CN112038414B - 基于碳化硅衬底的垂直氮化铝肖特基二极管及制备方法 - Google Patents

基于碳化硅衬底的垂直氮化铝肖特基二极管及制备方法 Download PDF

Info

Publication number
CN112038414B
CN112038414B CN202010922618.9A CN202010922618A CN112038414B CN 112038414 B CN112038414 B CN 112038414B CN 202010922618 A CN202010922618 A CN 202010922618A CN 112038414 B CN112038414 B CN 112038414B
Authority
CN
China
Prior art keywords
aluminum nitride
epitaxial layer
silicon carbide
substrate
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010922618.9A
Other languages
English (en)
Other versions
CN112038414A (zh
Inventor
周弘
王捷英
曾诗凡
张进成
许晟瑞
刘志宏
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202010922618.9A priority Critical patent/CN112038414B/zh
Publication of CN112038414A publication Critical patent/CN112038414A/zh
Application granted granted Critical
Publication of CN112038414B publication Critical patent/CN112038414B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种基于碳化硅衬底的垂直氮化铝肖特基二极管,主要解决现有水平氮化铝肖特基二极管击穿电压和额定功率低的问题。其自下而上包括欧姆电极(1)、衬底(2)、氮化铝外延层(3)、肖特基电极(4)。其中衬底(2)采用n型高掺碳化硅,其掺杂浓度为1017‑1020cm‑3;氮化铝外延层(3)为单层n型氮化铝层,其掺杂浓度为1015‑1017cm‑3,且两侧设有阻碍载流子迁移的高阻区。本发明抑制了反向漏电,提高器件的击穿电压。可用作高频电路、超高速开关电路和用作耐高压功率器件。

Description

基于碳化硅衬底的垂直氮化铝肖特基二极管及制备方法
技术领域
本发明属于半导体器件技术领域,特别涉及一种垂直结构的肖特基氮化铝二极管,可用于高频电路、超高速开关电路和用作耐高压功率器件。
背景技术
氮化铝属于超宽禁带半导体材料,其禁带宽度为6.1eV,相比于禁带宽度为3.4eV的GaN、宽度为4.8eV的β-Ga2O3、宽度为5.5eV的金刚石这些超宽禁带半导体材料,氮化铝在禁带宽度上具有明显的材料优势。此外氮化铝具有较高的电子迁移率,其临界电场强度高达12MV/cm,其巴利加优值的数量级能达到104,表明氮化铝作为半导体材料在电力电子领域拥有巨大的发展潜力。同时由于氮化铝的热导率为340W/(m*K),这种较高的热导率使得氮化铝器件能够表现出良好的散热性能以及热稳定性。
目前关于氮化铝器件的研究主要集中在横向结构的肖特基二极管,2019年深圳大学研制的横向氮化铝肖特基二极管理想因子为3.3,室温下肖特基二极管的有效势垒高度为1.05ev;2017年亚利桑那大学研制出击穿电压超过1kV的横向氮化铝肖特基二极管,其理想因子为5.5,导通电压为1.2V;在2017年之前的氮化铝器件,击穿电压均小于800V。目前这种氮化铝横向器件都未发挥出氮化铝的材料优势,主要表现在以下两个方面:第一,其额定功率低,只能通过增加器件尺寸提高额定功率;第二,其击穿电压远低于氮化铝材料的理论值。
发明内容
本发明的目的在于针对上述下技术的不足,提出一种基于碳化硅衬底的垂直氮化铝二极管及制备方法,以提高氮化铝二极管的额定功率和击穿电压。
本发明的技术关键:采用n型高掺杂碳化硅作为氮化铝外延层的衬底,在这样的晶圆上制作垂直氮化铝肖特基二极管。实现如下:
1.一种基于碳化硅衬底的垂直氮化铝肖特基二极管,自下而上包括:欧姆电极、衬底、氮化铝外延层、肖特基电极,其特征在于:
所述衬底采用n型高掺碳化硅,其掺杂浓度为1017-1020cm-3,以提高外延片的质量;
所述氮化铝外延层为单层n型氮化铝层,其掺杂浓度为1015-1017cm-3,且两侧设有阻碍载流子迁移的高阻区,以抑制反向漏电,提高器件的击穿电压。
进一步,所述欧姆电极的金属材料为Ni、Ti、Al、W、Cr、Ta、Mo、TiC、TiN、TiW中的任意一种或任意几种的组合。
进一步,所述肖特基电极的金属材料为Ni、Pt、Pd、Au、W等金属中的任意一种或任意几种的组合。
进一步,所述衬底的厚度为100-5000μm;所述氮化铝外延层的厚度不超过20μm。
2.一种基于氮化硅衬底的垂直氮化铝肖特基二极管的制备方法,其特征在于,包括如下:
1)对自下而上包括掺杂浓度为1017-1020cm-3且厚度为100-5000μm的n型高掺杂碳化硅衬底、掺杂浓度为1015-1017cm-3且厚度不超过20μm的n型氮化铝外延层的外延片材料,依次进行有机清洗和无机清洗操作;
2)在高掺杂n型碳化硅衬底背侧采用蒸发工艺淀积阴极金属,并根据阴极金属的材料,在400-1200℃条件下进行退火30s-10min处理,形成欧姆接触,获得阴极;
3)在n型氮化铝的外延层上制作保护膜,并光刻出离子注入区域;
4)在光刻出离子注入区域的n型氮化铝外延层中采用离子注入工艺注入高能离子,形成高阻区;
5)去除离子注入后的n型氮化铝外延片上的保护膜,在n型氮化铝外延层上制作掩膜,并采用蒸发工艺在氮化铝外延层上淀积阳极金属,完成器件制作。
本发明与现有技术相比,具有如下优点:
1.本发明的衬底由于采用n型高掺杂碳化硅,利用了氮化铝与碳化硅晶格匹配的特性,因而提高了外延层的质量,使器件能够充分发挥氮化铝材料具有的超高临界电场强度的优势。
2.本发明由于在单层n型氮化铝层的两侧中设有阻碍载流子迁移的高阻区,抑制了反向漏电,提高了器件的击穿电压。
附图说明
图1是本发明的垂直氮化铝肖特基二极管结构图;
图2是本发明制作图1器件的实现流程图。
具体实施方式
以下结合附图和实施例对本发明作进一步的详细描述。
参照图1,本发明基于碳化硅衬底的垂直氮化铝肖特基二极管,自下而上包括欧姆电极1、衬底2、氮化铝外延层3、肖特基电极4。该欧姆电极1的金属材料为Ni、Ti、Al、W、Cr、Ta、Mo、TiC、TiN、TiW中的任意一种或任意几种的组合;该衬底2采用n型高掺杂碳化硅,其厚度为100-5000μm,掺杂浓度为1017-1020cm-3;该氮化铝外延层为单层n型氮化铝层,其厚度不超过20μm,掺杂浓度为1015-1017cm-3;该肖特基电极的金属材料为Ni、Pt、Pd、Au、W金属中的任意一种或任意几种的组合。
参照图2,本发明制作基于碳化硅衬底的垂直氮化铝肖特基二极管,给出如下三个实施例:
实施例1,制作阳极金属为Ni/Au,阴极金属为钛,离子注入为镁离子的氮化铝肖特基二极管。
步骤1:对外延片进行清洗。
1.1)选用外延片:
本实施例使用的外延片,其自下而上包括n型高掺杂碳化硅衬底、n型氮化铝外延层的外延片材料,其中碳化硅衬底的厚度是400μm,掺杂浓度为5×1018cm-3,n型氮化铝外延层的厚度是500nm,掺杂浓度是1×1017cm-3
1.2)对外延片进行预处理:
将上述外延片依次放入丙酮、异丙醇、去离子水中各超声清洗5min,然后将外延片放入10%的HF溶液中浸泡30s,最后用去离子水清洗外延片并用氮气吹干。
步骤2:在高掺杂n型碳化硅衬底上淀积阴极金属,对阴极金属进行退火处理,使其与碳化硅衬底形成欧姆接触。
2.1)将外延片放入电子束蒸发台,在碳化硅衬底一侧淀积厚度为100nm的金属钛作为阴极金属;
2.2)将淀积了阴极金属的外延片放入快速热退火炉中,在900℃温度下的氩气氛围中退火3min,形成欧姆接触。
步骤3:在氮化铝外延片一侧制作保护膜,光刻出离子注入区域。
将正性光刻胶均匀地涂在氮化铝外延层上,再将具有阳极图形的掩模版与外延片上对准标志对准并曝光,再通过后烘、显影、坚膜烘焙、图形检查这一系列工艺,得到被光刻胶保护的阳极区域与未被光刻胶保护的离子注入区域。
步骤4:对离子注入区域进行离子注入并形成高阻区域。
将光刻出离子注入区域的外延片放入离子注入系统注入镁离子,离子注入角度为7°,用不同的能量与剂量分三次注入,即第一次注入能量为70keV,注入剂量为1.3×1014cm-2;第二次注入能量为140keV,注入剂量为2.2×1014cm-2;第三次注入能量为240keV,注入剂量为4.6×1014cm-2,最终在深度为0-500nm的范围内形成高阻区域。
步骤5:淀积阳极电极。
对离子注入后的外延片进行有机清洗,清洗之后光刻出阳极区域,在此之后将外延片放入电子束蒸发台,淀积60/120nm的Ni/Au作为肖特基金属,完成二极管的制作。
实施例2:制作阳极金属为Ni/Au/Ni,阴极金属为镍,离子注入为氮离子的氮化铝肖特基二极管。
步骤A:选用外延片并进行清洗。
A1)选用自下而上包括n型高掺杂碳化硅衬底、n型氮化铝外延层的外延片材料,其中碳化硅衬底的厚度是100μm,掺杂浓度为5×1017cm-3,n型氮化铝外延层的厚度是800nm,掺杂浓度是1×1015cm-3的外延片;
A2)将上述外延片依次放入丙酮、异丙醇、去离子水中各超声清洗5min,然后将外延片放入10%的HF溶液中浸泡30s,最后用去离子水清洗外延片并用氮气吹干。
步骤B:在高掺杂n型碳化硅衬底上淀积阴极金属,对阴极金属进行退火处理,使其与碳化硅衬底形成欧姆接触。
B1)将外延片放入电子束蒸发台,在碳化硅衬底一侧淀积厚度为80nm的金属镍作为阴极金属;
B2)将淀积了阴极金属的外延片放入快速热退火炉中,在950℃下退火5min形成欧姆接触。
步骤C:在氮化铝外延层一侧制作保护膜,光刻出离子注入区域。
将正性光刻胶均匀地涂在氮化铝外延层上,再将具有阳极图形的掩模版与外延片上对准标志对准并曝光,再通过后烘、显影、坚膜烘焙、图形检查这一系列工艺,得到被光刻胶保护的阳极区域与未被光刻胶保护的离子注入区域。
步骤D:对离子注入区域进行离子注入并形成高阻区域。
将光刻出离子注入区域的外延片放入离子注入系统中,设置离子注入角度为5°,用不同的能量与剂量分三次在离子注入区域注入氮离子,即第一次注入能量为30keV,注入剂量为1.6×1014cm-2;第二次注入能量为85keV,注入剂量为1.8×1014cm-2;第三次注入能量为130keV,注入剂量为3.6×1014cm-2,最终在深度为0-800nm的范围内形成高阻区域。
步骤E:淀积阳极电极。
对离子注入后的外延片进行有机清洗,清洗之后在氮化铝外延层上制作掩膜,再将外延片放入电子束蒸发台,淀积60/100/160nm的Ni/Au/Ni作为肖特基金属,完成二极管的制作。
实施例3,制作阳极金属为Pt/Au,阴极金属为Ti/Al,离子注入为氟离子的氮化铝肖特基二极管。
步骤一:选用外延片并进行清洗。
选用自下而上包括n型高掺杂碳化硅衬底、n型氮化铝外延层的外延片材料,其中碳化硅衬底的厚度是5000μm,掺杂浓度为1×1020cm-3,n型氮化铝外延层的厚度是20μm,掺杂浓度是1×1017cm-3;再将该外延片依次放入丙酮、异丙醇、去离子水中各超声清洗5min;然后将外延片放入10%的HF溶液中浸泡30s;最后用去离子水清洗外延片并用氮气吹干。
步骤二:在高掺杂n型碳化硅衬底上淀积阴极金属,对阴极金属进行退火处理,使其与碳化硅衬底形成欧姆接触。
2a)将外延片放入电子束蒸发台,在碳化硅衬底一侧淀积厚度为60/120nm的Ti/Al作为阴极金属;
2b)将淀积了阴极金属的外延片放入快速热退火炉中,在1000℃退火5min形成欧姆接触。
步骤三:在氮化铝外延片一侧制作保护膜,光刻出离子注入区域。
将正性光刻胶均匀地涂在氮化铝外延层上,再将具有阳极图形的掩模版与外延片上对准标志对准并曝光,再通过后烘、显影、坚膜烘焙、图形检查这一系列工艺,得到被光刻胶保护的阳极区域与未被光刻胶保护的离子注入区域。
步骤四:对离子注入区域进行离子注入并形成高阻区域。
将光刻出离子注入区域的外延片放入离子注入系统注入氟离子,离子注入角度为5°,用不同的能量与剂量分三次注入,即第一次注入能量为50keV,注入剂量为1.4×1014cm-2;第二次注入能量为125keV,注入剂量为2×1014cm-2;第三次注入能量为250keV,注入剂量为9.8×1014cm-2,最终在深度为0-800nm的范围内形成高阻区域。
步骤五:淀积阳极电极。
对离子注入后的片子进行有机清洗,清洗之后在氮化铝外延层一侧制作掩膜,再将外延片放入电子束蒸发台,淀积60/200nm的Pt/Au作为肖特基金属,完成二极管的制作。
以上描述仅为本发明的三个具体实例,并未构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明的原理、结构的情况下,进行形式和细节上的各种修正和改变,例如欧姆电极除以上使用的金属外,还可使用Ni、Ti、Al、W、Cr、Ta、Mo、TiC、TiN、TiW中的任意一种或任意几种的组合;肖特基电极除以上使用的金属外,还可使用Ni、Pt、Pd、Au、W中的任意一种或任意几种的组合;离子注入的离子元素除以上使用的金属外,还使用H、He、Ne、Al、Ar、Fe中的一种;保护膜除以上使用的材料以外,还可使用金属或绝缘材料。但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (7)

1.一种基于碳化硅衬底的垂直氮化铝肖特基二极管,自下而上包括:欧姆电极(1)、衬底(2)、氮化铝外延层(3)、肖特基电极(4),其特征在于:
所述衬底(2)采用n型高掺碳化硅,其掺杂浓度为1017-1020cm-3,以提高外延片的质量;
所述氮化铝外延层(3)为单层n型氮化铝层,其掺杂浓度为1015-1017cm-3,且两侧设有阻碍载流子迁移的高阻区,以抑制反向漏电,提高器件的击穿电压。
2.根据权利要求1所述的二极管,其特征在于:欧姆电极(1)的金属材料为Ni、Ti、Al、W、Cr、Ta、Mo、TiC、TiN、TiW中的任意一种或任意几种的组合。
3.根据权利要求1所述的二极管,其特征在于:肖特基电极(4)的金属材料为Ni、Pt、Pd、Au、W中的任意一种或任意几种的组合。
4.根据权利要求1所述的二极管,其特征在于:
衬底(2)的厚度为100-5000μm;
氮化铝外延层(3)的厚度不超过20μm。
5.一种基于碳化硅衬底的垂直氮化铝肖特基二极管的制备方法,
其特征在于,包括如下:
1)对自下而上包括掺杂浓度为1017-1020cm-3且厚度为100-5000μm的n型高掺杂碳化硅衬底、掺杂浓度为1015-1017cm-3且厚度不超过20μm的n型氮化铝外延层的外延片材料,依次进行有机清洗和无机清洗操作;
2)在高掺杂n型碳化硅衬底背侧采用蒸发工艺淀积阴极金属,并根据阴极金属的材料,在400-1200℃条件下进行退火30s-10min处理,形成欧姆接触,获得阴极;
3)在n型氮化铝的外延层上制作保护膜,并光刻出离子注入区域;
4)在光刻出离子注入区域的n型氮化铝外延层中采用离子注入工艺注入高能离子,形成高阻区;
5)去除离子注入后的n型氮化铝外延层上的保护膜,在n型氮化铝外延层上制作掩膜,并采用蒸发工艺在氮化铝外延层上淀积阳极金属,完成器件制作。
6.根据权利要求5所述的方法,其特征在于,步骤4)中注入的离子元素为H、He、N、F、Ne、Mg、Al、Ar、Fe中的任意一种。
7.根据权利要求5所述的方法,其特征在于,步骤3)中制作的保护膜为光刻胶或金属或绝缘材料。
CN202010922618.9A 2020-09-04 2020-09-04 基于碳化硅衬底的垂直氮化铝肖特基二极管及制备方法 Active CN112038414B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010922618.9A CN112038414B (zh) 2020-09-04 2020-09-04 基于碳化硅衬底的垂直氮化铝肖特基二极管及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010922618.9A CN112038414B (zh) 2020-09-04 2020-09-04 基于碳化硅衬底的垂直氮化铝肖特基二极管及制备方法

Publications (2)

Publication Number Publication Date
CN112038414A CN112038414A (zh) 2020-12-04
CN112038414B true CN112038414B (zh) 2021-11-30

Family

ID=73590620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010922618.9A Active CN112038414B (zh) 2020-09-04 2020-09-04 基于碳化硅衬底的垂直氮化铝肖特基二极管及制备方法

Country Status (1)

Country Link
CN (1) CN112038414B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193053B (zh) * 2021-05-20 2023-11-07 电子科技大学 一种具有高正向电流密度的沟槽肖特基二极管
CN113964183A (zh) * 2021-09-13 2022-01-21 西安电子科技大学 一种氟等离子体注入终端氧化镓功率二极管及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110648977A (zh) * 2018-05-31 2020-01-03 罗姆股份有限公司 半导体基板结构体和功率半导体装置
CN110957375A (zh) * 2019-12-10 2020-04-03 西安电子科技大学 基于离子注入边缘终端的垂直AlN肖特基二极管及制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436361B2 (en) * 2010-06-16 2013-05-07 National Tsing Hua University Schottky diode structure and method for fabricating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110648977A (zh) * 2018-05-31 2020-01-03 罗姆股份有限公司 半导体基板结构体和功率半导体装置
CN110957375A (zh) * 2019-12-10 2020-04-03 西安电子科技大学 基于离子注入边缘终端的垂直AlN肖特基二极管及制作方法

Also Published As

Publication number Publication date
CN112038414A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
JP5781291B2 (ja) ファストリカバリーダイオード
CN112038414B (zh) 基于碳化硅衬底的垂直氮化铝肖特基二极管及制备方法
JP2008235331A (ja) 炭化珪素半導体装置及びその製造方法
US8377812B2 (en) SiC MOSFETs and self-aligned fabrication methods thereof
CN105810722A (zh) 一种碳化硅mosfet器件及其制备方法
Ji et al. A review of gallium oxide-based power Schottky barrier diodes
CN109860273B (zh) Mps二极管器件及其制备方法
WO2010134344A1 (ja) 炭化珪素半導体装置およびその製造方法
JP5885284B2 (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
CN109888024B (zh) Mps二极管器件及其制备方法
JP2019534553A (ja) 炭化珪素上に絶縁層を製造する方法及び半導体装置
CN110364575A (zh) 一种具有浮动场环终端结构的结势垒肖特基二极管及其制备方法
TW200937631A (en) Semiconductor device and method for manufacturing semiconductor device
JPH0621099A (ja) GaAs MESFETの製造方法
JP4506100B2 (ja) 炭化珪素ショットキーバリアダイオードの製造方法
CN113178384B (zh) SiC基欧姆接触结构及其制造方法
Sansbury et al. CONDUCTIVITY AND HALL MOBILITY OF ION‐IMPLANTED SILICON IN SEMI‐INSULATING GALLIUM ARSENIDE
JP3635956B2 (ja) 炭化けい素ショットキーバリアダイオードの製造方法
CN110556430B (zh) 氧化镓基肖特基二极管及其制备方法
CN114823332A (zh) 一种半超结快恢复二极管器件的制备工艺及结构
JP4087368B2 (ja) SiC半導体装置の製造方法
CN209766431U (zh) Mps二极管器件
CN209766432U (zh) Mps二极管器件
CN113851528A (zh) 一种碳化硅肖特基二极管及其制作方法
CN112038411B (zh) 基于碳化硅衬底的垂直氮化铝pn结二极管及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant