CN112011096B - 一种酸解淀粉复合膜及其制备方法 - Google Patents

一种酸解淀粉复合膜及其制备方法 Download PDF

Info

Publication number
CN112011096B
CN112011096B CN202010913892.XA CN202010913892A CN112011096B CN 112011096 B CN112011096 B CN 112011096B CN 202010913892 A CN202010913892 A CN 202010913892A CN 112011096 B CN112011096 B CN 112011096B
Authority
CN
China
Prior art keywords
parts
acidolysis
starch
film
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010913892.XA
Other languages
English (en)
Other versions
CN112011096A (zh
Inventor
侯汉学
王文涛
翟晓松
吴世蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Agricultural University
Original Assignee
Shandong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Agricultural University filed Critical Shandong Agricultural University
Priority to CN202010913892.XA priority Critical patent/CN112011096B/zh
Publication of CN112011096A publication Critical patent/CN112011096A/zh
Application granted granted Critical
Publication of CN112011096B publication Critical patent/CN112011096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/04Starch derivatives
    • C08J2303/06Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/04Starch derivatives
    • C08J2303/08Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/04Starch derivatives
    • C08J2403/08Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)

Abstract

本发明涉及食品包装领域,具体公开了一种酸解淀粉复合膜,由如下重量份的原料制成:酸解淀粉40~70份,生物降解聚酯30~60份,增塑剂10~40份,增容剂0.5~5份,纳米材料3~30份,亲水性聚合物3~15份,多元有机酸0.5~10份;本发明还公开了所述酸解淀粉复合膜的制备方法。本发明采用酸解淀粉和生物降解聚酯为基体,均为完全生物降解材料,绿色环保。本发明生产的酸解淀粉复合膜具有良好的机械性能、阻隔性能和生物降解性,可用于生鲜农产品和食品的包装;相对于纯生物降解聚酯薄膜而言,显著降低了生产成本,同时具有更好的生物降解性能,对于缓解非降解塑料造成的“白色污染”有着重要的应用价值和现实意义。

Description

一种酸解淀粉复合膜及其制备方法
技术领域
本发明涉及食品包装领域,具体提供了一种酸解淀粉复合膜及其制备方法。
背景技术
石油基塑料造成的环境污染日益严重,急需全降解塑料取而代之。淀粉具有低成本、可再生和可生物降解等优势,被认为是替代石油基塑料的最有前景的聚合物之一。尽管仅使用热塑性淀粉可以生产包装膜,但其机械性能和阻水性能都很差,严重限制了其作为食品包装材料的应用。因此,在实际加工过程中,将淀粉与生物降解聚酯进行熔融共混,以获得更具适用性的食品包装材料。采用挤出吹塑工艺生产淀粉膜效率高,产量大,能够扩展其应用领域。因此,淀粉生物降解复合膜具有广阔的发展前景,如何利用挤出吹塑工艺生产出性能优异、成本低廉的淀粉复合膜成为本领域亟待解决的问题之一。
现有的技术中,申请号为20151034780.3的中国发明专利公开了一种可生物降解共混薄膜及其制备方法,该专利将低成本淀粉进行改性后用在吹膜树脂中,降低成本的同时又可以提高薄膜降解速率;但在其制备方法中,首先挤出制备了马来酸酐接枝热塑性淀粉,然后与聚酯材料再次共混挤出,两步挤出造粒会导致更高的能耗,增加生产成本,且淀粉含量较低。申请号201210556637.X的中国专利申请“一种可生物降解TPS/PBAT复合材料及其制备方法”和申请号201210553133.2的中国专利申请“可塑性淀粉改性PBAT生物全降解材料的制备方法”公开了两种利用热塑性淀粉对PBAT进行填充和共混改性的方法,极大的降低了原材料的成本,但由于普通淀粉的颗粒较大,与聚酯分子的结合力较弱,复合材料的机械性能不太理想。聚合物的分子量、链长分布和结晶度是影响其薄膜性能的重要因素。
此外,由于现有技术中的生物降解吹膜树脂的成本较高,限制了其应用范围,不能满足市场的需求。有鉴于此,确有必要提供一种新的技术方案来克服现有技术存在的诸多问题,以提高淀粉膜的机械性能和阻水性能等,同时降低生产成本。
发明内容
本发明针对现有技术存在的诸多不足之处,提供了一种酸解淀粉复合膜及其制备方法,由如下重量份的原料制成:酸解淀粉40~70份,生物降解聚酯30~60份,增塑剂10~40份,增容剂0.5~5份,纳米材料3~30份,亲水性聚合物5~20份,多元有机酸0.5~10份;本发明生产的酸解淀粉复合膜具有良好的机械性能和阻隔性能,可用于生鲜农产品和食品的包装;相对于纯生物降解聚酯吹塑薄膜而言,显著降低了生产成本,同时具有更好的生物降解性能。
本发明的一大特点就是利用酸解淀粉作为原料,酸解淀粉颗粒较小、粘度较低,易于进行挤出加工和结合聚酯,且其结晶度高,能与聚酯形成大量的小结晶,增强了分子间作用力,使薄膜更加密实,从而有利于提高淀粉膜的机械性能和阻水性能。目前,酸解淀粉的主要工业应用是在造纸、纺织等领域,在生物降解薄膜中的应用还未见报道,发明人发现由于其颗粒较小、粘度较低、结晶度高等特点,具有良好的成膜能力,特别适合应用于生物降解薄膜中,故而获得了本申请的技术方案。
本发明的具体技术方案是:
一种酸解淀粉复合膜,由如下重量份的原料制成:
酸解淀粉40~70份、生物降解聚酯30~60份、增塑剂10~40份、增容剂0.5~5份、纳米材料3~30份、亲水性聚合物3~15份、多元有机酸0.5~10份;
其中所述的酸解淀粉为酸解天然淀粉或酸解变性淀粉,优选的为酸解变性淀粉,优选的变性淀粉为淀粉醋酸酯、淀粉磷酸酯、羟丙基交联淀粉、乙酰化交联淀粉、甲氧基淀粉、辛烯基琥珀酸淀粉酯中的一种或两种以上的混合物。
所述的生物降解聚酯是指聚对苯二甲酸/己二酸丁二醇酯、聚乳酸、聚己内酯、聚羟基脂肪酸酯、聚丁二酸/己二酸丁二醇酯中的一种或两种以上的混合物。
聚酯材料的机械性能和阻水性能较好,但高成本阻碍了其推广应用;淀粉材料成本低、易降解、阻气性好,但机械性能和阻水性差,因此发明人在本技术方案中将二者共混,弥补了两者相互间的不足,通过调节二者的配比可以生产出不同性能的复合膜,以满足不同的应用需求。对于机械性能和阻水性能要求高的应用场景,可在上述范围内提高生物降解聚酯用量,反之亦然。
所述的增塑剂是水、甘油、尿素、乙二醇、聚乙二醇、柠檬酸酯、单乙酸甘油酯、二乙酸甘油酯、三乙酸甘油酯中的一种或两种以上的混合物,优选的柠檬酸酯为乙酰柠檬酸三丁酯、柠檬酸三丁酯、乙酰柠檬酸三乙酯、柠檬酸三乙酯中的一种或两种以上的混合物。
所述的增容剂是马来酸酐、亚甲基二苯基二异氰酸酯、硅烷偶联剂、钛酸酯偶联剂中的一种或两种以上的混合物。
所述的纳米材料为天然的或有机改性的蒙脱土、超细碳酸钙、纳米二氧化硅、天然或改性的超细纤维素中一种或两种以上的混合物,优选的有机改性蒙脱土的改性剂为十八烷基三甲基氯/溴化氨,十八烷基苄基二甲基氯/溴化氨,双十八烷基二甲基氯/溴化铵,双十八烷基甲基-2-羟乙基氯化铵,十八烷基双羟乙基甲基氯/溴化铵的中的一种或两种以上的混合物。
所述的亲水性聚合物是指羟丙基甲基纤维素、羧甲基纤维素、羟丙基纤维素、甲基纤维素中的一种或两种以上的混合物,优选的为羟丙基甲基纤维素、羧甲基纤维素中的一种或两种的混合物;由于酸解淀粉粘性较低,因此发明人选择加入上述的亲水性聚合物作为胶粘剂,并在制备过程中首先将其溶解在水中使其分子链充分伸展后再与酸解淀粉混合,从而更好地发挥粘结和增强作用。
所述的多元有机酸是指柠檬酸、乙二酸、丙二酸、丁二酸、戊二酸、己二酸、2-羟基丁二酸、2,3-二羟基丁二酸中的一种或两种以上的混合物,优选的为柠檬酸、2-羟基丁二酸、2,3-二羟基丁二酸中的一种或两种以上的混合物。
除此之外,发明人还提供了所述酸解淀粉复合膜的制备方法,包括如下步骤:
(1)亲水性聚合物的添加方法:
将亲水性聚合物溶解于10~40倍重量的水中形成胶状液体,然后缓慢加入到酸解淀粉中,在自然状态下干燥12~36h,使水分干燥到13%~16%,使亲水性聚合物分子链充分伸展,从而更好地发挥粘结和增强作用;
(2)多元有机酸的添加方法:
在25℃条件下,将多元有机酸与增塑剂按比例混合,并搅拌6~24h,得到透明液体;
(3)物料混合:
将步骤(1)所得的淀粉/亲水性聚合物与生物降解聚酯、增容剂和纳米材料按比例置于高速混合机中,低速(5Hz)混合5min,打开助剂阀门,将步骤(2)所得多元有机酸/增塑剂缓慢加入到高速混合机中,高速(10Hz)混合10min,将所得混合物料在室温下放置24h;
(4)造粒:
将步骤(3)所得混合物料通过双螺杆挤出机进行挤压造粒,挤出温度为100~160℃,螺杆转速为170~300rpm;
(5)吹膜:
将步骤(4)制备的吹膜粒料用单螺杆挤出吹膜机吹塑成薄膜,吹膜过程的挤出温度为100~170℃,螺杆转速为15~55rpm,吹胀比为1:3~7,拉伸比为1:2~4,薄膜厚度30~100μm。
上述制备方法中,部分助剂采用分别混合、逐次加入的方式进行添加,使其在酸解淀粉/聚酯复合基质中具有更好的分散性,从而更好地发挥增强和增容的作用;除此之外,上述方法采用一步法造粒,与现有技术普遍采用的两步法(先将淀粉与增塑剂等挤压造粒,然后与聚酯再次共混造粒)明显不同,一步法将淀粉粉末与聚酯共混,二者存在更大的接触面积,相容性更好,还可以降低能耗,节约成本,较之现有技术有明显进步之处。
采用上述方法获得的酸解淀粉复合膜具有良好的机械性能和阻水性能,可用于生鲜农产品和高油食品的包装;相对于生物降解聚酯薄膜而言,显著降低了薄膜的生产成本,同时具有更好的生物降解性能,对于缓解“白色污染”有着重要的应用价值。
具体实施方式
为了更好的理解本发明,下面结合实例进一步阐明本发明的内容,但本发明的内容不局限于下面的实例。
实施例1:
一种酸解淀粉复合膜,由如下重量份数的原料制成:酸解醋酸酯淀粉70份,聚对苯二甲酸/己二酸丁二醇酯30份,甘油30份,二乙酸甘油酯5份,马来酸酐3份,有机改性蒙脱土(改性剂为双十八烷基二甲基氯化铵)10份,羟丙基甲基纤维素10份,柠檬酸2份。
所述的酸解淀粉复合膜,由如下步骤制成:
(1)将羟丙基甲基纤维素溶解于30倍重量的水中形成胶状液体,然后加入到酸解醋酸酯淀粉中,在自然状态下干燥24h,使水分含量降至14%,得到酸解淀粉醋酸酯/羟丙基甲基纤维素混合物;
(2)在25℃条件下,将柠檬酸与甘油、二乙酸甘油酯混合,搅拌12h,得到透明液体;
(3)将步骤(1)得到的混合物与聚对苯二甲酸/己二酸丁二醇酯、马来酸酐和有机改性蒙脱土(改性剂为双十八烷基二甲基氯化铵)置于高速混合机中,低速(5Hz)混合5min,打开助剂阀门,将步骤(2)得到的透明液体缓慢加入到高速混合机中,高速(10Hz)混合10min,将所得混合物料在室温下放置24h;
(4)将步骤(3)所得混合物料通过双螺杆挤出机进行挤压造粒,挤出机各区温度依次为105℃,115℃,125℃,135℃,120℃,机头温度110℃,螺杆转速150rpm;
(5)将步骤(4)制备的吹膜粒料用单螺杆挤出吹膜机吹塑成薄膜,吹膜机各区的温度依次为115℃,125℃,135℃,145℃,机头温度120℃,螺杆转速30rpm,吹胀比为1:3,拉伸比为1:2,薄膜厚度为60~80μm。
采用以上配料和方法制备的酸解醋酸酯淀粉复合膜的纵向抗拉强度和断裂伸长率分别为4.23MPa和214.12%,横向抗拉强度和断裂伸长率分别为3.31MPa和174.76%;水蒸气透过系数为1.32×10-10g·m-1·s-1·Pa-1,氧气透过系数为7.81×10-14cm2·s-1·Pa-1,二氧化碳透过系数为6.43×10-16cm2·s-1·Pa-1
采用相同材料配比和制备方法获得的原醋酸酯淀粉复合膜的厚度为60~80μm,纵向抗拉强度和断裂伸长率分别为2.34MPa和182.88%,横向抗拉强度和断裂伸长率分别为2.04MPa和108.51%;水蒸气透过系数为3.51×10-10g·m-1·s-1·Pa-1,氧气透过系数为10.22×10-14cm2·s-1·Pa-1,二氧化碳透过系数为9.64×10-16cm2·s-1·Pa-1
可见本申请所得的复合膜性能较之采用常规淀粉制备的复合膜有明显的提升;
采用本实施例制备的酸解淀粉醋酸酯复合膜包装小麦胚芽,以原醋酸酯淀粉复合膜为对照,在温度50℃,相对湿度60%的恒温恒湿箱内加速氧化。原醋酸酯淀粉复合膜包装的小麦胚芽在存放5周后,过氧化值达到22.92mmol/kg,而酸解醋酸酯淀粉复合膜包装的小麦胚芽过氧化值为7.91mmol/kg。因此,酸解淀粉复合膜可显著延长小麦胚芽的保质期。
实施例2:
一种酸解淀粉复合膜,由如下重量份数的原料制成:酸解羟丙基交联木薯淀粉50份,聚对苯二甲酸-己二酸丁二醇酯50份,甘油18份,三乙酸甘油酯5份,亚甲基二苯基二异氰酸酯3份,纳米二氧化硅10份,羟丙基甲基纤维素10份,2-羟基丁二酸3份。
所述的酸解淀粉复合膜,由如下步骤制成:
(1)将羟丙基甲基纤维素溶解于35倍重量的水中形成胶状液体后,加入到酸解羟丙基交联木薯淀粉中,在自然状态下干燥30h,使水分含量降至16%,得到酸解羟丙基交联木薯淀粉/羟丙基甲基纤维素混合物;
(2)在25℃条件下,将2-羟基丁二酸与甘油、三乙酸甘油酯混合,搅拌12h,得到透明液体;
(3)将步骤(1)得到的混合物与聚对苯二甲酸/己二酸丁二醇酯、亚甲基二苯基二异氰酸酯和纳米二氧化硅置于高速混合机中,低速(5Hz)混合5min,打开助剂阀门,将步骤(2)得到的透明液体缓慢加入到高速混合机中,高速(10Hz)混合10min,将所得混合物料在室温下放置24h;
(4)将步骤(3)所得混合物料通过双螺杆挤出机进行挤压造粒,挤出机各区温度依次为110℃,120℃,130℃,140℃,125℃,机头温度110℃,螺杆转速170rpm;
(5)将步骤(4)制备的吹膜粒料用单螺杆挤出吹膜机吹塑成薄膜,吹膜机各区的温度依次为:一区120℃,二区130℃,三区140℃,连接体150℃,机头130℃,螺杆转速30rpm,吹胀比为1:4,拉伸比为1:3,薄膜厚度为40~50μm。
采用以上配料和方法制备的酸解羟丙基交联木薯淀粉复合膜的纵向抗拉强度和断裂伸长率分别为10.56MPa和629.88%,横向抗拉强度和断裂伸长率分别为7.44MPa和477.05%;水蒸气透过系数为3.21×10-11g·m-1·s-1·Pa-1,氧气透过系数为7.56×10- 14cm2·s-1·Pa-1,二氧化碳透过系数为7.43×10-16cm2·s-1·Pa-1
采用相同材料配比和制备方法获得的原羟丙基交联木薯淀粉复合膜的厚度为60~80μm,纵向抗拉强度和断裂伸长率分别为6.21MPa和431.53%,横向抗拉强度和断裂伸长率分别为5.38MPa和345.52%;水蒸气透过系数为5.46×10-11g·m-1·s-1·Pa-1,氧气透过系数为9.56×10-14cm2·s-1·Pa-1,二氧化碳透过系数为11.18×10-16cm2·s-1·Pa-1
可见本申请所得的复合膜性能较之采用常规淀粉制备的复合膜有明显的提升;
采用本实施例制备的酸解羟丙基交联木薯淀粉复合膜包装花生,以原羟丙基交联木薯淀粉复合膜为对照,在温度50℃,相对湿度60%的恒温恒湿箱内加速酸败。原羟丙基交联木薯淀粉复合膜包装的花生在存放5周后,酸价达到6.87mg/g,而酸解羟丙基交联木薯淀粉复合膜包装的花生酸价为1.28mg/g。因此,酸解淀粉复合膜可显著延长花生的保质期。
实施例3:
一种酸解淀粉复合膜,由如下重量份数的原料制成:酸解玉米淀粉40份,聚对苯二甲酸/己二酸丁二醇酯60份,甘油16份,柠檬酸三丁酯4份,马来酸酐4份,超细碳酸钙10份,羟丙基甲基纤维素3份,羧甲基纤维素3份,2,3-二羟基丁二酸2份。
所述的酸解淀粉复合膜,由如下步骤制成:
(1)将羟丙基甲基纤维素、羧甲基纤维素分别溶解于25倍重量的水中形成胶状液体,先后加入到酸解玉米淀粉中,在自然状态下干燥24h,使水分降低至14%左右,得到酸解玉米淀粉/羟丙基甲基纤维素/羧甲基纤维素混合物;
(2)在25℃条件下,将2,3-二羟基丁二酸与甘油、柠檬酸三丁酯混合,搅拌12h,得到透明液体;
(3)将步骤(1)得到的混合物与聚对苯二甲酸/己二酸丁二醇酯、马来酸酐和超细碳酸钙置于高速混合机中,低速(5Hz)混合5min,打开助剂阀门,将步骤(2)得到的透明液体缓慢加入到高速混合机中,高速(10Hz)混合10min,将所得混合物料在室温下放置24h;
(4)将步骤(3)所得混合物料通过双螺杆挤出机进行挤压造粒,挤出机各区温度依次为110℃,120℃,130℃,140℃,125℃,机头温度110℃,螺杆转速170rpm;
(5)将步骤(4)制备的吹膜粒料用单螺杆挤出吹膜机吹塑成薄膜,吹膜机各区的温度依次为:一区120℃,二区130℃,三区140℃,连接体150℃,机头130℃,螺杆转速35rpm,吹胀比为1:4,拉伸比为1:3,薄膜厚度为30~50μm。
采用以上配料和方法制备的酸解玉米淀粉复合膜的纵向抗拉强度和断裂伸长率分别为5.90MPa和461.90%,横向抗拉强度和断裂伸长率分别为5.69MPa和355.36%;水蒸气透过系数为4.75×10-11g·m-1·s-1·Pa-1,氧气透过系数为1.96×10-13cm2·s-1·Pa-1,二氧化碳透过系数为3.26×10-15cm2·s-1·Pa-1
采用相同材料配比和制备方法获得的原玉米淀粉复合膜的厚度为60~80μm,纵向抗拉强度和断裂伸长率分别为4.34MPa和120.74%,横向抗拉强度和断裂伸长率分别为4.04MPa和87.83%;水蒸气透过系数为11.23×10-11g·m-1·s-1·Pa-1,氧气透过系数为16.81×10-13cm2·s-1·Pa-1,二氧化碳透过系数为8.52×10-15cm2·s-1·Pa-1
可见本申请所得的复合膜性能较之采用常规淀粉制备的复合膜有明显的提升;
采用本实施例制备的酸解玉米淀粉复合膜包装小麦胚芽,以原玉米淀粉复合膜为对照,在温度50℃,相对湿度60%的恒温恒湿箱内加速氧化。原玉米淀粉复合膜包装的小麦胚芽在存放5周后,过氧化值达到18.71mmol/kg,而酸解玉米淀粉复合膜包装的小麦胚芽过氧化值为9.83mmol/kg。因此,酸解淀粉复合膜可显著延长小麦胚芽的保质期。
实施例4:
一种酸解淀粉复合膜,由如下重量份数的原料制成:酸解甲氧基马铃薯淀粉40份,聚对苯二甲酸/己二酸丁二醇酯40份,聚乳酸20份,甘油16份,柠檬酸三乙酯10份,亚甲基二苯基二异氰酸酯4份,有机改性蒙脱土(改性剂为十八烷基苄基二甲基氯)10份,羧甲基纤维素10份,柠檬酸2份。
所述的酸解淀粉复合膜,由如下步骤制成:
(1)将羧甲基纤维素溶解于30倍重量的水中形成胶状液体后,加入到酸解甲氧基马铃薯淀粉中,在自然状态下干燥24h,使水分含量降至14%左右,得到酸解甲氧基马铃薯淀粉/羧甲基纤维素混合物;
(2)在25℃条件下,将柠檬酸与甘油、柠檬酸三乙酯混合,搅拌12h,得到透明液体;
(3)将步骤(1)得到的混合物与聚对苯二甲酸-己二酸丁二醇酯、聚乳酸、亚甲基二苯基二异氰酸酯和有机改性蒙脱土(改性剂为十八烷基苄基二甲基氯)置于高速混合机中,低速(5Hz)混合5min,打开助剂阀门,将步骤(2)得到的透明液体缓慢加入到高速混合机中,高速(10Hz)混合10min,将所得混合物料在室温下放置24h;
(4)将步骤(3)所得混合物料通过双螺杆挤出机进行挤压造粒,140℃,155℃,160℃,160℃,150℃,机头温度130℃,螺杆转速200rpm;
(5)将步骤(4)制备的吹膜粒料用单螺杆挤出吹膜机吹塑成薄膜,吹膜机各区的温度依次为:一区150℃,二区160℃,三区170℃,连接体170℃,机头140℃,螺杆转速35rpm,吹胀比为1:3,拉伸比为1:3,薄膜厚度为40~60μm。
采用以上配料和方法制备的酸解甲氧基马铃薯淀粉复合膜的纵向抗拉强度和断裂伸长率分别为12.89MPa和343.85%,横向抗拉强度和断裂伸长率分别为11.25MPa和226.75%;水蒸气透过系数为4.22×10-11g·m-1·s-1·Pa-1,氧气透过系数为2.56×10- 13cm2·s-1·Pa-1,二氧化碳透过系数为2.11×10-15cm2·s-1·Pa-1
采用相同材料配比和制备方法获得的原甲氧基马铃薯淀粉复合膜的厚度为60~80μm,纵向抗拉强度和断裂伸长率分别为8.96MPa和165.34%,横向抗拉强度和断裂伸长率分别为7.81MPa和126.52%;水蒸气透过系数为9.44×10-11g·m-1·s-1·Pa-1,氧气透过系数为7.12×10-13cm2·s-1·Pa-1,二氧化碳透过系数为4.55×10-15cm2·s-1·Pa-1
可见本申请所得的复合膜性能较之采用常规淀粉制备的复合膜有明显的提升;
采用本实施例制备的酸解甲氧基马铃薯淀粉复合膜包装核桃仁,以原甲氧基马铃薯淀粉复合膜为对照,在温度50℃,湿度60%的恒温恒湿箱内加速氧化。原甲氧基马铃薯淀粉复合膜包装的核桃仁在存放5周后,过氧化值达到9.82mmol/kg,而酸解甲氧基马铃薯淀粉复合膜包装的核桃过氧化值为2.02mmol/kg。因此,酸解淀粉复合膜可显著延长核桃仁的保质期。
以上实施例是本发明选择的具体实施方式的一种,本领域技术人员在本技术方案范围内进行的通常变化和替换应包含在本发明的保护范围内。

Claims (1)

1.一种酸解淀粉复合膜,其特征在于,由如下重量份数的原料制成:酸解羟丙基交联木薯淀粉50份,聚对苯二甲酸-己二酸丁二醇酯50份,甘油18份,三乙酸甘油酯5份,亚甲基二苯基二异氰酸酯3份,纳米二氧化硅10份,羟丙基甲基纤维素10份,2-羟基丁二酸3份;该酸解淀粉复合膜,由如下步骤制成:
(1)将羟丙基甲基纤维素溶解于35倍重量的水中形成胶状液体后,加入到酸解羟丙基交联木薯淀粉中,在自然状态下干燥30 h,使水分含量降至16 %,得到酸解羟丙基交联木薯淀粉/羟丙基甲基纤维素混合物;
(2)在25 ℃条件下,将2-羟基丁二酸与甘油、三乙酸甘油酯混合,搅拌12 h,得到透明液体;
(3)将步骤(1)得到的混合物与聚对苯二甲酸/己二酸丁二醇酯、亚甲基二苯基二异氰酸酯和纳米二氧化硅置于高速混合机中,5 Hz混合5 min,打开助剂阀门,将步骤(2)得到的透明液体缓慢加入到高速混合机中, 10 Hz混合 10 min,将所得混合物料在室温下放置24 h;
(4)将步骤(3)所得混合物料通过双螺杆挤出机进行挤压造粒,挤出机各区温度依次为110 ℃,120 ℃,130 ℃,140 ℃,125 ℃,机头温度110 ℃,螺杆转速170 rpm;
(5)将步骤(4)制备的吹膜粒料用单螺杆挤出吹膜机吹塑成薄膜,吹膜机各区的温度依次为:一区120 ℃,二区130 ℃,三区140 ℃,连接体150 ℃,机头130 ℃,螺杆转速30 rpm,吹胀比为1:4,拉伸比为1:3,薄膜厚度为40~50 μm。
CN202010913892.XA 2020-09-02 2020-09-02 一种酸解淀粉复合膜及其制备方法 Active CN112011096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010913892.XA CN112011096B (zh) 2020-09-02 2020-09-02 一种酸解淀粉复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010913892.XA CN112011096B (zh) 2020-09-02 2020-09-02 一种酸解淀粉复合膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112011096A CN112011096A (zh) 2020-12-01
CN112011096B true CN112011096B (zh) 2022-03-18

Family

ID=73517123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010913892.XA Active CN112011096B (zh) 2020-09-02 2020-09-02 一种酸解淀粉复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112011096B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114889285A (zh) * 2022-04-29 2022-08-12 道恩周氏(青岛)复合包装材料有限公司 一种低温热封生物可降解复合膜及其制备工艺
CN116515174B (zh) * 2023-04-13 2024-05-24 西达(无锡)生物科技有限公司 一种淀粉基可降解复合材料及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10258227A1 (de) * 2002-12-09 2004-07-15 Biop Biopolymer Technologies Ag Biologisch abbaubare Mehrschichtfolie
KR100905027B1 (ko) * 2007-10-03 2009-06-30 (주)씨엘팜 식용 필름
CN104109264B (zh) * 2014-06-30 2016-04-27 安徽巢湖南方膜业有限责任公司 一种改性淀粉-聚乙烯复合塑料薄膜及其制备方法
CN106903952B (zh) * 2017-01-20 2019-03-12 山东农业大学 一种聚乳酸/淀粉高阻隔复合膜及其制备方法
CN106881929B (zh) * 2017-01-20 2019-03-12 山东农业大学 一种聚己二酸对苯二甲酸丁二酯/淀粉高阻隔复合膜及其制备方法
CN106881930B (zh) * 2017-01-20 2019-03-12 山东农业大学 一种聚羟基脂肪酸酯/淀粉高阻隔复合膜及其制备方法
CN108559232A (zh) * 2017-12-11 2018-09-21 杭州鑫富科技有限公司 一种耐撕裂性能优异的淀粉基塑料薄膜及其制备方法
CN108929527B (zh) * 2018-07-10 2020-09-22 华南理工大学 一种兼具高延展性和高阻隔性能的pbat/改性淀粉全生物降解薄膜及其制备方法和应用
CN109929228A (zh) * 2019-04-17 2019-06-25 谷水英 绿色可生物降解的塑料薄膜及其加工工艺

Also Published As

Publication number Publication date
CN112011096A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
EP3404067B1 (en) Plasticised biodegradable polyester film and preparation method therefor
CN104861210B (zh) 一种疏水稳定的淀粉基全生物降解树脂及其制备方法
CN112011096B (zh) 一种酸解淀粉复合膜及其制备方法
CN113881109B (zh) 多级改性的热塑性淀粉母粒及其在制备淀粉基生物降解薄膜中的应用
WO2007033597A1 (fr) Materiau biodegradable hydrosoluble
CN111978691B (zh) 一种可生物降解地膜及其制备方法
CN111116997A (zh) 一种可生物降解的管材及其制备方法和应用
CN113956640B (zh) 一种生物降解pla薄膜及其制备方法
CN101397394A (zh) 耐水解柔性聚乳酸取向制品及生产方法
CN112694726A (zh) 一种具有较高加工性能的改性pga材料及其制备方法
CN110358273B (zh) 一种具有高抗穿刺性能的生物质抗菌膜
CN112625304B (zh) 一种高淀粉填充pbat材料及其制备方法
CN114133712A (zh) 一种可生物全降解的农用地膜
CN112175361B (zh) 一种高阻隔抗拉伸抑菌膜类可降解材料及其制备方法
CN112251012A (zh) 一种可溶盐辅助增塑直链淀粉制备降解塑料母料的方法
CN116589810A (zh) 一种可降解农膜及其制备方法
Singh et al. Green and sustainable packaging materials using thermoplastic starch
CN115368720A (zh) 一种可降解聚合物纳米复合材料及其制备方法
CN114836012A (zh) 一种完全生物降解垃圾袋薄膜材料及垃圾袋薄膜的制备方法
AU768651B2 (en) Method of making biodegradable polymer compositions
CN114269842A (zh) 复合物及其用途
CN111286164A (zh) 一种生物降解塑料及其制备方法
JP3105451B2 (ja) 生分解性樹脂組成物及びその成形品
CN107880497A (zh) 可生物降解聚酯薄膜的制备方法
BR102016014420A2 (pt) Processo de preparação de blendas poliméricas ambientalmente degradáveis reforçadas com nanocristais/nanowhiskers de celulose para produção de filmes flexíveis por extrusão

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant