光刻剥离工艺进行图案化,从而制作简单的逻辑电路。
所述源电极和漏电极为TiN/Ti叠层源、漏电极。在柔性衬底上利用光刻剥离工艺以及电子束蒸发技术生长TiN/Ti叠层电极,电子束蒸发生长速率为其中Ti金属单质直接生长在衬底或者半导体上,目的是增加电极粘合度,厚度为5nm;TiN生长在Ti上,厚度为50nm。
所述源电极和漏电极的TiN材料厚度为50nm,Ti材料厚度为5nm,作用是提高电极与下层衬底的黏度。
所述二维结构WS2半导体层的制备方法为:半导体层为WS2固体嵌入四庚基溴化铵(THAB)后,浸入聚乙烯基吡咯烷酮(PVP)/二甲基甲酰胺(DMF)溶液经超声、旋涂和退火工艺制备,厚度为5nm左右。在WS2中利用双电极电化学池嵌入THAB,电解液为四丁基溴化铵(TBAB)/去离子水溶液,电化学池两端施加电压为10V。
本发明第二方面提供上述薄膜晶体管的制备方法,包括如下步骤:
(1)清洗衬底,
(2)生长栅电极及栅电极图案化:在清洗后的衬底上,利用正胶光刻工艺匀胶、图案化显影后,用电子束蒸发工艺在PI衬底上生长Ti金属单质,随后生长TiN作为栅电极,将生长电极后的器件置入丙酮溶液中超声,再置入无水乙醇溶液中浸泡,随后用去胶液浸泡、超声清洗,去掉非保留部分的栅电极;
(3)制备薄膜绝缘层:包括如下步骤:
3A.制备Al-13纳米簇盐:将硝酸铟九水合物溶解于去离子水中,得到溶液①;将纳米锌粉加入溶液①中,搅拌得到溶液②;将溶液②进行过滤,得到沉积物③;将沉积物③以异丙醇冲洗,得到Al-13纳米簇盐;
3B.生长Al2O3纳米簇绝缘层:将所得的Al-13纳米簇盐溶于添加过氧化氢的去离子水中,超声得到Al2O3纳米簇前驱体溶液④;将溶液以在PI衬底上旋涂,在紫外线灯照射下,退火后得到Al2O3纳米簇结构薄膜绝缘层;
(4)制备半导体层,包括如下步骤:
4A.在WS2中嵌入THAB分子:以WS2固体为阴极,石墨烯为阳极,置入电化学池中,电解液为四丁基溴化铵(TBAB)的去离子水溶液,电化学池两端施加电压,通电得到固体⑤,
4B.生长WS2二维结构半导体层:将固体⑤浸入聚乙烯基吡咯烷酮/二甲基甲酰胺(PVP/DMF)溶液超声得到溶液⑥;将溶液⑥于衬底之上旋涂,并在紫外线灯照射下,退火后得到WS2半导体层;
(5)生长源、漏电极:电子束蒸发工艺在半导体上生长5 nm厚的Ti金属单质,随后生长的TiN作为源漏电极。
本发明优选技术方案中,在所述步骤(2)中,将生长栅电极后的器件置入丙酮溶液中超声,再置入无水乙醇溶液中浸泡,随后用去胶液浸泡、超声清洗,去掉非保留部分的栅电极。
本发明优选技术方案中,在所述步骤(2)后,对衬底进行亲水性处理,具体为将生长了图案化栅电极后的衬底置入紫外灯下,以283 nm波长在室温下照射1小时。
本发明优选技术方案中,所述薄膜晶体管绝缘层以及半导体层成膜方式均为旋涂然后在波长为253.7 nm(90%)与184.9 nm(10%)的紫外线灯照射下,以110℃的温度退火一个小时。
本发明优选技术方案中,步骤(5)中,在半导体上以的速率生长5 nm厚的Ti金属单质,随后以/>的速率生长50 nm厚的TiN作为源漏电极,宽长比为15,得到TiN/Ti叠层源、漏电极,电子束蒸发生长速率为/>
本发明整个工艺流程中最高温度为100℃,在所选柔性衬底可承受范围内。
与现有技术方法相比,本发明的制备方法中使用溶液旋涂法,不仅工艺简单、生产成本较低,而且可以具有很高的器件成品率。所述器件由于沟道层为二维层状结构,由于电子仅可在两个维度的非纳米尺度上进行自由运动,因此具有较高的电子迁移率(>100cm2*V-1*s-1)。本发明工作时形成的导电沟道为n型,开启电压为0-1V,属于增强型器件。
本发明薄膜晶体管的绝缘层成份为水溶液法制备的氧化铝(Al2O3)纳米簇材料,并且在制备中通过双氧水处理来减少氧空位缺陷,起到提高整个器件性能的作用。半导体层为二硫化钨(WS2)二维材料,其结构为原子级纳米薄层结构,这种结构可以为电子传输提供优异的通道,从而提高器件的电学性能。整个制备工艺可在温度不超过110度的条件先进行,生产成本较低,同时由于有源层具有良好的光吸收特性,可在光学领域中有重要应用。
本发明的图案化工艺与电极生长工艺比较简单,无需传统意义上的光刻与真空下镀膜,可大幅减少生产时间与经济成本。
附图说明
图1为本发明实施例1的薄膜晶体管器件结构图。其中,105柔性衬底,106栅电极,104绝缘层,102半导体层,101源电极,103漏电极。
图2为本发明实施例1的转移特性曲线图。
具体实施方式
以下结合附图描述本发明具体实施方式。
实施例1
一种薄膜晶体管的制备工艺流程,其步骤为(柔性衬底以PI为例):
1.清洗PI衬底:具体清洗流程为丙酮超声20min,乙醇超声20min,去离子水冲洗,氮气吹干;
2.生长栅电极:在PI衬底上利用正胶光刻工艺匀胶、图案化显影后,用电子束蒸发工艺现在PI衬底上以的速率生长5nm厚的Ti金属单质,随后以/>的速率生长50nm厚的TiN作为栅电极;
3.栅电极图案化:将生长电极后的器件置入丙酮溶液中超声30s后,置入无水乙醇溶液中浸泡5分钟,随后用去胶液浸泡5分钟、超声清洗2分钟,去掉非保留部分的栅电极;
4.衬底亲水性处理:将生长了图案化栅电极后的PI衬底置入紫外灯下,以283nm波长在室温下照射1小时;
5.制备Al-13纳米簇盐:将12.00g硝酸铟九水合物溶解于20mL去离子水中,得到溶液①;将1.13g纳米锌粉加入溶液①中,并搅拌24小时,得到溶液②;将溶液②通过滤纸过滤至培养皿中,并放在通风处内进行沉淀,得到沉积物③;将沉积物③以异丙醇冲洗,洗去表面残余的硝酸铝以及硝酸锌,得到Al-13纳米簇盐;
6.生长Al2O3纳米簇绝缘层:将所得的Al-13纳米簇盐以0.06M的浓度溶于添加7.5M过氧化氢的去离子水中,并在阴暗处超声15分钟,得到Al2O3纳米簇前驱体溶液④;将溶液以3500转每分钟的速度于PI衬底之上旋涂40秒,并在253.7nm(90%)与184.9nm(10%)的紫外线灯照射下,以110℃的温度退火一个小时;
7.在WS2中嵌入四庚基溴化铵THAB分子:以WS2固体为阴极,石墨烯为阳极,置入电化学池中,电解液为四丁基溴化铵(TBAB)的去离子水溶液,电化学池两端施加10V电压,通电一个小时,得到固体⑤;
8.生长WS2二维结构半导体层:将固体⑤浸入聚乙烯基吡咯烷酮PVP/DMF溶液超声20分钟得到溶液⑥;将溶液⑥以3000转每分钟的速度于PI衬底之上旋涂20秒,并在253.7nm(90%)与184.9nm(10%)的紫外线灯照射下,以110℃的温度退火一个小时;
9.生长源、漏电极:在半导体蹭上上以的速率生长5nm厚的Ti金属单质,随后以/>的速率生长50nm厚的TiN作为源漏电极,宽长比为15,得到如图1所示的薄膜晶体管。如图1所示,薄膜晶体管包括衬底105、栅电极106、Al2O3纳米簇层104、In2O3层107、WS2二维结构层102以及源、漏电极101、103。
实施例1的薄膜晶体管的电学转移特性曲线如图2所示。显示了阈值电压较小(0-1V)、开关电流比较大(108)以及较高电子迁移率(>50cm2/V-1·s-1)。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实例的限制,上述实例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (6)

1.基于二维半导体材料的薄膜晶体管,其特征在于,包括由下至上的六个部分:柔性衬底、栅电极、绝缘层、半导体层以及源、漏电极,所述栅电极位于柔性衬底上,且只覆盖了部分的柔性衬底,所述半导体层为二维结构WS2层;源电极和漏电极分别位于半导体层上且位于薄膜晶体管的最顶层;
所述薄膜晶体管的制备方法包括如下步骤:
步骤(1)清洗衬底;
步骤(2)生长栅电极及栅电极图案化:在清洗后的衬底上,利用正胶光刻工艺匀胶、图案化显影后,用电子束蒸发工艺在PI衬底上生长Ti金属单质,随后生长TiN作为栅电极,将生长栅电极后的器件用去胶液浸泡、超声清洗,去掉非保留部分的栅电极;
步骤(3)制备薄膜绝缘层:包括如下步骤:
3A.制备Al-13纳米簇盐:将硝酸铟九水合物溶解于去离子水中,得到溶液①;将纳米锌粉加入溶液①中,搅拌得到溶液②;将溶液②进行过滤,得到沉积物③;将沉积物③以异丙醇冲洗,得到Al-13纳米簇盐;
3B.生长Al2O3纳米簇绝缘层:将所得的Al-13纳米簇盐溶于添加过氧化氢的去离子水中,超声得到Al2O3纳米簇前驱体溶液④;将溶液以在PI衬底上旋涂,在紫外线灯照射下,退火后得到Al2O3纳米簇结构薄膜绝缘层;
步骤(4)制备半导体层,包括如下步骤:
4A.在WS2中嵌入THAB分子:以WS2固体为阴极,石墨烯为阳极,置入电化学池中,电解液为四丁基溴化铵(TBAB)的去离子水溶液,电化学池两端施加电压,通电得到固体⑤;
4B.生长WS2二维结构半导体层:将固体⑤浸入聚乙烯基吡咯烷酮PVP/DMF溶液超声得到溶液⑥;将溶液⑥于PI衬底之上旋涂,并在紫外线灯照射下,退火后得到WS2半导体层;
步骤(5)生长源、漏电极:电子束蒸发工艺在半导体上生长5nm厚的Ti金属单质,随后生长的TiN作为源漏电极。
2.根据权利要求1所述的薄膜晶体管,其特征在于,所述二维结构WS2半导体层厚度为5nm。
3.根据权利要求1所述的薄膜晶体管,其特征在于,在所述步骤(2)中,将生长栅电极后的器件置入丙酮溶液中超声,再置入无水乙醇溶液中浸泡,随后用去胶液浸泡、超声清洗,去掉非保留部分的栅电极。
4.根据权利要求1所述的薄膜晶体管,其特征在于,在所述步骤(2)后,对衬底进行亲水性处理,具体为将生长了图案化栅电极后的衬底置入紫外灯下,以283nm波长在室温下照射1小时。
5.根据权利要求1所述的薄膜晶体管,其特征在于,所述薄膜晶体管绝缘层以及半导体层成膜方式均为旋涂然后在波长为253.7nm与184.9nm的紫外线灯照射下,以110℃的温度退火一个小时。
6.根据权利要求1所述的薄膜晶体管,其特征在于,步骤(5)中,在半导体上以的速率生长5nm厚的Ti金属单质,随后以/>的速率生长50nm厚的TiN作为源漏电极,宽长比为15,得到TiN/Ti叠层源、漏电极,电子束蒸发生长速率为/>
CN201910292559.9A 2019-04-12 2019-04-12 一种基于二维半导体材料薄膜晶体管及其制备方法 Active CN110047915B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910292559.9A CN110047915B (zh) 2019-04-12 2019-04-12 一种基于二维半导体材料薄膜晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910292559.9A CN110047915B (zh) 2019-04-12 2019-04-12 一种基于二维半导体材料薄膜晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN110047915A CN110047915A (zh) 2019-07-23
CN110047915B true CN110047915B (zh) 2024-05-03

Family

ID=67276933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910292559.9A Active CN110047915B (zh) 2019-04-12 2019-04-12 一种基于二维半导体材料薄膜晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN110047915B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116232A (zh) * 2019-12-13 2020-05-08 苏州麦茂思传感技术有限公司 一种甲醛气体传感器敏感材料的合成方法
CN111081784A (zh) * 2019-12-17 2020-04-28 西交利物浦大学 基于纳米簇介电层的柔性纳米纤维氧化镓锡晶体管及制备方法
CN111415870A (zh) * 2020-04-17 2020-07-14 华南理工大学 一种改善溶液法制备的金属氧化物tft器件性能的方法
CN112114460B (zh) * 2020-09-23 2022-12-23 北海惠科光电技术有限公司 基于阵列基板的绝缘单元及其制备方法、阵列基板及其制备方法、显示机构
CN112694127A (zh) * 2020-12-18 2021-04-23 北京科技大学 二维过渡金属硫族化合物纳米片半金属特性的调控方法
CN112614896A (zh) * 2020-12-25 2021-04-06 广东省科学院半导体研究所 一种薄膜晶体管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078501A (zh) * 2014-06-13 2014-10-01 上海交通大学 一种基于二维半导体材料的低压场效应晶体管
WO2015119385A1 (ko) * 2014-02-06 2015-08-13 코닝정밀소재 주식회사 이황화 몰리브덴으로 이루어진 액티브층을 갖는 박막트랜지스터, 그 제조방법 및 이를 구비하는 디스플레이 장치
CN107845687A (zh) * 2017-10-27 2018-03-27 合肥鑫晟光电科技有限公司 薄膜晶体管及其制备方法、电子设备
KR20180063401A (ko) * 2016-12-01 2018-06-12 중앙대학교 산학협력단 극저온 공정을 이용한 용액형 산화물 박막의 제조 방법, 산화물 박막 및 이를 포함하는 전자소자
CN209747517U (zh) * 2019-04-12 2019-12-06 西交利物浦大学 一种基于二维半导体材料薄膜晶体管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119385A1 (ko) * 2014-02-06 2015-08-13 코닝정밀소재 주식회사 이황화 몰리브덴으로 이루어진 액티브층을 갖는 박막트랜지스터, 그 제조방법 및 이를 구비하는 디스플레이 장치
CN104078501A (zh) * 2014-06-13 2014-10-01 上海交通大学 一种基于二维半导体材料的低压场效应晶体管
KR20180063401A (ko) * 2016-12-01 2018-06-12 중앙대학교 산학협력단 극저온 공정을 이용한 용액형 산화물 박막의 제조 방법, 산화물 박막 및 이를 포함하는 전자소자
CN107845687A (zh) * 2017-10-27 2018-03-27 合肥鑫晟光电科技有限公司 薄膜晶体管及其制备方法、电子设备
CN209747517U (zh) * 2019-04-12 2019-12-06 西交利物浦大学 一种基于二维半导体材料薄膜晶体管

Also Published As

Publication number Publication date
CN110047915A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN110047915B (zh) 一种基于二维半导体材料薄膜晶体管及其制备方法
CN209747517U (zh) 一种基于二维半导体材料薄膜晶体管
TWI290371B (en) Method for manufacturing thin film transistors
CN109801975A (zh) 基于非晶铟镓锌薄膜的柔性薄膜晶体管及其制造方法
CN1577913A (zh) 有机薄膜晶体管及其制造方法
CN108091699B (zh) 基于柔性衬底底栅结构的MoS2TFT器件及制备方法
WO2017020555A1 (zh) 薄膜晶体管、阵列基板及其制备方法和显示装置
WO2021147284A1 (zh) 柔性衬底金属氧化物薄膜晶体管及其钝化层的制备方法
CN1862834A (zh) 氧化锌基薄膜晶体管及芯片制备工艺
KR20100120939A (ko) 자외선을 이용한 박막트랜지스터의 제조 방법
CN110061061A (zh) 一种基于纳米簇绝缘层的高性能薄膜晶体管及制备方法
CN108346691A (zh) 锗纳米膜柔性透明型顶底双栅薄膜晶体管及其制备方法
CN209747523U (zh) 一种基于纳米簇绝缘层的高性能薄膜晶体管
CN108598005B (zh) 一种低亚阈值摆幅的氧化铟薄膜晶体管的制备方法
CN103177969A (zh) 一种金属氧化物薄膜晶体管的制备方法
CN109742156A (zh) 薄膜晶体管、显示装置及薄膜晶体管的制备方法
CN110137247A (zh) 双层金属氧化物半导体异质结薄膜晶体管及其制备方法
CN109887991A (zh) 一种叠层硅掺杂氧化锡薄膜晶体管及其制备方法
CN211238263U (zh) 一种柔性纳米纤维氧化锌锡的场效应晶体管
CN209747522U (zh) 一种双层金属氧化物半导体异质结薄膜晶体管
CN208111448U (zh) 锗纳米膜柔性透明型顶底双栅薄膜晶体管
CN110970308B (zh) 薄膜晶体管及其异质结有源层的制作方法
CN111171625B (zh) 一种墨水的快速制备方法、薄膜的制备方法和氧化物薄膜晶体管的制备方法
US20220109073A1 (en) Passivation layer and preparation method thereof, flexible thin film transistor and preparation method thereof, and array substrate
KR20080105740A (ko) 박막 트랜지스터의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant