CN112018199B - 一种高质量非极性AlGaN微纳复合结构及其加工方法 - Google Patents

一种高质量非极性AlGaN微纳复合结构及其加工方法 Download PDF

Info

Publication number
CN112018199B
CN112018199B CN201910461768.1A CN201910461768A CN112018199B CN 112018199 B CN112018199 B CN 112018199B CN 201910461768 A CN201910461768 A CN 201910461768A CN 112018199 B CN112018199 B CN 112018199B
Authority
CN
China
Prior art keywords
nonpolar
solid medium
algan
layer
array structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910461768.1A
Other languages
English (en)
Other versions
CN112018199A (zh
Inventor
赵见国
刘向
潘江涌
李元元
倪海彬
常建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201910461768.1A priority Critical patent/CN112018199B/zh
Publication of CN112018199A publication Critical patent/CN112018199A/zh
Application granted granted Critical
Publication of CN112018199B publication Critical patent/CN112018199B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种高质量非极性AlGaN微纳复合结构,包括基底、柱状固体介质阵列结构和孔状非极性AlxGa1‑xN层。本发明可显著降低非极性AlGaN面内应力,从而达到大幅度减弱非极性AlGaN产生位错的根源,实现非极性AlGaN位错密度的有效降低和晶体质量的有效提高。还可以适应非极性AlGaN在不同Al组分条件下应力各向异性的变化,最大限度上解决非极性AlGaN因存在的面内应力各向异性导致的问题。使用该复合结构可进一步生长高质量的非极性AlGaN基薄膜,广泛应用于非极性AlGaN基紫外、深紫外发光器件以及紫外、日盲探测器件的制备,并可显著提高制备器件的性能、稳定性及寿命。

Description

一种高质量非极性AlGaN微纳复合结构及其加工方法
技术领域
本发明涉及电子信息工程领域,具体涉及一种高质量非极性AlGaN微纳复合结构及其加工方法。
背景技术
以GaN、SiC为代表的第三代半导体因具有宽禁带、高电子迁移率、高击穿电压和良好的耐高温、耐辐射等特性而在近年来取得迅速发展。GaN基材料是直接带隙材料,可用于制备发光及光电器件,并且其禁带宽度可根据需求通过其同族三元、四元合金中Al和In的摩尔组分而连续可调。其中Al x Ga1- x N材料的禁带宽度可通过调整Al的摩尔组分 x而实现禁带宽度从AlN的6.2 eV连续变化至GaN的3.4 eV,可覆盖深紫外至近紫外波段,在紫外、深紫外发光器件以及紫外、日盲光电探测器件等领域具有重要的应用价值。
因AlGaN是极性材料,具有很强的自发极化,因此在制备器件时则需要合理地利用其自发极化。而非极性AlGaN的自发极化方向垂直于生长方向,即极化方向平行于材料及器件的表面,更适合制备光电子器件,因此非极性AlGaN的制备迅速成为研究热点。因缺少合适的同质衬底,当前AlGaN基材料大多是在蓝宝石衬底上异质外延生长得到的,因AlGaN基材料与蓝宝石之间存在较强的晶格失配与热失配,因此异质外延生长的AlGaN通常具有较低的晶体质量并存在高密度的位错,这通常会严重影响制备出器件的性能及寿命。而非极性AlGaN因存在面内晶格失配和生长速度的各向异性,因此外延生长的非极性AlGaN的晶体质量会更差、位错密度会更高。因此,如何进一步提高非极性AlGaN的晶体质量并降低其位错密度便成为发展的关键。
为提高非极性AlGaN的晶体质量并降低其位错密度,通常是采用较通用的图形化蓝宝石衬底进行侧向外延生长或使用高质量、大厚度的AlN模板进行同质外延生长。但是,因为使用图形化蓝宝石衬底通常需要高达10μm的合并厚度(如图2所示的合并层202),这对于生长速度慢、成本高的AlGaN并不适用;而高质量、大厚度的AlN模板(如图3所示的AlN模板层302)同样是非常昂贵。因此,如何较低成本的获得高质量、低位错密度的非极性AlGaN便成为行业内亟待解决的关键问题。
上述问题的存在,严重制约着当前非极性AlGaN基紫外、深紫外发光器件和光电探测器件的发展,如何较低成本获得高质量、低位错密度的非极性AlGaN成为当前行业追求的目标,也是将非极性AlGaN基紫外、深紫外光电器件推向市场的关键所在。
发明内容
本发明所要解决的技术问题是提供一种高质量非极性AlGaN微纳复合结构及其加工方法。
为解决以上技术问题,本发明的技术方案为:提供一种高质量非极性AlGaN微纳复合结构,其创新点在于:包括基底、柱状固体介质阵列结构和孔状非极性AlxGa1-xN层,所述孔状非极性AlxGa1-xN层设于基底上,所述柱状固体介质阵列结构镶嵌在孔状非极性AlxGa1- xN层内部并呈阵列分布。
进一步的,所述柱状固体介质阵列结构为开始于基底并镶嵌在孔状非极性AlxGa1-xN层内部的、无法外延生长III族氮化物的化合物柱状固体介质阵列结构,所述柱状固体介质阵列结构在基底表面呈周期性阵列分布或随机分布,其高度在0.01-1μm之间,并且所述柱状固体介质阵列结构对于基底的覆盖率在10%~60%的范围内可调。
进一步的,所述孔状非极性AlxGa1-xN层生长自基底,所述孔状非极性AlxGa1-xN层厚度小于或等于柱状固体介质阵列结构的高度,所述孔状非极性AlxGa1-xN层中的 x代表Al的摩尔组分,且 x满足:0≤ x≤1。
进一步的,所述孔状非极性AlxGa1-xN层生长自基底,所述孔状非极性AlxGa1-xN层厚度大于柱状固体介质阵列结构的高度,且所述孔状非极性AlxGa1-xN层未完全覆盖内部镶嵌的柱状固体介质阵列结构,所述孔状非极性AlxGa1-xN层中的 x代表Al的摩尔组分,且 x满足:0≤ x≤1。
进一步的,所述的孔状非极性AlxGa1-xN层与柱状固体介质阵列结构之间间隙的体积占比为0%~40%。
进一步的,所述柱状固体介质阵列结构为不规则的柱状体结构,所述柱状体结构的最粗处直径在0.1-10μm之间。
进一步的,所述柱状固体介质阵列结构的截面沿孔状非极性AlxGa1-xN层的[]方向是长轴方向,沿孔状非极性AlxGa1-xN层的[0001]方向是短轴方向,长轴与短轴之比的范围为1~6,该比值根据Al摩尔组分 x可调。
进一步的,所述的柱状固体介质阵列结构为规则的圆柱体或圆台体或多棱柱体或多棱台体结构,所述柱状固体介质阵列结构的直径最大值在0.1-10μm之间。
为解决以上技术问题,本发明还提供一种基于权利要求1所述的高质量非极性AlGaN微纳复合结构的加工方法,其创新点在于:包括以下具体步骤:
(1)首先在基底上制备一层固体介质薄膜,所述固体介质薄膜的厚度即为柱状固体介质阵列结构的高度;
(2)对所述固体介质薄膜执行刻蚀工艺流程,将步骤(1)制备的固体介质薄膜刻蚀成为指定形状的柱状固体介质阵列结构;
(3)基于外延生长技术在基底之上的柱状固体介质阵列结构间隙制备孔状非极性AlxGa1-xN层;
(4)对完成生长的非极性AlGaN微纳复合结构进行温度大于800℃、小于1800℃的热处理,其中热处理温度根据孔状非极性AlxGa1-xN层的Al摩尔组分 x调节,完成高质量非极性AlGaN微纳复合结构的加工。
为解决以上技术问题,本发明还提供另一种基于权利要求1所述的高质量非极性AlGaN微纳复合结构的加工方法,其创新点在于:包括以下具体步骤:
(1)先在基底之上制备一层非极性AlGaN薄膜,其厚度大于或等于孔状非极性AlxGa1-xN层(103)的厚度;
(2)对所述制备的非极性AlGaN薄膜执行刻蚀工艺流程,将其刻蚀出内部含有指定形状、且呈阵列分布的孔;
(3)在含有特定形状孔的非极性AlGaN薄膜基础上通过镀膜技术在孔中填充固体介质,形成柱状固体介质阵列结构的前体;在此基础上依次执行刻蚀、研磨和抛光工艺,保证漏出非极性AlGaN薄膜,制备出含有柱状固体介质阵列结构(102)和内部镶嵌有柱状固体介质阵列结构的孔状非极性AlxGa1-xN层(103)的复合结构;
(4)对制备完成的非极性AlGaN微纳复合结构进行温度大于800℃、小于1800℃的热处理,其中热处理温度根据孔状非极性AlxGa1-xN层的Al摩尔组分 x调节,完成高质量非极性AlGaN微纳复合结构的加工。
本发明和现有技术相比,产生的有益效果为:
通过将柱状固体介质阵列结构设置在非极性AlGaN内部,以该柱状固体介质阵列结构阻断非极性AlGaN内部应力的积累,显著降低非极性AlGaN面内应力,从而达到大幅度减弱非极性AlGaN产生位错的根源,实现位错密度的有效降低。将柱状柱状固体介质阵列结构沿非极性AlGaN面内的[]方向与[0001]方向的轴长之比设置在1~6之间,以适应非极性AlGaN在不同Al组分条件下应力各向异性的变化,最大限度上解决非极性AlGaN存在的面内应力各向异性的问题。进一步,对本发明提出的微纳复合结构进行高温热处理,促进非极性AlGaN在高温状态下进行晶体重构,实现位错密度进一步降低、晶体质量取得显著提高的效果。使用本发明提供的非极性AlGaN微纳复合结构,可进一步外延生长获得高质量非极性AlGaN基器件结构,提高后续制备获得的器件的性能、稳定性及寿命。
附图说明
为了更清晰地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供高质量非极性AlGaN复合结构的断面示意图。
图2为采用图形化蓝宝石衬底外延生长的非极性AlGaN的断面示意图。
图3为采用大厚度的AlN模板外延生长的非极性AlGaN的断面示意图。
其中,101-基底、102-柱状固体介质阵列结构、103-孔状非极性AlxGa1-xN层、201-图形化蓝宝石衬底、2011-图形化蓝宝石衬底的图形、202-使用图形化蓝宝石衬底外延生长时外延层的合并层、301-基底、302-制备的大厚度AlN模板。
具体实施方式
下面将通过具体实施方式对本发明的技术方案进行清楚、完整地描述。
本发明提供一种高质量非极性AlGaN微纳复合结构,具体结构如图1所示,包括基底101、柱状固体介质阵列结构102和孔状非极性AlxGa1-xN层103,孔状非极性AlxGa1-xN层103设于基底101上,柱状固体介质阵列结构102镶嵌在孔状非极性AlxGa1-xN层102内部并呈阵列分布。柱状固体介质阵列结构102为开始于基底101并镶嵌在孔状非极性AlxGa1-xN层103内部的、无法外延生长III族氮化物的化合物柱状固体介质阵列,柱状固体介质阵列结构102在基底101表面呈周期性阵列分布或随机分布,其高度在0.01-1μm之间,并且柱状固体介质阵列结构102对于基底101的覆盖率在10%~60%的范围内可调。柱状固体介质阵列结构102可为规则的圆柱体或圆台体或多棱柱体或多棱台体结构,柱状固体介质阵列结构102为规则时的直径最大值在0.1-10μm之间;柱状固体介质阵列结构102也可为不规则的柱状体结构,柱状固体介质阵列结构102为不规则的柱状体结构的最粗处直径在0.1-10μm之间。柱状固体介质阵列结构102平行于该该微纳复合结构底面的截面沿孔状非极性AlxGa1-xN层103的[]方向是长轴方向,沿孔状非极性AlxGa1-xN层103的[0001]方向是短轴方向,长轴与短轴之比的范围为1~6,该比值根据Al摩尔组分x可调。
本发明的孔状非极性AlxGa1-xN层103生长自基底101,孔状非极性AlxGa1-xN层103厚度可小于或等于柱状固体介质阵列结构102的高度,孔状非极性AlxGa1-xN层103厚度也可大于柱状固体介质阵列结构102的高度,此时孔状非极性AlxGa1-xN层103未完全覆盖内部镶嵌的柱状固体介质阵列结构102,孔状非极性AlxGa1-xN层103中的x代表Al的摩尔组分,且x满足:0≤x≤1。
本发明的非极性Al x Ga1- x N层103与柱状固体介质阵列结构102之间间隙的体积占比为0%~40%。
本发明基于上述的高质量非极性AlGaN微纳复合结构提供了两种高质量非极性AlGaN微纳复合结构的加工方法,两种加工方法具体分为两种实施例进行描述。
实施例1
本发明基于上述的高质量非极性AlGaN微纳复合结构的第一种加工方法的具体步骤为:
(1)首先在基底101上制备一层固体介质薄膜,所述固体介质薄膜的厚度为柱状固体介质阵列结构102的高度;
(2)对所述柱状介质薄膜执行刻蚀工艺流程,将步骤(1)制备的固体介质薄膜刻蚀成为指定形状的柱状固体介质阵列结构102;
(3)基于外延生长技术在基底101之上的柱状固体介质阵列结构102间隙生长孔状非极性AlxGa1-xN层103;
(4)对完成生长孔状非极性AlxGa1-xN层103的非极性AlGaN微纳复合结构进行温度大于800℃、小于1800℃的热处理,其中热处理温度根据孔状非极性AlxGa1-xN层103的Al摩尔组分x调节,完成高质量非极性AlGaN微纳复合结构的加工。
实施例2
本发明基于上述的高质量非极性AlGaN微纳复合结构的第二种加工方法的具体步骤为:
(1)先在基底101之上制备一层非极性AlGaN薄膜,其厚度大于或等于孔状非极性AlxGa1-xN层103的厚度;
(2)对所述制备的非极性AlGaN薄膜执行刻蚀工艺流程,将其刻蚀出内部含有指定形状、且呈阵列分布的孔;
(3)在含有特定形状孔的非极性AlGaN薄膜基础上通过镀膜技术在孔中填充固体介质,形成柱状固体介质阵列结构102的前体;在此基础上依次执行刻蚀、研磨和抛光工艺,保证漏出非极性AlGaN薄膜,制备出含有柱状固体介质阵列结构102和内部镶嵌有柱状固体介质阵列结构102的孔状非极性AlxGa1-xN层103的复合结构;
(4)对制备完成的非极性AlGaN微纳复合结构进行温度大于800℃、小于1800℃的热处理,其中热处理温度根据孔状非极性AlxGa1-xN层103的Al摩尔组分x调节,完成高质量非极性AlGaN微纳复合结构的加工。
上面所述的实施例仅仅是本发明的优选实施方式进行描述,并非对本发明的构思和范围进行限定,在不脱离本发明设计构思的前提下,本领域中普通工程技术人员对本发明的技术方案作出的各种变型和改进均应落入本发明的保护范围,本发明的请求保护的技术内容,已经全部记载在权利要求书中。

Claims (3)

1.一种高质量非极性AlGaN微纳复合结构,其特征在于:包括经过温度大于800℃、小于1800℃热处理的基底(101)、柱状固体介质阵列结构(102)和孔状非极性AlxGa1-xN层(103);所述孔状非极性AlxGa1-xN层(103)设于基底(101)上,所述柱状固体介质阵列结构(102)是高度在0.01-1μm之间、在衬底(101)所占据的覆盖率范围为10%~60%、无法外延生长III族氮化物的化合物固体介质,并且镶嵌在孔状非极性AlxGa1-xN层(103)内部并呈阵列分布;所述柱状固体介质阵列结构(102)的最大直径在0.1-10μm之间,其为规则的圆柱体、圆台体、多棱柱体或多棱台体结构,或为不规则的柱状体结构,且其截面沿非极性AlxGa1-xN层(103)的
Figure FDA0003829329630000011
方向是长轴方向,沿非极性AlxGa1-xN层(103)的[0001]方向是短轴方向,长轴与短轴之比的范围为1~6,该比值根据Al摩尔组分x可调;所述孔状非极性AlxGa1-xN层(103)生长自基底(101),所述孔状非极性AlxGa1-xN层(103)厚度小于或等于柱状固体介质阵列结构(102)的高度,或当所述孔状非极性AlxGa1-xN层(103)厚度大于柱状固体介质阵列结构(102)的高度时所述孔状非极性AlxGa1-xN层(103)未完全覆盖其内部镶嵌的柱状固体介质阵列结构(102),并且热处理在满足此条件下进行;所述孔状非极性AlxGa1-xN层(103)中的x代表Al的摩尔组分,且x满足:0≤x≤1。
2.一种基于权利要求1所述的高质量非极性AlGaN微纳复合结构的加工方法,其特征在于:包括以下步骤:
(1)首先在基底上制备一层固体介质薄膜,所述固体介质薄膜的厚度即为柱状固体介质阵列结构(102)的高度;
(2)对所述柱状固体介质阵列结构薄膜执行刻蚀工艺流程,将步骤(1)制备的固体介质薄膜刻蚀成为指定形状的柱状固体介质阵列结构(102);
(3)基于外延生长技术在基底之上的柱状固体介质阵列结构(102)间隙制备孔状非极性AlxGa1-xN层(103);
(4)对完成生长的非极性AlGaN微纳复合结构进行温度大于800℃、小于1800℃的热处理,其中热处理温度根据孔状非极性AlxGa1-xN层(103)的Al摩尔组分x调节,完成高质量非极性AlGaN微纳复合结构的加工。
3.一种基于权利要求1所述的高质量非极性AlGaN微纳复合结构的加工方法,其特征在于,包括以下步骤:
(1)先在基底(101)之上制备一层非极性AlGaN薄膜,其厚度大于或等于孔状非极性AlxGa1-xN层(103)的厚度;
(2)对上述制备的非极性AlGaN薄膜执行刻蚀工艺流程,将其刻蚀出内部含有指定形状、且呈阵列分布的孔;
(3)在含有特定形状孔的非极性AlGaN薄膜基础上通过镀膜技术在孔中填充固体介质,形成柱状固体介质阵列结构(102)的前体;在此基础上依次执行刻蚀、研磨和抛光工艺,保证漏出非极性AlGaN薄膜,制备出含有柱状固体介质阵列结构(102)和内部镶嵌有柱状固体介质阵列结构(102)的孔状非极性AlxGa1-xN层(103)的复合结构;
(4)对制备完成的非极性AlGaN微纳复合结构进行温度大于800℃、小于1800℃的热处理,其中热处理温度根据非极性AlxGa1-xN层(103)的Al摩尔组分x调节,完成高质量非极性AlGaN微纳复合结构的加工。
CN201910461768.1A 2019-05-30 2019-05-30 一种高质量非极性AlGaN微纳复合结构及其加工方法 Active CN112018199B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910461768.1A CN112018199B (zh) 2019-05-30 2019-05-30 一种高质量非极性AlGaN微纳复合结构及其加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910461768.1A CN112018199B (zh) 2019-05-30 2019-05-30 一种高质量非极性AlGaN微纳复合结构及其加工方法

Publications (2)

Publication Number Publication Date
CN112018199A CN112018199A (zh) 2020-12-01
CN112018199B true CN112018199B (zh) 2023-04-07

Family

ID=73500984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910461768.1A Active CN112018199B (zh) 2019-05-30 2019-05-30 一种高质量非极性AlGaN微纳复合结构及其加工方法

Country Status (1)

Country Link
CN (1) CN112018199B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992653B (zh) * 2021-02-04 2023-05-23 南京信息工程大学 具有非对称周期结构的iii族氮化物复合衬底及其加工方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545933A (zh) * 2018-11-08 2019-03-29 东南大学 一种非极性图形化AlN/蓝宝石复合衬底及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818452B1 (ko) * 2006-10-31 2008-04-01 삼성전기주식회사 Ⅲ족 질화물 반도체 박막 제조방법 및 이를 이용한 질화물반도체 소자 제조방법
WO2009002365A1 (en) * 2006-12-15 2008-12-31 University Of South Carolina Pulsed selective area lateral epitaxy for growth of iii-nitride materials over non-polar and semi-polar substrates
WO2012050888A2 (en) * 2010-09-28 2012-04-19 North Carolina State University Gallium nitride based structures with embedded voids and methods for their fabrication
GB2485418B (en) * 2010-11-15 2014-10-01 Dandan Zhu Semiconductor materials
CN102208497B (zh) * 2011-04-22 2013-09-25 中山大学 一种硅衬底上半极性、非极性GaN复合衬底的制备方法
CN102427100A (zh) * 2011-11-11 2012-04-25 郭磊 半导体结构及其形成方法
GB2527045B (en) * 2014-06-09 2018-12-19 Seren Photonics Ltd Fabrication of semi-polar crystal structures
CN104993012B (zh) * 2015-05-25 2017-04-12 中国科学院半导体研究所 大尺寸非极性A面GaN自支撑衬底的制备方法
CN106299065B (zh) * 2015-06-25 2018-11-27 光州科学技术院 基板、其制造方法及利用其的发光二极管
CN106981415A (zh) * 2017-04-19 2017-07-25 华南理工大学 GaN高电子迁移率晶体管的氮化镓薄膜及其纳米外延过生长方法
CN107170666A (zh) * 2017-05-25 2017-09-15 东南大学 一种非极性ⅲ族氮化物外延薄膜
CN109037401A (zh) * 2018-06-21 2018-12-18 中国工程物理研究院电子工程研究所 一种氮化镓基水平纳米柱壳核结构阵列led的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545933A (zh) * 2018-11-08 2019-03-29 东南大学 一种非极性图形化AlN/蓝宝石复合衬底及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵晨 ; 贾伟 ; 樊腾 ; 仝广运 ; 李天保 ; 翟光美 ; 马淑芳 ; 许并社 ; .类金字塔状GaN微米结构的生长及其形貌表征.材料导报.2017,(22),全文. *

Also Published As

Publication number Publication date
CN112018199A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
US9691712B2 (en) Method of controlling stress in group-III nitride films deposited on substrates
KR102062327B1 (ko) 질화 알루미늄 기판 및 iii족 질화물 적층체
US20140001438A1 (en) Semiconductor devices and methods of manufacturing the same
KR102138334B1 (ko) 스텝업 전처리 방식을 이용한 α-Ga2O3 박막 제조 방법
CN111009602B (zh) 具有2d材料中介层的外延基板及制备方法和制作组件
TWI685884B (zh) 半導體異質結構及其製造方法
CN104518062A (zh) 制造半导体发光器件的方法
KR101178505B1 (ko) 반도체 기판과 이의 제조 방법
RU2008145803A (ru) Способ выращивания полупроводникового кристалла нитрида iii группы, способ получения полупроводниковой кристаллической подложки из нитрида iii группы и полупроводниковая кристаллическая подложка из нитрида iii группы
CN112018199B (zh) 一种高质量非极性AlGaN微纳复合结构及其加工方法
CN103996610A (zh) 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用
JP5378128B2 (ja) 電子デバイス用エピタキシャル基板およびiii族窒化物電子デバイス用エピタキシャル基板
JP2008195594A (ja) Iii族窒化物半導体基板
CN105762061B (zh) 一种氮化物的外延生长方法
KR20230056686A (ko) 다이아몬드 방열판을 갖는 헤테로에피택셜 구조
CN113279054A (zh) 提高氮化铝材料晶体质量的外延生长方法及氮化铝材料
CN210984756U (zh) 具有2d材料中介层的外延基板
TW202317819A (zh) 半導體磊晶結構
KR100834698B1 (ko) 질화 갈륨 박막 형성 방법 및 이 방법에 의해 제조된 질화갈륨 박막 기판
KR100793443B1 (ko) 질화물계 화합물 반도체용 기판 구조체 및 그 제조방법
WO2023119916A1 (ja) 窒化物半導体基板および窒化物半導体基板の製造方法
JP7207588B1 (ja) Iii族窒化物半導体ウエーハ及びその製造方法
WO2023100540A1 (ja) 窒化物半導体基板及びその製造方法
CN212907773U (zh) 一种氮化镓外延芯片
JP6306331B2 (ja) 窒化物半導体層の成長方法及び窒化物半導体素子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant