CN109888024B - Mps二极管器件及其制备方法 - Google Patents
Mps二极管器件及其制备方法 Download PDFInfo
- Publication number
- CN109888024B CN109888024B CN201811652681.4A CN201811652681A CN109888024B CN 109888024 B CN109888024 B CN 109888024B CN 201811652681 A CN201811652681 A CN 201811652681A CN 109888024 B CN109888024 B CN 109888024B
- Authority
- CN
- China
- Prior art keywords
- region
- forming
- metal
- doped region
- epitaxial layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 66
- 239000002184 metal Substances 0.000 claims abstract description 66
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 34
- 230000008569 process Effects 0.000 claims description 25
- 238000005530 etching Methods 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 150000002500 ions Chemical class 0.000 claims description 12
- 238000000206 photolithography Methods 0.000 claims description 10
- 238000004151 rapid thermal annealing Methods 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 9
- 238000005468 ion implantation Methods 0.000 claims description 7
- 230000003213 activating effect Effects 0.000 claims description 5
- 239000012300 argon atmosphere Substances 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 238000002513 implantation Methods 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 230000015556 catabolic process Effects 0.000 description 11
- 238000002955 isolation Methods 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- 238000004088 simulation Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
一种MPS二极管器件及其制备方法。所述MPS二极管器件自下而上包括阴极电极、N+碳化硅衬底、N‑外延层和阳极电极;所述N‑外延层具有至少两个P+区;相邻两个所述P+区之间具有N‑补偿掺杂区,所述N‑补偿掺杂区的深度大于所述P+区的深度,所述N‑补偿掺杂区的掺杂浓度高于所述N‑外延层的掺杂浓度;所述阳极电极包括第一金属和第二金属,所述P+区表面与所述第一金属之间为欧姆接触,所述N‑补偿掺杂区表面与所述第二金属之间肖特基为接触。所述MPS二极管能够改善器件导通特性,促使器件的正向压降降低。
Description
技术领域
本发明涉及半导体工艺领域,尤其涉及一种MPS二极管器件及其制备方法。
背景技术
近年来,随着电力电子系统的不断发展,对系统中的功率器件提出了更高的要求。功率二极管是电路系统的关键部件,广泛适用于高频逆变器、数码产品、发电机、电视机等民用产品以及卫星接收装置、导弹飞机等各种先进武器控制系统和仪器仪表设备的军用场合。为了满足低功耗、高频、高温、小型化等应用要求,对功率二极管的耐压、导通电阻、开启压降、反向恢复特性、高温特性的要求也越来越高。
为了满足功率和快速开关器件应用的需要,MPS二极管器件的诞生解决了部分难题。
MPS二极管器件将肖特基整流管和PiN整流管的优点集于一体,是一种混合型二极管(混合PiN和肖特基),它不仅具有较高的反向阻断电压,而且它的通态压降很低,反向恢复时间很短,反向恢复峰值电流很小,具有软的反向恢复特性。
更多有关现有MPS二极管器件相关内容,可以参考公开号为CN106298774A和CN105931950A的中国专利申请。
发明内容
本发明解决的问题是提供一种MPS二极管器件及其制备方法,改善传统MPS二极管器件的正向导通特性。
为解决上述问题,本发明提供一种MPS二极管器件及其制备方法,包括:所述器件自下而上包括阴极电极、N+碳化硅衬底、N-外延层和阳极电极;所述N-外延层具有至少两个P+区;相邻两个所述P+区之间具有N-补偿掺杂区,所述N-补偿掺杂区的深度大于所述P+区的深度,所述N-补偿掺杂区的掺杂浓度高于所述N-外延层的掺杂浓度;所述阳极电极包括第一金属和第二金属,所述P+区表面与所述第一金属之间欧姆接触,所述N-补偿掺杂区表面与所述第二金属之间肖特基接触。
进一步,所述N-补偿掺杂区直接与相邻两个所述P+区的边缘相连;所述N-补偿掺杂区介于两个相邻的P+区之间,但是与P+区的下边缘不相连。
可选的,所述N-补偿掺杂区的掺杂浓度为1×1016atom/cm3~1×1017atom/cm3。
可选的,所述P+区深度为0.8μm~2.0μm,所述N-补偿掺杂区的深度与所述P+区的深度差值为0.1μm~5μm。
可选的,所述第一金属为镍,所述第二金属为钛。
为解决上述问题,本发明还提供了一种MPS二极管器件的制备方法,包括:在N+碳化硅衬底上形成N-外延层;在所述N-外延层顶部形成N-补偿掺杂区;在所述N-外延层顶部形成P+区;其中,所述N-补偿掺杂区位于相邻两个所述P+区之间,所述N-补偿掺杂区的深度大于所述P+区的深度;在所述P+区表面形成第一金属,所述第一金属与所述P+区表面欧姆接触;在第一金属及N-补偿掺杂区表面同时形成第二金属,所述N-补偿掺杂区与第二金属接触区域形成肖特基接触;在所述N+碳化硅衬底下方形成阴极电极。
可选的,所述N-补偿掺杂区采用离子注入进行掺杂,注入的离子为N离子。
可选的,在N-外延层形成碳膜,采用高温退火对各区域中的注入离子进行激活,再通过氧化方法去除所述碳膜。
可选的,在氩气氛围下实施快速热退火工艺,使所述第一金属形成所述欧姆接触。
可选的,采用低温快速热退火,使所述第二金属形成所述肖特基接触。
本发明技术方案中,在相邻两个P+区的之间形成N-补偿掺杂区,使整个器件成为具有补偿掺杂结构的碳化硅衬底的MPS二极管器件。其中,N-补偿掺杂区的引入,可以提升器件的导通特性,降低器件的正向压降。而且,由于相应较深的N-补偿掺杂区的存在,当器件在正向导通过程中,N-补偿掺杂区会降低器件势垒高度及导通电阻,从而能够改善器件导通特性,促使器件的正向压降降低,同时使有源区的击穿电压接近终端区的击穿电压。此外,相应较深的N-补偿掺杂区的存在,还可在有源区实现全面均匀击穿。
附图说明
图1是实施例中MPS二极管器件示意图;
图2至图4是制备图1所示MPS二极管器件各步骤对应结构示意图;
图5为实施例中MPS二极管器件与传统MPS二极管器件正向伏安特性仿真结果;
图6为实施例中MPS二极管器件与传统MPS二极管器件反向伏安特性仿真结果;
图7是另一实施例中MPS二极管器件示意图;
图8至图10是制备图7所示MPS二极管器件各步骤对应结构示意图;
图11为另一实施例中MPS二极管器件与传统MPS二极管器件正向伏安特性仿真结果;
图12为另一实施例中MPS二极管器件与传统MPS二极管器件反向伏安特性仿真结果。
具体实施方式
传统碳化硅衬底的MPS二极管器件,在工作时,存在着相对较低的导通特性和相对较高的正向压降的缺点。为此,本发明提供一种新的MPS二极管器件及其制备方法,以解决上述存在的不足。
为更加清楚的表示,下面结合附图对本发明做详细的说明。
本发明提供一种MPS二极管器件,所述器件自下而上包括阴极电极、N+碳化硅衬底、N-外延层和阳极电极;所述N-外延层具有至少两个P+区;相邻两个所述P+区之间具有N-补偿掺杂区,所述N-补偿掺杂区的深度大于所述P+区的深度;所述N-补偿掺杂区的掺杂浓度高于所述N-外延层的掺杂浓度;所述阳极电极包括第一金属和第二金属,所述P+区表面与所述第一金属之间欧姆接触,所述N-补偿掺杂区表面与所述第二金属之间肖特基接触。
碳化硅具有大的带隙。采用碳化硅作为衬底,在相同耐压下比较时,能够将相关器件在工作时的损耗抑制得较小。
需要说明的是,P+区的上表面即为N-外延层的上表面,可知,P+区位于N-外延层的上部分,或者也可以称为顶部。同样的,N-补偿掺杂区的上表面即为N-外延层的上表面,可知,N-补偿掺杂区位于N-外延层的上部分。
进一步的,可以设置所述N-补偿掺杂区直接与相邻两个所述P+区相连(紧密相连)。N-补偿掺杂区直接与相邻两个所述P+区相连有利于减小器件电阻。
其它情况下,N-补偿掺杂区与两个相邻的所述P+区之间也可以具有间隙,但是,此时相应的器件电阻相对较大。
N-外延层的掺杂浓度通常可以为1×1015atom/cm3~1×1016atom/cm3,相应的,所述N-补偿掺杂区的掺杂浓度为1×1016atom/cm3~1×1017atom/cm3,即保证N-补偿掺杂区的掺杂浓度高于N-外延层的掺杂浓度。N-补偿掺杂区的掺杂浓度高于N-外延层的掺杂浓度,保证了制备N-补偿掺杂区的目的效果实现。N-补偿掺杂区的引入,使二极管肖特基接触处的导通电阻减小,从而提升二极管的正向导通特性,降低二极管正向压降,即改善器件导通特性,促使器件的正向压降降低。
所述N-补偿掺杂区的深度大于所述P+区的深度。具体的,可以设置所述P+区深度为0.8μm~2.0μm,所述N-补偿掺杂区深度在1.5μm~5.0μm。
上述可知,在相邻两个所述P+区之间引入N-补偿掺杂区,并且,设置N-补偿掺杂区的深度大于P+区的深度,从而达到降低二极管器件特征导通电阻的作用。
其中,所述第一金属可以为镍,所述第二金属可以为钛。即用于形成欧姆接触的金属可以选取为镍,用于形成肖特基接触的金属可以选取为钛。
相邻两个所述P+区之间的间距可以为2μm~4μm。这一间距,可以根据器件的性能参数进行调整,但这一间距影响着N-补偿掺杂区的宽度。特别是N-补偿掺杂区直接与相邻两个所述P+区相连时,这一间距就等于N-补偿掺杂区的宽度。
本发明采用碳化硅材料作为二极管器件的衬底材料,在结构上又进行了改进,在碳化硅衬底的MPS二极管器件的结构中,在肖特基接触处(下方),制备了N-补偿掺杂区。N-补偿掺杂区的引入,有效降低了二极管肖特基接触处的导通电阻,降低了二极管的正向压降,从而提升了二极管正向导通特性,提高二极管的性能。与此同时,这种器件的击穿电压也会接近终端区电压。此外,这种器件还可在有源区实现全面均匀击穿。
本发明还同时提供MPS二极管器件的制备方法,可以用于制备上述MPS二极管器件,因此,所述制备方法和上述二极管结构之间的内容,可以相互参考。
所述制备方法包括:
在N+碳化硅衬底上形成N-外延层;在所述N-外延层顶部形成N-补偿掺杂区;在所述N-外延层顶部形成P+区;其中,所述N-补偿掺杂区位于相邻两个所述P+区之间,所述N-补偿掺杂区的深度大于所述P+区的深度;在所述P+区表面形成第一金属,所述第一金属与所述P+区表面欧姆接触;在第一金属及N-补偿掺杂区表面同时形成第二金属,所述N-补偿掺杂区与第二金属接触区域形成肖特基接触;在所述N+碳化硅衬底下方形成阴极电极。
通常,通过外延生长,在N+碳化硅衬底上形成N-外延层,形成N-外延层后的整体结构,通常可以称为外延片。
形成N-补偿掺杂区和P+区的过程可以包括以下步骤:
在N-外延层上制备第一掩模层(所述第一掩模层的材料可以为二氧化硅);用光刻刻蚀工艺,在第一掩模层上形成第一掩模图形;通过N离子注入手段形成N-补偿注入区(即后续N-补偿掺杂区,可知所述N-补偿掺杂区采用离子注入进行掺杂,注入的离子为N离子);清洗掉第一掩模图形,在N-外延层表面形成第二掩模层;用光刻刻蚀工艺,在第二掩模层上形成第二掩模图形;通过Al离子注入手段形成P+注入区(即后续P+区);在N-外延层表面形成碳膜,以对N-外延层表面进行保护;通过高温退火,对注入离子进行激活,形成N-补偿掺杂区和P+区等掺杂区;最后,可以通过氧化方法去除碳膜。
形成欧姆接触的过程可以包括以下步骤:
形成隔离介质层(所述隔离介质层的材料可以为二氧化硅,可以采用沉积工艺形成);采用光刻和刻蚀等工艺,刻蚀隔离介质层,以暴露P+区表面,用于形成欧姆接触。
在N-外延层表面(即此时的外延片正面),沉积第一金属,第一金属为用于形成欧姆接触的金属;需要说明的是,可以同时在外延片背面沉积金属,外延片背面的金属用于作为阴极电极。
在氩气氛围下实施快速热退火工艺,形成所述欧姆接触。
形成肖特基接触的过程可以包括以下步骤:
然后,在外延片正面沉积第二金属,第二金属为用于形成肖特基接触的金属;通过低温快速热退火工艺,使第二金属在肖特基区域(即本发明中N-补偿掺杂区上表面)形成相应的肖特基接触。最后,还可以在外延片的正面和背面,通过沉积金属工艺,形成厚电极。
实施例1
图1为本发明实施例提供的一种带有MPS二极管器件结构剖面示意图,包括:
N+碳化硅衬底11,N+碳化硅衬底11可以由掺杂浓度为5×1018atom/cm3的碳化硅材料构成,厚度可以为350μm;N-外延层12,位于N+碳化硅衬底11之上;阴极电极17,位于N+碳化硅衬底11之下;N-补偿掺杂区14,位于N-外延层12表面附近(顶部);P+区13,位于N-补偿掺杂区14周围的N-外延层12表面附近(顶部);此时,相邻两个所述P+区13之间为N-补偿掺杂区14;阳极电极(未标注)覆盖整个P+区13及N-补偿掺杂区14的表面;阳极电极包括第一金属15和第二金属16,N-补偿掺杂区14表面与所述第二金属16之间肖特基接触,P+区13表面与第一金属15之间欧姆接触。
本实施例中,N-补偿掺杂区14的深度大于P+区13的深度,N-补偿掺杂区14浓度5×1016atom/cm3,深度为2μm。
图2至图4(并结合图1),示出了图1所示MPS二极管器件的制备过程。
图1所示MPS二极管器件的制备步骤如下:
请参考图2,在N+碳化硅衬底11上通过外延生长形成N-外延层12,N-外延层掺杂浓度为6×1015atom/cm3,厚度为5.5μm;
请继续参考图2,在N-外延层12上沉积形成二氧化硅,以作为掩模层(未示出),掩模层为厚度2μm;通过光刻和刻蚀等工艺形成掩模图形(未示出);并通过N离子注入手段形成N-补偿掺杂区14(后续激活),N-补偿掺杂区14浓度5×1016atom/cm3,深度为2μm;
请继续参考图2,清洗掉前述注入掩模层,在N-外延层12表面再次通过沉积工艺形成新的掩模层(未示出),用光刻和刻蚀等工艺形成新的掩模图形(未示出),再通过Al离子注入手段形成P+区13(后续激活),P+区13浓度1×1019atom/cm3,深度1.2μm;
利用碳膜溅射机在外延层表面进行碳膜保护,通过高温退火对注入离子进行激活,退火温度1650℃,退火时间45min;通过氧化方法去除碳膜;
沉积二氧化硅形成隔离介质层(未示出),采用光刻和刻蚀等步骤暴露出P+区欧姆接触区域;
请参考图3,沉积第一金属15(可以采用镍),在氩气氛围下实施快速热退火工艺,形成欧姆接触;部分金属可以同时形成在外延片的背面,作为阴极电极17,完成后清洗掉正面未反应的镍金属及隔离介质层;
请参考图4,对N+碳化硅衬底11背面进行保护形成保护隔离层(未示出),在正面沉积第二金属16,通过光刻和刻蚀等工艺,使第二金属16形成电极图形;通过低温快速热退火工艺,使所述电极图形在肖特基区域形成肖特基接触,相应的低温快速热退火的退火温度为500℃,退火时间为2min;
外延片的正面可以通过沉积金属形成另一部分的阳极电极;外延片的背面可以通过继续沉积钛、镍或Ag等金属,形成背面的其它部分的阴极电极,可以返回参考图1。
图5为实施例中MPS二极管器件与传统MPS二极管器件正向伏安特性仿真结果,图5显示了本实施例中,MPS二极管器件的仿真正向压降情况(图中的虚线New所示)与传统MPS二极管器件的仿真正向压降情况(图中的虚线Old所示)。可知,本实施例中的MPS二极管器件正向压降降低。
图6为实施例中MPS二极管器件与传统MPS二极管器件反向伏安特性仿真结果,图6显示了本实施例中,MPS二极管器件的仿真反向击穿电压情况(图中的虚线New所示)与传统MPS二极管器件的仿真反向击穿电压情况(图中的虚线Old所示)。可知,本实施例中的MPS二极管器件反向击穿电压基本没有大的变化,只是略微降低了一些。综合考虑器件的性能,本实施例的MPS二极管器件仍然具有广阔的运用场合。
实施例2
图7为本发明实施例提供的另一种带有MPS二极管器件结构剖面示意图,包括:N+碳化硅衬底21,N+碳化硅衬底21可以由掺杂浓度为5×1018atom/cm3的碳化硅材料构成,厚度可以为350μm;N-外延层22,位于N+碳化硅衬底21之上;阴极电极27,位于N+碳化硅衬底21之下;N-补偿掺杂区24,位于N-外延层22表面附近(顶部);P+区23,位于N-补偿掺杂区24周围的N-外延层22表面附近(顶部);此时,相邻两个所述P+区23之间为N-补偿掺杂区24;阳极电极(未标注)覆盖整个P+区23及N-补偿掺杂区24的表面;阳极电极包括第一金属25和第二金属26,N-补偿掺杂区24表面与所述第二金属26之间肖特基接触,P+区23表面与所述第一金属25之间欧姆接触。
与前述实施例不同的是,本实施例中,N-补偿掺杂区24浓度1×1017atom/cm3,深度为1.6μm,并且,本实施例中,N-补偿掺杂区24的深度大于P+区23的深度。
图8至图10(并结合图7),示出了图7所示MPS二极管器件的制备过程。
图8所示MPS二极管器件的制备步骤如下:
请参考图8,在N+碳化硅衬底21上通过外延生长形成N-外延层22,N-外延层掺杂浓度6×1015atom/cm3,厚度为5.5μm;
请继续参考图8,在N-外延层22上沉积形成二氧化硅,以作为掩模层(未示出),掩模层为厚度2μm;通过光刻和刻蚀等工艺形成掩模图形(未示出);并通过N离子注入手段形成N-补偿掺杂区24(后续激活),N-补偿掺杂区24掺杂浓度为1×1017atom/cm3,深度为1.6μm;
请继续参考图8,清洗掉前述注入掩模层,在N-外延层22表面再次通过沉积工艺形成新的掩模层(未示出),用光刻和刻蚀等工艺形成新的掩模图形(未示出),再通过Al离子注入手段形成P+区23(后续激活),P+区23浓度1×1019atom/cm3,深度为1.2μm;
利用碳膜溅射机在外延层表面进行碳膜保护,通过高温退火对注入离子进行激活,退火温度1650℃,退火时间45min;通过氧化方法去除碳膜;
沉积二氧化硅形成隔离介质层(未示出),采用光刻和刻蚀等步骤暴露出P+区欧姆接触区域;
请参考图9,沉积第一金属25,在氩气氛围下实施快速热退火工艺,形成欧姆接触;部分金属可以同时形成在外延片的背面,作为阴极电极27,完成后清洗掉正面未反应的镍金属及隔离介质层;
请参考图10,对N+碳化硅衬底21背面进行保护形成保护隔离层(未示出),在正面沉积第二金属26,通过光刻和刻蚀等工艺,使第二金属26形成电极图形;
通过低温快速热退火工艺,使所述电极图形在肖特基区域形成肖特基接触,相应的低温快速热退火的退火温度为500℃,退火时间为2min;
外延片的正面可以通过沉积金属形成另一部分的阳极电极;外延片的背面可以通过继续沉积钛、镍或Ag等金属,形成背面的其它部分的阴极电极,可以返回参考图7。
图11为实施例中MPS二极管器件与传统MPS二极管器件正向伏安特性仿真结果,图11显示了本实施例中,MPS二极管器件的仿真正向压降情况(图中的虚线New所示)与传统MPS二极管器件的仿真正向压降情况(图中的虚线Old所示)。可知,本实施例中的MPS二极管器件正向压降明显降低。
图12为实施例中MPS二极管器件与传统MPS二极管器件反向伏安特性仿真结果,图12显示了本实施例中,MPS二极管器件的仿真反向击穿电压情况(图中的虚线New所示)与传统MPS二极管器件的仿真反向击穿电压情况(图中的虚线Old所示)。可知,本实施例中的MPS二极管器件反向击穿电压相应降低了一些,这是本实施例作出的一种平衡(改善器件导通特性,促使器件的正向压降降低,但反向击穿电压略有降低)。综合考虑器件的性能,本实施例的MPS二极管器件仍然具有广阔的运用场合。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。
Claims (3)
1.一种MPS二极管器件的制备方法,其特征在于,包括:
在N+碳化硅衬底上形成N-外延层;
在所述N-外延层顶部形成N-补偿掺杂区;
在所述N-外延层顶部形成P+区;
其中,所述N-补偿掺杂区位于相邻两个所述P+区之间,所述N-补偿掺杂区的深度大于所述P+区的深度;所述N-补偿掺杂区的掺杂浓度高于所述N-外延层的掺杂浓度,所述N-外延层的掺杂浓度为1×1015atom/cm3~1×1016atom/cm3,所述N-补偿掺杂区的掺杂浓度为1×1016atom/cm3~1×1017atom/cm3;
在所述P+区表面形成第一金属,所述第一金属与所述P+区表面欧姆接触;
在第一金属及N-补偿掺杂区表面同时形成第二金属,所述N-补偿掺杂区与第二金属接触区域形成肖特基接触;
在所述N+碳化硅衬底下方形成阴极电极;
形成所述N-补偿掺杂区和所述P+区的过程包括以下步骤:
在所述N-外延层上制备第一掩模层;用光刻刻蚀工艺,在所述第一掩模层上形成第一掩模图形;通过N离子注入手段形成N-补偿注入区;
清洗掉所述第一掩模图形,在所述N-外延层表面形成第二掩模层;用光刻刻蚀工艺,在所述第二掩模层上形成第二掩模图形;通过Al离子注入手段形成P+注入区;
在所述N-外延层表面形成碳膜,以对N-外延层表面进行保护;
通过高温退火,对注入离子进行激活,形成所述N-补偿掺杂区和所述P+区;
最后,通过氧化方法去除碳膜。
2.如权利要求1所述的MPS二极管器件的制备方法,其特征在于,在氩气氛围下实施快速热退火工艺,使所述第一金属形成所述欧姆接触。
3.如权利要求1所述的MPS二极管器件的制备方法,其特征在于,采用低温快速热退火,使所述第二金属形成所述肖特基接触。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811652681.4A CN109888024B (zh) | 2018-12-29 | 2018-12-29 | Mps二极管器件及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811652681.4A CN109888024B (zh) | 2018-12-29 | 2018-12-29 | Mps二极管器件及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109888024A CN109888024A (zh) | 2019-06-14 |
CN109888024B true CN109888024B (zh) | 2024-04-02 |
Family
ID=66925470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811652681.4A Active CN109888024B (zh) | 2018-12-29 | 2018-12-29 | Mps二极管器件及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109888024B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111081758B (zh) * | 2019-11-21 | 2023-06-02 | 北京绿能芯创电子科技有限公司 | 降低导通电阻的SiC MPS结构及制备方法 |
CN111799336B (zh) * | 2020-07-27 | 2021-09-24 | 西安电子科技大学 | 一种SiC MPS二极管器件及其制备方法 |
CN113555443A (zh) * | 2021-07-06 | 2021-10-26 | 浙江芯国半导体有限公司 | 一种pin肖特基二极管的氧化镓mosfet及制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001085705A (ja) * | 1999-09-16 | 2001-03-30 | Fuji Electric Co Ltd | ショットキーバリアダイオードの製造方法 |
CN101740641A (zh) * | 2009-12-24 | 2010-06-16 | 杭州立昂电子有限公司 | 一种半导体器件 |
CN102376777A (zh) * | 2010-08-24 | 2012-03-14 | 上海芯石微电子有限公司 | 具有低正向压降的结势垒型肖特基 |
CN103579307A (zh) * | 2012-07-24 | 2014-02-12 | 杭州恩能科技有限公司 | 一种新型二极管器件 |
CN107946374A (zh) * | 2016-10-12 | 2018-04-20 | 重庆中科渝芯电子有限公司 | 一种带有表面杂质浓度调节区的肖特基整流器及制造方法 |
CN209766432U (zh) * | 2018-12-29 | 2019-12-10 | 厦门芯光润泽科技有限公司 | Mps二极管器件 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050275065A1 (en) * | 2004-06-14 | 2005-12-15 | Tyco Electronics Corporation | Diode with improved energy impulse rating |
US7728402B2 (en) * | 2006-08-01 | 2010-06-01 | Cree, Inc. | Semiconductor devices including schottky diodes with controlled breakdown |
-
2018
- 2018-12-29 CN CN201811652681.4A patent/CN109888024B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001085705A (ja) * | 1999-09-16 | 2001-03-30 | Fuji Electric Co Ltd | ショットキーバリアダイオードの製造方法 |
CN101740641A (zh) * | 2009-12-24 | 2010-06-16 | 杭州立昂电子有限公司 | 一种半导体器件 |
CN102376777A (zh) * | 2010-08-24 | 2012-03-14 | 上海芯石微电子有限公司 | 具有低正向压降的结势垒型肖特基 |
CN103579307A (zh) * | 2012-07-24 | 2014-02-12 | 杭州恩能科技有限公司 | 一种新型二极管器件 |
CN107946374A (zh) * | 2016-10-12 | 2018-04-20 | 重庆中科渝芯电子有限公司 | 一种带有表面杂质浓度调节区的肖特基整流器及制造方法 |
CN209766432U (zh) * | 2018-12-29 | 2019-12-10 | 厦门芯光润泽科技有限公司 | Mps二极管器件 |
Also Published As
Publication number | Publication date |
---|---|
CN109888024A (zh) | 2019-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109860273B (zh) | Mps二极管器件及其制备方法 | |
CN107331616B (zh) | 一种沟槽结势垒肖特基二极管及其制作方法 | |
CN109742148B (zh) | 碳化硅umosfet器件及其制备方法 | |
CN110473916B (zh) | 一种具有p+区域自对准工艺的碳化硅MOSFET器件的制备方法 | |
CN109888024B (zh) | Mps二极管器件及其制备方法 | |
CN106876256B (zh) | SiC双槽UMOSFET器件及其制备方法 | |
CN110896098B (zh) | 一种基于碳化硅基的反向开关晶体管及其制备方法 | |
CN103515451A (zh) | 双凹沟槽式肖特基势垒元件 | |
CN109755322A (zh) | 碳化硅mosfet器件及其制备方法 | |
CN108336152A (zh) | 具有浮动结的沟槽型碳化硅sbd器件及其制造方法 | |
CN212365972U (zh) | 融合pn肖特基二极管 | |
CN110534559B (zh) | 一种碳化硅半导体器件终端及其制造方法 | |
CN118248555A (zh) | 集成异质结二极管的mosfet功率器件及其制造方法 | |
JP2005051096A (ja) | 半導体装置及び半導体装置の製造方法 | |
CN209766431U (zh) | Mps二极管器件 | |
CN209766432U (zh) | Mps二极管器件 | |
CN112838126A (zh) | 带屏蔽区的非对称碳化硅umosfet器件及制备方法 | |
CN111799336B (zh) | 一种SiC MPS二极管器件及其制备方法 | |
CN111799338B (zh) | 一种沟槽型SiC JBS二极管器件及其制备方法 | |
CN114864704B (zh) | 具有终端保护装置的碳化硅jbs及其制备方法 | |
CN112397566A (zh) | 碳化硅器件及其制备方法 | |
JP2005135972A (ja) | 半導体装置の製造方法 | |
JP2000049363A (ja) | ショットキーダイオード及びその製造方法 | |
CN111799337A (zh) | 一种SiC JBS二极管器件及其制备方法 | |
KR101667669B1 (ko) | 쇼트키 배리어 다이오드 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |