CN112038440A - 一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法 - Google Patents

一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法 Download PDF

Info

Publication number
CN112038440A
CN112038440A CN202010931585.4A CN202010931585A CN112038440A CN 112038440 A CN112038440 A CN 112038440A CN 202010931585 A CN202010931585 A CN 202010931585A CN 112038440 A CN112038440 A CN 112038440A
Authority
CN
China
Prior art keywords
pmma
coating
thin layer
placing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010931585.4A
Other languages
English (en)
Inventor
张礼杰
罗婷燕
邹超
杨云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of New Materials and Industrial Technology of Wenzhou University
Original Assignee
Institute of New Materials and Industrial Technology of Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of New Materials and Industrial Technology of Wenzhou University filed Critical Institute of New Materials and Industrial Technology of Wenzhou University
Priority to CN202010931585.4A priority Critical patent/CN112038440A/zh
Publication of CN112038440A publication Critical patent/CN112038440A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明公开了一种Bi2O2Se晶体管器件的制备方法,根据该方法制备的器件是由离子液作为顶栅,直接在云母片上进行测试,不需要使用HF溶液刻蚀转移Bi2O2Se,减少了对Bi2O2Se的伤害,使用的方法简单,重复性好,对材料无伤害,本发明制备出的以离子液为顶栅的薄层Bi2O2Se晶体管器件可以扩展对Bi2O2Se的研究。

Description

一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法
技术领域
本发明涉及无极纳米材料以及光电器件技术领域,更具体地说它涉及一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法。
背景技术
具有良好环境稳定性的高迁移率超薄半导体,比如石墨烯、六方氮化硼(hBN) 和过渡金属双卤代烃(TMDs)等新型二维原子薄材料因其在下一代电子和光子学领域的潜在应用而受到广泛关注。载流子浓度和迁移率是任何数字应用半导体通道材料的两个最主要的特征参数。信道材料的高载流子迁移率被用来加速高性能数字设备的运行速度。同时,低残留载流子浓度的通道可以产生极好的栅极控制 (尤其是低阈值电压),这对于降低工作电压至关重要,从而使低功率数字器件的制造成为可能。近年来,新发现的二维层状Bi2O2Se表现出了优异的灵敏度和光电子性能。Bi2O2Se作为一种新型的二维半导体材料,具有良好的流动性和空气稳定性。Bi2O2Se由交替补偿阳离子((Bi2O2)n 2n+)和阴离子(Sen 2n-)组成,层间间距约为0.608nm的弱静电力将各层连接在一起。然而,高的暗电流和小开关比限制了基于Bi2O2Se的光电探测器在云母片衬底上的性能。
发明内容
针对现有技术存在的不足,本发明在于提供一种以离子液为顶栅的薄层 Bi2O2Se晶体管及其制备方法,具有使用方法简单,重复性好,对材料无伤害的有益效果。
为实现上述目的,本发明提供了如下技术方案:一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法,其特征在于:包括如下步骤;
1.CVD方法生长Bi2O2Se薄层晶片:
用Bi2O3和Bi2Se3粉末为反应物,称取4:1的量,放入管式炉中,Bi2Se3放置在上游,Bi2O3放置在温区中心,两种反应物相距5cm,加热温度为650℃,以云母片作为衬底,放置在距离中心温区13cm的下游,反应30min;反应前用Ar气300sccm洗气 20min,反应时Ar气流量为100sccm;反应完后待自然冷却,将样品取出可在显微镜下观察;
2.Au电极制备:
a)取一块干净的硅片,滴一滴PMMA并旋涂,旋涂完后将硅片放置在加热到 150℃的加热台上加热3min,使PMMA涂层固化;
b)利用电子束光刻的方法,在PMMA涂层上刻画出Au电极形状,然后将硅片泡在显影液中1min,定影液30s,用N2气枪吹干;
c)用热蒸发的方法,将Au金属蒸发沉积到硅片上,60nm厚;
d)将镀完Au的硅片在50℃条件下,在丙酮中泡20min,将PMMA涂层泡掉,即可得到Au电极。
3.将Au电极贴到Bi2O2Se薄层晶片上:
a)旋涂PMMA涂层到Au电极上,固化后,用刻刀在硅片边缘划一圈;
b)放置到10%的HF溶液中,将带有Au电极的PMMA层泡下来,然后用镊子将PMMA薄层放在去离子水中清洗3次;
c)用一块干净的硅片将PMMA薄层整齐地捞起,然后用PDMS膜贴在PMMA 薄层的上面;
d)利用PDMS的支持力,将Au电极对准在云母片上生长好的Bi2O2Se薄层晶片,贴上后,在80℃条件下加热10min,使PDMS变性,再揭起,可将PDMS 与PMMA涂层分离,此时PMMA涂层以及下方的Au电极贴在Bi2O2Se上;
e)将云母片放置在加热台上,50℃加热20min,以使电极与Bi2O2Se接触更牢固;
f)在50℃的条件下,将带有PMMA涂层的云母片放置在丙酮中泡20min,以去除PMMA;
g)用镊子将云母片夹起,用N2枪将表层的丙酮吹干,即可获得Bi2O2Se器件;
4.利用液滴枪将离子液滴在Bi2O2Se上方,同时覆盖两边的电极;
5.在真空中对Bi2O2Se器件进行电学测试。
综上所述,本发明具有以下有益效果:提出了一种Bi2O2Se晶体管器件的新的制备方法;其制备的器件是由离子液作为顶栅,直接在云母片上进行测试,不需要使用HF溶液刻蚀转移Bi2O2Se,减少了对Bi2O2Se的伤害,使用的方法简单,重复性好,对材料无伤害;根据该方法制备出的以离子液为顶栅的薄层Bi2O2Se 晶体管器件可以扩展对Bi2O2Se的研究。
附图说明
图1:滴上离子液的Bi2O2Se器件;
图2:在真空条件下,170K时测试,Vds=0.2V时的Ids-Vg图,黑暗与光照不同条件下的转移曲线图;
图3:在真空条件下,170K时测试,Vds=0.2V,Vg=2V。在532nm激光照射下随时间变化的Ids变化图,可看出Bi2O2Se优异的光电响应;
图4:用532nm激光条件测试得到的生长在云母片上的Bi2O2Se的拉曼光谱图。
具体实施方式
以下结合附图对本发明作进一步详细说明。
一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法,具有使用方法简单,重复性好,对材料无伤害的有益效果;包括如下步骤;
1.CVD方法生长Bi2O2Se薄层晶片:
用Bi2O3和Bi2Se3粉末为反应物,称取4:1的量,放入管式炉中,Bi2Se3放置在上游,Bi2O3放置在温区中心,两种反应物相距5cm,加热温度为650℃,以云母片作为衬底,放置在距离中心温区13cm的下游,反应30min;反应前用Ar气300sccm洗气 20min,反应时Ar气流量为100sccm;反应完后待自然冷却,将样品取出可在显微镜下观察;
2.Au电极制备:
a)取一块干净的硅片,滴一滴PMMA并旋涂,旋涂完后将硅片放置在加热到 150℃的加热台上加热3min,使PMMA涂层固化;
b)利用电子束光刻的方法,在PMMA涂层上刻画出Au电极形状,然后将硅片泡在显影液中1min,定影液30s,用N2气枪吹干;
c)用热蒸发的方法,将Au金属蒸发沉积到硅片上,60nm厚;
d)将镀完Au的硅片在50℃条件下,在丙酮中泡20min,将PMMA涂层泡掉,即可得到Au电极。
3.将Au电极贴到Bi2O2Se薄层晶片上:
a)旋涂PMMA涂层到Au电极上,固化后,用刻刀在硅片边缘划一圈;
b)放置到10%的HF溶液中,将带有Au电极的PMMA层泡下来,然后用镊子将PMMA薄层放在去离子水中清洗3次;
c)用一块干净的硅片将PMMA薄层整齐地捞起,然后用PDMS膜贴在PMMA 薄层的上面;
d)利用PDMS的支持力,将Au电极对准在云母片上生长好的Bi2O2Se薄层晶片,贴上后,在80℃条件下加热10min,使PDMS变性,再揭起,可将PDMS 与PMMA涂层分离,此时PMMA涂层以及下方的Au电极贴在Bi2O2Se上;
e)将云母片放置在加热台上,50℃加热20min,以使电极与Bi2O2Se接触更牢固;
f)在50℃的条件下,将带有PMMA涂层的云母片放置在丙酮中泡20min,以去除PMMA;
g)用镊子将云母片夹起,用N2枪将表层的丙酮吹干,即可获得Bi2O2Se器件;
4.利用液滴枪将离子液滴在Bi2O2Se上方,同时覆盖两边的电极;
5.在真空中对Bi2O2Se器件进行电学测试。
综上所述,本发明具有以下有益效果:提出了一种Bi2O2Se晶体管器件的新的制备方法;其制备的器件是由离子液作为顶栅,直接在云母片上进行测试,不需要使用HF溶液刻蚀转移Bi2O2Se,减少了对Bi2O2Se的伤害,使用的方法简单,重复性好,对材料无伤害;根据该方法制备出的以离子液为顶栅的薄层Bi2O2Se 晶体管器件可以扩展对Bi2O2Se的研究。
以上所述仅为本发明的较佳实施例,并不用于限制本发明,凡在本发明的设计构思之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法,其特征在于:包括如下步骤;
1.CVD方法生长Bi2O2Se薄层晶片:
用Bi2O3和Bi2Se3粉末为反应物,称取4:1的量,放入管式炉中,Bi2Se3放置在上游,Bi2O3放置在温区中心,两种反应物相距5cm,加热温度为650℃,以云母片作为衬底,放置在距离中心温区13cm的下游,反应30min;反应前用Ar气300sccm洗气20min,反应时Ar气流量为100sccm;反应完后待自然冷却,将样品取出可在显微镜下观察;
2.Au电极制备:
a)取一块干净的硅片,滴一滴PMMA并旋涂,旋涂完后将硅片放置在加热到150℃的加热台上加热3min,使PMMA涂层固化;
b)利用电子束光刻的方法,在PMMA涂层上刻画出Au电极形状,然后将硅片泡在显影液中1min,定影液30s,用N2气枪吹干;
c)用热蒸发的方法,将Au金属蒸发沉积到硅片上,60nm厚;
d)将镀完Au的硅片在50℃条件下,在丙酮中泡20min,将PMMA涂层泡掉,即可得到Au电极。
3.将Au电极贴到Bi2O2Se薄层晶片上:
a)旋涂PMMA涂层到Au电极上,固化后,用刻刀在硅片边缘划一圈;
b)放置到10%的HF溶液中,将带有Au电极的PMMA层泡下来,然后用镊子将PMMA薄层放在去离子水中清洗3次;
c)用一块干净的硅片将PMMA薄层整齐地捞起,然后用PDMS膜贴在PMMA薄层的上面;
d)利用PDMS的支持力,将Au电极对准在云母片上生长好的Bi2O2Se薄层晶片,贴上后,在80℃条件下加热10min,使PDMS变性,再揭起,可将PDMS与PMMA涂层分离,此时PMMA涂层以及下方的Au电极贴在Bi2O2Se上;
e)将云母片放置在加热台上,50℃加热20min,以使电极与Bi2O2Se接触更牢固;
f)在50℃的条件下,将带有PMMA涂层的云母片放置在丙酮中泡20min,以去除PMMA;
g)用镊子将云母片夹起,用N2枪将表层的丙酮吹干,即可获得Bi2O2Se器件;
4.利用液滴枪将离子液滴在Bi2O2Se上方,同时覆盖两边的电极;
5.在真空中对Bi2O2Se器件进行电学测试。
CN202010931585.4A 2020-09-07 2020-09-07 一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法 Pending CN112038440A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010931585.4A CN112038440A (zh) 2020-09-07 2020-09-07 一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010931585.4A CN112038440A (zh) 2020-09-07 2020-09-07 一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法

Publications (1)

Publication Number Publication Date
CN112038440A true CN112038440A (zh) 2020-12-04

Family

ID=73585539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010931585.4A Pending CN112038440A (zh) 2020-09-07 2020-09-07 一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN112038440A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023700A2 (en) * 2003-09-03 2005-03-17 The Regents Of The University Of California Nanoelectonic devices based on nanowire networks
US20060105513A1 (en) * 2004-11-18 2006-05-18 International Business Machines Corporation Device comprising doped nano-component and method of forming the device
CN105070412A (zh) * 2015-08-27 2015-11-18 西安交通大学 一种干法转移银纳米线透明电极的方法
CN105668511A (zh) * 2016-03-03 2016-06-15 广东工业大学 一种微纳加工制备电子器件的方法
CN108039403A (zh) * 2017-12-12 2018-05-15 北京大学 一种高质量晶圆级硒氧化铋半导体单晶薄膜的批量化制备方法
CN108155290A (zh) * 2016-12-02 2018-06-12 北京大学 一种基于离子液体栅的单分子场效应晶体管
CN108217608A (zh) * 2017-12-27 2018-06-29 中国科学院化学研究所 二维材料纳米卷及其制备方法和应用
CN109300774A (zh) * 2018-08-30 2019-02-01 中山大学 一种微米级含有金属电极的石墨烯层的加工和转移的方法
CN109659354A (zh) * 2018-11-30 2019-04-19 华灿光电(浙江)有限公司 一种高电子迁移率晶体管及其制备方法
CN110387582A (zh) * 2019-03-22 2019-10-29 南京大学 一种理想二维费米液体系统Bi2O2Se单晶及其制备方法和应用
CN110676218A (zh) * 2019-08-28 2020-01-10 西安工业大学 一种定向转移cvd法制备二维过渡金属硫化物的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023700A2 (en) * 2003-09-03 2005-03-17 The Regents Of The University Of California Nanoelectonic devices based on nanowire networks
US20060105513A1 (en) * 2004-11-18 2006-05-18 International Business Machines Corporation Device comprising doped nano-component and method of forming the device
CN105070412A (zh) * 2015-08-27 2015-11-18 西安交通大学 一种干法转移银纳米线透明电极的方法
CN105668511A (zh) * 2016-03-03 2016-06-15 广东工业大学 一种微纳加工制备电子器件的方法
CN108155290A (zh) * 2016-12-02 2018-06-12 北京大学 一种基于离子液体栅的单分子场效应晶体管
CN108039403A (zh) * 2017-12-12 2018-05-15 北京大学 一种高质量晶圆级硒氧化铋半导体单晶薄膜的批量化制备方法
CN108217608A (zh) * 2017-12-27 2018-06-29 中国科学院化学研究所 二维材料纳米卷及其制备方法和应用
CN109300774A (zh) * 2018-08-30 2019-02-01 中山大学 一种微米级含有金属电极的石墨烯层的加工和转移的方法
CN109659354A (zh) * 2018-11-30 2019-04-19 华灿光电(浙江)有限公司 一种高电子迁移率晶体管及其制备方法
CN110387582A (zh) * 2019-03-22 2019-10-29 南京大学 一种理想二维费米液体系统Bi2O2Se单晶及其制备方法和应用
CN110676218A (zh) * 2019-08-28 2020-01-10 西安工业大学 一种定向转移cvd法制备二维过渡金属硫化物的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HE XUEXIA等: "Electric-double-layer Transistors Based on Two Dimensional Materials", 《ACTA CHIMICA SINICA》 *
TONG TONG等: "Sensitive and Ultrabroadband Phototransistor Based on Two-Dimensional Bi2O2Se Nanosheets", 《ADVANCED FUNCTIONAL MATERIALS》 *
USMAN KHAN等: "Controlled Vapor–Solid Deposition of Millimeter-Size Single Crystal 2D Bi2O2Se for High-Performance Phototransistors", 《ADVANCED FUNCTIONAL MATERIALS》 *

Similar Documents

Publication Publication Date Title
CN109727846B (zh) 大面积制备金属相与半导体相接触的二维碲化钼面内异质结的方法及应用
Yi et al. Vacuum Lamination Approach to Fabrication of High‐Performance Single‐Crystal Organic Field‐Effect Transistors
CN110854013B (zh) 一种大面积连续超薄二维Ga2O3非晶薄膜的制备方法与应用
Liu et al. Highly efficient broadband photodetectors based on lithography-free Au/Bi 2 O 2 Se/Au heterostructures
CN107946176B (zh) Ga2O3薄膜晶体管的制备方法
CN113097319B (zh) 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用
CN108281357A (zh) 基于Al2O3介质栅衬底制备二维材料场效应管的方法
CN111063731A (zh) Cnt-igzo薄膜异质结双极晶体管及其制备方法和应用
CN110676384A (zh) 一种氮化硼封装的二维有机-无机异质结及其制备方法
CN111430244B (zh) 氮化镓二硫化钼混合尺度pn结的制备方法
CN112687799B (zh) 一种高结晶度半导体膜转移制造方法
CN111987173B (zh) 一种可集成的二维光电突触器件阵列及其制备方法
CN110634958B (zh) 一种不稳定的二维材料的半导体薄膜场效应管及其制备方法
CN111081820B (zh) 一种基于二维黑磷材料实现igzo光电流调控的方法
CN111864006A (zh) 基于引入氧缺陷的多层TMDs光电器件及制备方法
CN112038440A (zh) 一种以离子液为顶栅的薄层Bi2O2Se晶体管及其制备方法
CN107937949A (zh) 制备二维层状垂直异质结的方法
CN112447858B (zh) 结型场效应晶体管及其制备方法
CN114784130B (zh) 一种静电自掺杂二极管及其制备方法
KR102072888B1 (ko) 산화 그래핀을 적용한 그래핀의 도핑 방법 및 그 도핑된 그래핀
Singh et al. A variable electron beam and its irradiation effect on optical and electrical properties of CdS thin films
CN110120349A (zh) InGaZnO薄膜晶体管的源漏电极及晶体管制备方法
CN113045213B (zh) 一种二硫化钼平面同质结的制备方法
CN111254491B (zh) 一种高质量二维原子层薄膜的制备方法
CN110620043B (zh) 一种不稳定的二维材料的半导体薄膜场效应管的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201204

WD01 Invention patent application deemed withdrawn after publication