CN112028622A - 一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法 - Google Patents

一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法 Download PDF

Info

Publication number
CN112028622A
CN112028622A CN202010898072.8A CN202010898072A CN112028622A CN 112028622 A CN112028622 A CN 112028622A CN 202010898072 A CN202010898072 A CN 202010898072A CN 112028622 A CN112028622 A CN 112028622A
Authority
CN
China
Prior art keywords
powder
batio
molten salt
particles
hard agglomerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010898072.8A
Other languages
English (en)
Other versions
CN112028622B (zh
Inventor
符小艺
周嘉会
陈志武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010898072.8A priority Critical patent/CN112028622B/zh
Publication of CN112028622A publication Critical patent/CN112028622A/zh
Application granted granted Critical
Publication of CN112028622B publication Critical patent/CN112028622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Abstract

本发明属于无机功能粉体材料领域,尤其涉及一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法。本方法是采用熔盐刻蚀的方法,将团聚大颗粒BaTiO3粉体和熔盐充分混合在高温下进行熔盐刻蚀,得到纳米级和亚微米级BaTiO3粉体。具有操作简单、反应物可回收利用、所制备的BaTiO3颗粒具有结晶性增加、团聚减少、平均粒径减小且均匀性增加等优点。可以用来解决目前部分BaTiO3粉体粒径大,团聚严重,以及生产过程中环境污染等各种问题。

Description

一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的 方法
技术领域
本发明属于无机功能粉体材料领域,尤其涉及电子陶瓷用四方相BaTiO3粉体的制备方法,具体涉及一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法。
背景技术
钛酸钡基陶瓷材料因具有优异的介电性能,良好的铁电、压电以及热释电性能和绝缘性能,是制备多层陶瓷电容器(MLCC)、埋入式电容器、光记忆和电光器件等的主要材料,被认为是电子陶瓷的基石。国内可以大量生产BaTiO3粉体,但产品质量多数处于中低端,对于目前高端电子元器件所需要的高质量的BaTiO3粉体,仍大量需要进口。高端BaTiO3粉体对形貌和晶相有严格的要求,比如颗粒尺寸为亚微米级;分散度良好;四方相等等,而目前大量的中低端粉体为团聚的粉体,分散度差,尺寸多为微米级且均匀性差。此外,由于环保政策日趋严格,对于生产过程中的环境污染也有严格的规定,这必然导致了制备方法受限。比如,可以合成小尺寸和均匀性良好的液相法通常会带来环境污染问题,而环保也必然导致产品成本的大幅上升,限制了这些方法的大规模应用。因此,开发工艺简单,避免环境污染的高质量BaTiO3粉体的制备以满足社会发展的需要,具有重要的意义。
传统的固相法是将等物质的量的钡化合物和钛化合物混合,研磨,挤压成型,然后在1200℃进行煅烧,然后在粉碎湿磨压滤干燥研磨之后,得到BaTiO3粉末。通常固相法具有工艺、设备简单,原料易得的优点,但是制备出的BaTiO3颗粒尺寸不均,化学组分多、粉体粒径较大等缺点,当对BaTiO3粉体质量要求不高时,可以采用固相法合成(SMIRNOV A D,KHOLODKOVA A A,DANCHEVSKAYA M N,PONOMAREV S G,et al.Method of producingbarium titanate based ceramics has micron powder is obtained by solid phasesynthesis from equimolar mixture of barium carbonate and titanium dioxide:Russian.RU2706275-C1[P].2018-12-21.)。
熔盐法是近年来制备纳米材料的新型方法。熔融盐是盐的熔融态液体,形成熔融态的无机盐其固态大部分为离子晶体,在高温下熔化后形成离子熔体。熔盐法制备BaTiO3粉体已经有文献报道。这些文献大多是采用TiO2和钡的前驱体。例如BaCO3和TiO2与NaCl-KCl混合盐混合,经过高温反应生成BaTiO3粉体。目前大部分的熔盐法合成BaTiO3粉体的形貌为线状,而在电子陶瓷用粉料里,粒状用量最大要求最高。
发明内容
为解决上述技术问题,本发明的目的是提供一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法。
该法是指在高温下采用熔盐刻蚀法制备出粒径小、分布窄、四方晶相含量高、均匀性和分散性好的高纯BaTiO3粉体。此法有效解决了高质量BaTiO3粉体生产过程工艺复杂,环境污染和成本问题,具有良好的工业生产与应用前景。与采用钛钡前驱体经化学反应合成钛酸钡不同,采用大尺寸或团聚的BaTiO3粉体作为原料,利用高温下熔盐刻蚀原理,将其转变为小尺寸BaTiO3粉体是高品质BaTiO3粉体制备的新思路。采用这种方法,一方面克服了液相法合成BaTiO3粉体容易造成环境污染且成本高的缺点,另一方面,也解决了传统固相法制备BaTiO3粉体易团聚和尺寸大的问题。
本发明提出了一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法,将团聚大颗粒BaTiO3粉体和熔盐充分混合,然后在高温下进行熔盐刻蚀,得到纳米或亚微米级BaTiO3粉体。具体制备方法如下所述:
S1、称取硬团聚大颗粒BaTiO3粉体和熔盐,研磨使其充分混合;
S2、将S1制备的混合物置于坩埚中,高温下处理一段时间后冷却到室温;
S3、将S2高温处理后的混合物用热水洗涤,至洗涤液检测不到Cl-,得到湿的BaTiO3粉体;
S4、将湿的BaTiO3粉体用乙醇超声分散;
S5、将S4得到的BaTiO3粉体干燥,得到目标BaTiO3粉末。
进一步的,上述步骤S1中所述的硬团聚大颗粒BaTiO3粉体的平均粒径为0.2-10μm的BaTiO3粉体,S1中采用的熔盐为NaCl、KCl以及NaCl-KCl混合熔盐中的一种。
进一步优选的,上述步骤S1中采用的BaTiO3粉体是固相法和液相法制备的平均粒径为0.5~10μm的微米级BaTiO3粉体。
进一步的,上述步骤S1中所述将硬团聚大颗粒BaTiO3粉体和熔盐混合研磨时间是20min~40min。
进一步的,上述步骤S1中所述的硬团聚大颗粒BaTiO3粉体与熔盐质量比为1:5~1:100。
进一步的,上述步骤S2中所述高温处理的温度为600℃~900℃。
进一步的,上述步骤S2中高温处理时间为30min~10h。
进一步的,在高温刻蚀后,混合物需要热水洗涤。
进一步的,上述步骤S3洗涤后的上层清液直至0.5mol/L的AgNO3溶液没有白色沉淀。
进一步的,上述步骤S4所述湿的BaTiO3粉体在无水乙醇中超声分散30min。
进一步的,上述步骤S5所述干燥操作为90℃的环境中干燥12h。
进一步的,上述步骤S5所述得到的BaTiO3粉末平均粒径为50~800nm,成分和晶相与原料微米级BaTiO3粉体相同。
借由上述方案,本发明至少具有以下优点:
1)操作简单;
2)本发明制备的BaTiO3颗粒与原料相比具有团聚少,粒径减小且均匀性增加等优点;
3)本发明使用的熔盐,可以回收利用,减少环境污染。
附图说明
图1a为实施例3的BaTiO3粉体原料的SEM图。
图1b为实施例3的经熔盐刻蚀法处理后的粉体的SEM图。
图2a为实施例3的BaTiO3粉体原料的平均粒径分布图。
图2b为实施例3的经熔盐刻蚀法处理后的粉体的平均粒径分布图。
图3a为实施例3的BaTiO3粉体原料以及经熔盐刻蚀法处理后的粉体的XRD图。
图3b为图3a的40-55°的XRD图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。
实施例1
称取固相法制备的平均粒径为5μm微米级BaTiO3粉体和NaCl以质量比为1:30置于研钵,研磨30min使其充分混合;将制备的混合物置于Al2O3坩埚中,在900℃下处理30min后冷却到室温;将高温处理后的混合物用热水洗涤以去除Cl-;洗涤至采用0.5mol/L的AgNO3溶液检测不到AgCl白色沉淀;将得到湿的BaTiO3粉体在无水乙醇中超声分散30min,放在90℃的环境中干燥12h,得到干燥的粉末。
经SEM表征分析可知,原料BaTiO3粉体和处理后的样品形貌为不规则圆形,经统计,经过熔盐处理后的样品的平均粒径为200nm。与原料相比,处理后的样品具有良好的均一性和分散性,团聚减少,平均粒径减小。经XRD表征分析可知,经过处理的BaTiO3粉体结晶性增加,在熔盐刻蚀过程中,BaTiO3粉体的晶相不变。
实施例2
称取实施例1熔盐处理后的BaTiO3粉体,和NaCl以质量比1:30置于研钵,研磨30min使其充分混合;将制备的混合物置于Al2O3坩埚中,在900℃下处理30min后冷却到室温;将高温处理后的混合物用热水洗涤以去除NaCl;洗涤至采用0.5mol/L的AgNO3溶液检测不到AgCl白色沉淀;将得到湿的BaTiO3粉体在无水乙醇中超声分散30min,放在90℃的环境中干燥12h,得到干燥的粉末。
经SEM表征分析可知,经过二次刻蚀的样品形貌依然为不规则圆形,经统计,经过二次熔盐处理后的样品的平均粒径为50nm。与原料相比,二次处理后的样品比一次处理的BaTiO3粉体均一性和分散性更好,平均粒径减小。经XRD表征分析可知,经过处理的BaTiO3粉体结晶性增加,在熔盐刻蚀过程中,BaTiO3粉体的晶相不变。
实施例3
称取固相法制备的平均粒径为1.8μm的微米级BaTiO3粉体和NaCl以质量比为1:5置于研钵,研磨20min使其充分混合;将制备的混合物置于Al2O3坩埚中,在800℃下处理3h后冷却到室温;洗涤至采用0.5mol/L的AgNO3溶液检测不到AgCl白色沉淀;将得到湿的BaTiO3粉体在无水乙醇中超声分散30min,放在90℃的环境中干燥12h,得到干燥的粉末。
经SEM表征分析可知(图1a、图1b),BaTiO3粉体形貌依然为不规则圆形,经统计(图2a、图2b),经过熔盐处理后的BaTiO3粉体平均粒径为800nm,与原料相比,处理后的样品团聚减少,均一性增加。经XRD表征分析可知(参考附图3a、图3b),经过处理的BaTiO3粉体结晶性增加,在熔盐刻蚀过程中,BaTiO3粉体的晶相不变。
实施例4
称取固相法制备的平均粒径为10μm的BaTiO3粉体和NaCl-KCl以质量比为1:60(NaCl-KCl的摩尔比为1:1)置于研钵,研磨40min使其充分混合;将制备的混合物置于Al2O3坩埚中,在600℃下处理5h后冷却到室温;将高温处理后的混合物用热水洗涤以去除NaCl-KCl;洗涤至采用0.5mol/L的AgNO3溶液检测不到AgCl白色沉淀;将得到湿的BaTiO3粉体在无水乙醇中超声分散30min,放在90℃的环境中干燥12h,得到干燥的粉末。
经SEM表征分析可知,处理后的BaTiO3粉体形貌为不规则四方形,经统计,经过处理后的样品平均粒径为300nm,与原料相比,处理后的BaTiO3粉体均一性增加,平均粒径小,团聚减少。经XRD表征分析可知,经过处理的BaTiO3粉体结晶性增加,在熔盐刻蚀过程中,BaTiO3粉体的晶相不变。
实施例5
称取水热法制备的平均粒径为0.5μm的亚微米级BaTiO3粉体和NaCl以质量比为1:100置于研钵,研磨30min使其充分混合;将制备的混合物置于Al2O3坩埚中,在700℃下处理10h后冷却到室温;将高温处理后的混合物用热水洗涤以去除NaCl;洗涤至采用0.5mol/L的AgNO3溶液检测不到AgCl白色沉淀;将得到湿的BaTiO3粉体在无水乙醇中超声分散30min,放在90℃的环境中干燥12h,得到干燥的粉末。
经SEM表征分析可知,BaTiO3粉体形貌由四方形转变为不规则圆形,经统计,经过处理后BaTiO3粉体的平均粒径为100nm,与原料相比,处理后的样品具有良好的均一性和分散性,平均粒径减小,团聚减少。经XRD表征分析可知,经过处理的BaTiO3粉体结晶性增加,在熔盐刻蚀过程中,BaTiO3粉体的晶相不变。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (9)

1.一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法,其特征在于,包括以下步骤:
S1、称取原料硬团聚大颗粒BaTiO3粉体和熔盐研磨,使其充分混合;
S2、将S1制备的混合物置于坩埚中,高温下处理一段时间后冷却到室温;
S3、将S2高温处理后的混合物用热水洗涤,至洗涤液没有Cl-检出,得到湿的BaTiO3粉体;
S4、将S3得到的湿BaTiO3粉体用乙醇超声分散;
S5、将S4得到的BaTiO3粉体干燥,得到目标BaTiO3粉末。
2.根据权利要求1所述的方法,其特征在于,步骤S1中所述的硬团聚大颗粒BaTiO3粉体的平均粒径为0.2~10μm的BaTiO3粉体,S1中所述的熔盐为NaCl、KCl以及NaCl-KCl混合熔盐中的一种。
3.根据权利要求1所述的方法,其特征在于,步骤S1中所述将硬团聚大颗粒BaTiO3粉体和熔盐混合研磨时间是20min~40min。
4.根据权利要求1所述的方法,其特征在于,步骤S1中所述硬团聚大颗粒BaTiO3粉体与熔盐的质量比是1:5~1:100。
5.根据权利要求1所述的方法,其特征在于,步骤S2中所述高温处理温度为600℃~900℃,所述高温下处理时间是30min~10h。
6.根据权利要求1所述的方法,其特征在于,步骤S3中所述洗涤液用0.5mol/L的AgNO3溶液检测,没有AgCl白色沉淀。
7.根据权利要求1所述的方法,其特征在于,步骤S4所述湿的BaTiO3粉体在无水乙醇中超声分散30min。
8.根据权利要求1所述的方法,其特征在于,步骤S5所述干燥操作为90℃的环境中干燥12h。
9.根据权利要求1所述的方法,其特征在于,步骤S5所述得到的BaTiO3粉末平均粒径为50~800nm,成分和晶相与原料微米级BaTiO3粉体相同。
CN202010898072.8A 2020-08-31 2020-08-31 一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法 Active CN112028622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010898072.8A CN112028622B (zh) 2020-08-31 2020-08-31 一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010898072.8A CN112028622B (zh) 2020-08-31 2020-08-31 一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法

Publications (2)

Publication Number Publication Date
CN112028622A true CN112028622A (zh) 2020-12-04
CN112028622B CN112028622B (zh) 2021-10-26

Family

ID=73586872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010898072.8A Active CN112028622B (zh) 2020-08-31 2020-08-31 一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法

Country Status (1)

Country Link
CN (1) CN112028622B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300243A (zh) * 1998-05-15 2001-06-20 先进纳诺技术有限公司 超细粉末的制造方法
CN1962542A (zh) * 2006-12-08 2007-05-16 清华大学 一种微米级片状钛酸钡晶体及其制备方法
US20120172194A1 (en) * 2010-12-30 2012-07-05 Samsung Electronics Co., Ltd. Dielectric ceramic and method of manufacturing the same
CN103894177A (zh) * 2014-04-01 2014-07-02 江西理工大学 一种具有光催化活性的稀土掺杂钛酸钾粉末的合成方法
CN104925856A (zh) * 2015-07-07 2015-09-23 北京工业大学 两步熔盐法制备BaTiO3纳米线的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300243A (zh) * 1998-05-15 2001-06-20 先进纳诺技术有限公司 超细粉末的制造方法
CN1962542A (zh) * 2006-12-08 2007-05-16 清华大学 一种微米级片状钛酸钡晶体及其制备方法
US20120172194A1 (en) * 2010-12-30 2012-07-05 Samsung Electronics Co., Ltd. Dielectric ceramic and method of manufacturing the same
CN103894177A (zh) * 2014-04-01 2014-07-02 江西理工大学 一种具有光催化活性的稀土掺杂钛酸钾粉末的合成方法
CN104925856A (zh) * 2015-07-07 2015-09-23 北京工业大学 两步熔盐法制备BaTiO3纳米线的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢刚: "《熔融盐理论与应用》", 31 August 1998, 冶金工业出版社 *

Also Published As

Publication number Publication date
CN112028622B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
KR100310186B1 (ko) 결정성세라믹페로브스카이트화합물분말의제조방법
CN1841588B (zh) 介电陶瓷粉末的制造方法及多层陶瓷电容器
Her et al. Preparation of well-defined colloidal barium titanate crystals by the controlled double-jet precipitation
Testinon et al. Synthesis of BaTiO3 particles with tailored size by precipitation from aqueous solutions
WO2020215535A1 (zh) 纳米钛酸钡粉体及其制备方法、陶瓷介电层及其制造方法
Sharma et al. Porous behavior and dielectric properties of barium strontium titanate synthesized by sol− gel method in the presence of triethanolamine
Lu et al. Nanoscaled BaTiO3 powders with a large surface area synthesized by precipitation from aqueous solutions: Preparation, characterization and sintering
CN105271378A (zh) 一种高四方率的四方相钛酸钡的制备方法
CN111233463A (zh) 一种制备四方相钛酸钡粉体的方法
CN111533553A (zh) 纳米晶钛酸钡陶瓷及其制备方法
CN105329939A (zh) 一种尺寸可控纳米级立方相超细钛酸钡粉体的制备方法
CN1167622C (zh) 钛酸钡粉体的制备方法
CN107555987A (zh) 一种亚微米级钛酸钡粉体超细微颗粒制备方法
CN1308498C (zh) 纳米晶钛酸锶钡的微波水热合成方法
CN1323759A (zh) 纳米级四方相钛酸钡粉末及制备方法
CN104446445B (zh) 一种单分散钛酸钡纳米粉体的制备方法
KR100360118B1 (ko) 옥살레이트법에 의한 티탄산바륨계 산화물 분말 제조방법
US20050019248A1 (en) High-gravity reactive precipitation process for the preparation of barium titanate powders
CN112028622B (zh) 一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法
CN101525151B (zh) 高纯电子级钛酸锶的生产工艺
KR100503858B1 (ko) 무기산으로 제조한 사염화티타늄 수용액과 스트론튬카보네이트 수용액으로부터 나노크기의 결정성 티탄산스트론튬 분말을 제조하는 방법
Xiaowei et al. Rapid synthesis of quasi-spherical (Ba, Sr) TiO 3 nanocrystals via a microwave-activated glycothermal approach
Meng et al. Hydrothermal synthesis of tetragonal barium titanate nanopowders under moderate conditions
CN1935635B (zh) 一种纳米钛酸钡的生产方法
JPS60161338A (ja) BaTiO▲下3▼とBaSn(OH)▲下6▼より成る混合微粒子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant