CN112010647A - 一种自支撑型陶瓷隔膜及其制备方法与应用 - Google Patents

一种自支撑型陶瓷隔膜及其制备方法与应用 Download PDF

Info

Publication number
CN112010647A
CN112010647A CN202010926571.3A CN202010926571A CN112010647A CN 112010647 A CN112010647 A CN 112010647A CN 202010926571 A CN202010926571 A CN 202010926571A CN 112010647 A CN112010647 A CN 112010647A
Authority
CN
China
Prior art keywords
ceramic
self
layer green
supporting
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010926571.3A
Other languages
English (en)
Inventor
余善成
陈乐易
吴晓波
闵康丽
龚丽英
武继文
赵志刚
陈国兵
叶珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Nanjing Medical University
Original Assignee
Nanjing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Medical University filed Critical Nanjing Medical University
Priority to CN202010926571.3A priority Critical patent/CN112010647A/zh
Publication of CN112010647A publication Critical patent/CN112010647A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种自支撑型陶瓷隔膜及其制备方法与应用。本发明通过将陶瓷粉体、分散剂以及溶剂球磨得到浆料1,往浆料1中加入粘结剂及增塑剂球磨得到浆料2;将浆料2通过流延机器制得陶瓷膜生坯,将生坯通过激光切割后分别得到陶瓷隔膜层生坯和辅助支撑层生坯,再通过激光将辅助支撑层生坯本体雕刻为蜂窝或网格状的框架结构;再将辅助支撑层生坯分别粘接在陶瓷隔膜层生坯两侧,平置且在重力作用下,辅助支撑层生坯、陶瓷隔膜层生坯充分溶合成为整体结构,将该整体结构在1000~1700℃高温下烧结,得到自支撑型陶瓷隔膜。该自支撑型陶瓷隔膜制备的电池,在有效保证机械力学强度的前提下,电解质功能层厚度降低到100μm以下,欧姆电阻降低47%,输出性能提高60%。

Description

一种自支撑型陶瓷隔膜及其制备方法与应用
技术领域
本发明属于陶瓷隔膜技术领域,尤其涉及一种自支撑型陶瓷隔膜及其制备方法与应用。
背景技术
致密陶瓷隔膜有着广泛的用途,如固体氧化物燃料电池、固体氧化物电解池、全固态锂离子动力电池等。以固体氧化物燃料电池为例,其利用电化学反应将燃料的化学能转换为电能,基本功能性组成单元通常包括致密电解质组件和多孔的阳极与阴极。从电池单体的力学承载组件来看,可以分为电解质支撑型、电极支撑型以及其它支撑体支撑型。从外形来看,可以分为管式、平板式、瓦楞式结构等。
电解质支撑平板式构型相对而言是一种比较简单的构型,通常先采用流延法等制得电解质支撑体层,再在支撑体上分别采用喷涂、丝网印刷等方法制得阳极和阴极,电流流程短、分布均匀,而且工艺简单可控、造价成本低。相比于电极支撑型固体氧化物燃料电池,由于电解质支撑型电池氧化还原循环稳定性好,在目前的商业产品中仍然占据很重要的市场。然而,电解层厚度一般需要达到200μm左右才能保证单体电池的力学强度,过厚的电解质层使得电池整体的欧姆电阻比较高,难以达到一个较大的功率密度输出。
因此,如何在保证机械力学强度前提下降低致密陶瓷膜的厚度成为提高陶瓷膜组件性能的关键因素。
发明内容
本发明的首要目的在于提供一种层间结合紧密、结构稳定、具有优异的力学性能的自支撑型陶瓷隔膜;
本发明的再一目的在于提供上述自支撑型陶瓷隔膜的制备方法,解决了现有技术中存在的问题,成功地在保证整体力学强度的前提下大幅度降低了陶瓷隔膜的厚度;
本发明的又一目的在于提供上述自支撑型陶瓷隔膜在制备包括固体氧化物燃料电池、固体氧化物电解池、全固态锂离子动力电池等类型电池中的应用。
本发明是这样实现的,一种自支撑型陶瓷隔膜的制备方法,该方法包括以下步骤:
(1)将40~45质量份陶瓷粉体、1~2质量份分散剂以及45~50质量份溶剂球磨20~24h得到浆料1,往浆料1中加入3~6质量份粘结剂及2~5质量份增塑剂球磨20~24h得到浆料2;将浆料2通过流延机器制得陶瓷膜生坯,将生坯通过激光切割后分别得到陶瓷隔膜层生坯和辅助支撑层生坯,再通过激光将辅助支撑层生坯本体雕刻为蜂窝或网格状的框架结构;
(2)将辅助支撑层生坯分别粘接在陶瓷隔膜层生坯两侧,平置且在重力作用下,辅助支撑层生坯、陶瓷隔膜层生坯充分溶合成为整体结构,将该整体结构在1000~1700℃高温下烧结1~24h,得到自支撑型陶瓷隔膜。
优选地,在步骤(1)中,所述陶瓷粉体包括钇稳定氧化锆、锂镧锆氧;所述分散剂包括蓖麻油、鱼油;所述溶剂包括乙醇、二甲苯;所述粘结剂包括聚乙烯醇缩丁醛;所述增塑剂包括邻苯二甲酸丁二醇酯、聚亚烷基二醇。
优选地,在步骤(1)中,所述球磨的速度为200rpm。
优选地,在步骤(1)中,所述陶瓷隔膜层生坯和辅助支撑层生坯的厚度分别为110~140μm。
优选地,在步骤(2)中,所述平置时间为1~24h。
本发明进一步公开了由上述制备方法得到的自支撑型陶瓷隔膜。
本发明进一步公开了上述自支撑型陶瓷隔膜在制备电池中的应用。
优选地,所述电池包括固体氧化物燃料电池、固体氧化物电解池、全固态锂离子动力电池。
本发明克服现有技术的不足,提供一种自支撑型陶瓷隔膜及其制备方法与应用。本发明通过将40~45质量份陶瓷粉体、1~2质量份分散剂以及45~50质量份溶剂球磨20~24h得到浆料1,往浆料1中加入3~6质量份粘结剂及2~5质量份增塑剂球磨20~24h得到浆料2,将浆料2通过流延法(流延机器)制得陶瓷膜生坯,改变流延刮刀高度制得110~140μm陶瓷膜生坯,再通过激光切割得到网格状或蜂窝状辅助支撑层生坯(如示意图1所示)及陶瓷隔膜层生坯(如示意图2所示),再将陶瓷隔膜层生坯和辅助支撑层生坯粘接,经过适当时间待两者充分溶合成整体,再高温共烧结得到自支撑型陶瓷隔膜(如示意图3所示)。
在本发明中,为制得流动性能良好的的流延浆料,本发明根据陶瓷粉体的特点(组成、粒径等)合理调整陶瓷粉体、乙醇(溶剂)、蓖麻油(分散剂)、聚乙烯醇缩丁醛(粘结剂)及邻苯二甲酸丁二醇酯(增塑剂)的比例。
陶瓷生坯经高温烧结成制品,尺寸一般缩小0~40%,在结合烧结收缩性能的基础上,需要根据目标制品的尺寸转换计算得到生坯的尺寸,进而调节流延刮刀的高度得到所需厚度的陶瓷生坯膜;辅助支撑层的结构(蜂窝状或网格状)以及镂空比影响着自支撑型陶瓷隔膜的力学强度(越强越好)及实际有效厚度(越薄越好),因此,需要综合平衡力学性能与有效厚度等多方面因素设计辅助支撑层。
本发明自支撑型陶瓷隔膜可作为电解质膜层应用于固体氧化物燃料电池、固体氧化物电解池、全固态锂离子动力电池等的制备。
相比于现有技术的缺点和不足,本发明具有以下有益效果:
(1)本发明自支撑型陶瓷隔膜的层间结合紧密,结构稳定,具有优异的力学性能,其所具备的结构特点能保证整体力学强度的前提下大幅度降低了陶瓷隔膜的厚度,有效提高了制品的工作性能,能有效代替传统的厚膜型陶瓷隔膜;
(2)本发明自支撑型陶瓷隔膜的制备工艺成熟,生产成本低,便于规模化生产;采用激光切割制备辅助支撑层,可调性强、效率高;此外,陶瓷隔膜层和辅助支撑层通过粘接的方式溶合成整体,可以方便调控各层的材料、结构、厚度等;
(3)本发明基于钇稳定的氧化锆电解质材料、自支撑型陶瓷隔膜制备的自支撑固体氧化物燃料电池,在有效保证机械力学强度的前提下,将自支撑型陶瓷隔膜的电解质功能层的厚度降低到了100μm以下,相比同等厚度的厚膜电池在800℃时电池欧姆电阻降低了47%,电池的输出性能提高了60%。
附图说明
图1是本发明网格状自支撑型陶瓷电解质隔膜中辅助支撑层的结构示意图;
图2是本发明自支撑型陶瓷电解质隔膜中陶瓷隔膜层的结构示意图;
图3是本发明网格状自支撑型陶瓷电解质隔膜的结构示意图;
图4是本发明自支撑型陶瓷电解质隔膜3中辅助支撑层与陶瓷隔膜层界面处的金相显微图;
图5是本发明实施例3、实施例5制备自支撑型陶瓷电解质隔膜的实物图;其中,图5a为实施例3的自支撑型陶瓷电解质隔膜的实物图,图5b为实施例5的自支撑型陶瓷电解质隔膜的实物图;
图6是本发明效果实施例1中陶瓷电解质隔膜3、陶瓷电解质隔膜6、陶瓷电解质隔膜7的的最大载荷对比图;
图7是本发明效果实施例2中自支撑型电池、无辅助支撑厚膜电池的电流-电压-功率曲线对比图;
图8是本发明效果实施例2中自支撑型电池、无辅助支撑厚膜电池在开路电压下的交流阻抗谱对比图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
(1)将45g钇稳定氧化锆粉体、1g蓖麻油以及50g酒精在200rpm下球磨24h得到浆料1,往浆料1中加入6g聚乙烯醇缩丁醛、5g邻苯二甲酸丁二醇酯后在200rpm下球磨24h得到浆料2;将浆料2通过流延机器(具体操作参考文献:201410690770.3一种流延法制备厚陶瓷膜片的方法,下同)制得厚度为120μm陶瓷膜生坯,将生坯通过激光切割后分别得到一份如图2所示厚度为120μm的陶瓷隔膜层生坯和两份厚度均为120μm的辅助支撑层生坯;再通过激光切割得到如图1所示的网格状辅助支撑层生坯;
(2)将两份辅助支撑层生坯分别对齐粘接在陶瓷隔膜层生坯的两相对侧,叠放平置24h且在重力作用下,陶瓷隔膜层生坯和辅助支撑层生坯充分溶合成整体结构,将该整体结构经1450℃高温共烧结2h,得到如图5a所示的自支撑型陶瓷电解质隔膜1。经测量,自支撑型陶瓷电解质隔膜1中隔膜层与辅助支撑层厚度均为85μm。
实施例2
(1)将40g锂镧锆氧粉体、2g鱼油以及45g二甲苯在200rpm下球磨24h得到浆料1,往浆料1中加入3g聚乙烯醇缩丁醛、2g聚亚烷基二醇后在200rpm下球磨24h得到浆料2;将浆料2通过流延机器制得厚度为110μm陶瓷膜生坯,将生坯通过激光切割后分别得到一份如图2所示的厚度为110μm的陶瓷隔膜层生坯和两份厚度均为110μm的辅助支撑层生坯;再通过激光切割得到如图1所示的网格状辅助支撑层生坯;
(2)将两份辅助支撑层生坯分别对齐粘接在陶瓷隔膜层生坯的两相对侧,叠放平置1h且在重力作用下,陶瓷隔膜层生坯和辅助支撑层生坯充分溶合成整体结构,将该整体结构经1200℃高温共烧结24h,得到如图5a所示的自支撑型陶瓷电解质隔膜2。经测量,自支撑型陶瓷电解质隔膜2中隔膜层与辅助支撑层厚度均为80μm。
实施例3
(1)将60g钇稳定氧化锆粉体、2.7g蓖麻油以及67g酒精在200rpm下球磨24h得到浆料1,往浆料1中加入7g聚乙烯醇缩丁醛、4.9g邻苯二甲酸丁二醇酯后在200rpm下球磨24h得到浆料2;将浆料2通过流延机器制得厚度为140μm陶瓷膜生坯,将生坯通过激光切割后分别得到一份如图2所示的厚度为140μm的陶瓷隔膜层生坯和两份厚度均为140μm的辅助支撑层生坯;再通过激光切割得到如图1所示的网格状辅助支撑层生坯;
(2)将两份辅助支撑层生坯分别对齐粘接在陶瓷隔膜层生坯的两相对侧,叠放平置1~24h且在重力作用下,陶瓷隔膜层生坯和辅助支撑层生坯充分溶合成整体结构,将该整体结构经1450℃高温共烧结2h,得到如图5a所示的自支撑型陶瓷电解质隔膜3。经测量,自支撑型陶瓷电解质隔膜3中隔膜层与辅助支撑层厚度均为100μm。
实施例4
本实施例与上述实施例3基本相同,差别之处在于,陶瓷隔膜层生坯、辅助支撑层生坯的厚度均为115μm,得到自支撑型陶瓷电解质隔膜4。经测量,自支撑型陶瓷电解质隔膜4中隔膜层与辅助支撑层厚度均为80μm。
实施例5
(1)将60g钇稳定氧化锆粉体、2.7g蓖麻油以及67g酒精在200rpm下球磨24h得到浆料1,往浆料1中加入7g聚乙烯醇缩丁醛、4.9g邻苯二甲酸丁二醇酯后在200rpm下球磨24h得到浆料2;将浆料2通过流延机器制得厚度为140μm陶瓷膜生坯,将生坯通过激光切割后分别得到一份厚度为140μm的陶瓷隔膜层生坯和两份厚度均为140μm的辅助支撑层生坯;再通过激光切割得到蜂窝状辅助支撑层生坯;
(2)将两份辅助支撑层生坯分别对齐粘接在陶瓷隔膜层生坯两相对侧,叠放平置1~24h且在重力作用下,陶瓷隔膜层生坯和辅助支撑层生坯充分溶合成整体结构,将该整体结构经1450℃高温共烧结2h,得到如图5b所示的自支撑型陶瓷电解质隔膜5。经测量,自支撑型陶瓷电解质隔膜5中隔膜层与辅助支撑层厚度均为100μm。
对比实施例1
(1)将60g钇稳定氧化锆粉体、2.7g蓖麻油以及67g酒精在200rpm下球磨24h得到浆料1,往浆料1中加入7g聚乙烯醇缩丁醛、4.9g邻苯二甲酸丁二醇酯后在200rpm下球磨24h得到浆料2;将浆料2通过流延机器制得厚度为140μm的陶瓷隔膜层生坯;
(2)将该陶瓷隔膜层生坯经1450℃高温烧结2h,得到陶瓷电解质隔膜6。经测量,陶瓷电解质隔膜6厚度为100μm。
对比实施例2
(1)将60g钇稳定氧化锆粉体、2.7g蓖麻油以及67g酒精在200rpm下球磨24h得到浆料1,往浆料1中加入7g聚乙烯醇缩丁醛、4.9g邻苯二甲酸丁二醇酯后在200rpm下球磨24h得到浆料2;将浆料2通过流延机器制得厚度为430μm的陶瓷隔膜层生坯;
(2)将该陶瓷隔膜层生坯经1450℃高温烧结2h,得到陶瓷电解质隔膜7。经测量,陶瓷电解质隔膜7厚度为300μm。
对比实施例3
(1)将60g钇稳定氧化锆粉体、2.7g蓖麻油以及67g酒精在200rpm下球磨24h得到浆料1,往浆料1中加入7g聚乙烯醇缩丁醛、4.9g邻苯二甲酸丁二醇酯后在200rpm下球磨24h得到浆料2;将浆料2通过流延机器制得厚度为360μm的陶瓷隔膜层生坯;
(2)将该陶瓷隔膜层生坯经1450℃高温烧结2h,得到陶瓷电解质隔膜8。经测量,陶瓷电解质隔膜8厚度为250μm。
效果实施例1
对实施例3制备得到的自支撑型陶瓷电解质隔膜3进行形态观察,结果如图4所示,从图中可以看出,陶瓷隔膜层与辅助支撑层界面充分地融合在一起,界面结合紧密,无明显分层现象,具有很好的结构稳定性。
对实施例3制备得到的自支撑型陶瓷电解质隔膜3、实施例5制备得到的自支撑型陶瓷电解质隔膜5进行外形观察,如图5所示,从图中可以看出,辅助支撑层形态良好、外观检查无缺陷破损;陶瓷隔膜层厚度较薄,但无缺陷破损。
将实施例3制备的陶瓷电解质隔膜3(E2)、对比实施例1制备的陶瓷电解质隔膜6(E1)、对比实施例2制备的陶瓷电解质隔膜7(E3)进行最大载荷检测,结果如图6所示,从图中可以看出,本发明陶瓷电解质隔膜3所能承受的载荷远比无支撑薄陶瓷隔膜(陶瓷电解质隔膜6)所能承受的载荷大,仅比同等厚度的无辅助支撑厚陶瓷隔膜(陶瓷电解质隔膜7)所能承受的载荷略小一些,表明支撑层可以很好地分担作用力,对薄隔膜层起到保护作用,提高了陶瓷隔膜的整体力学性能。
应用实施例1
以实施例4制备得到的自支撑型陶瓷电解质隔膜4为基础制备固体氧化物燃料电池,其中,自支撑型陶瓷电解质隔膜4为电解质层,在其两侧分别制得阳极层和阴极层,具体制备过程为:
(1)将0.7g氧化镍、0.3g钇稳定氧化锆、0.05g乙基纤维素和0.95g松油醇经200rpm球磨24h得到阳极浆料,用毛刷将阳极浆料均匀得涂覆在自支撑型陶瓷隔膜4正面,重复涂覆2次,每次涂覆后在100℃的鼓风干燥箱中干燥10分钟;刷涂完成后,于1300℃煅烧2h,制得电解质-阳极片;
(2)将0.7g锰酸锶镧、0.3g钇稳定氧化锆、0.05g乙基纤维素和0.95g松油醇经200rpm球磨24h得到阴极浆料,用毛刷将阴极浆料均匀得涂覆在所述电解质-阳极片的背面,重复涂覆2次,每次涂覆后在100℃的鼓风干燥箱中干燥10分钟;刷涂完成后,于1100℃煅烧2h,制得完整的固体氧化物燃料电池1。
对比实施例4
以对比实施例3制备得到的陶瓷电解质隔膜8为基础制备固体氧化物燃料电池,其中,陶瓷电解质隔膜8为电解质层,在其两侧分别为制得阳极层、和阴极层,具体制备过程为:
(1)将0.7g氧化镍、0.3g钇稳定氧化锆、0.05g乙基纤维素和0.95g松油醇经200rpm球磨24h得到阳极浆料,用毛刷将阳极浆料均匀得涂覆在陶瓷电解质隔膜8正面,重复涂覆2次,每次涂覆后在100℃的鼓风干燥箱中干燥10分钟;刷涂完成后,于1300℃煅烧2h,制得电解质-阳极片;
(2)将0.7g锰酸锶镧、0.3g钇稳定氧化锆、0.05g乙基纤维素和0.95g松油醇经200rpm球磨24h得到阴极浆料,用毛刷将阴极浆料均匀得涂覆在所述电解质-阳极片的背面,重复涂覆2次,每次涂覆后在100℃的鼓风干燥箱中干燥10分钟;刷涂完成后,于1100℃煅烧2h,制得完整的固体氧化物燃料电池2。
效果实施例2
测试上述自支撑型固体氧化物燃料电池1、无辅助支撑厚膜固体氧化物燃料电池2在800℃时的电流-电压-功率曲线和交流阻抗谱,结果如图7~8所示。由图7可以看出,两种电池的开路电压都达到了1.1V以上,说明尽管自支撑型电池的电解质层减薄了许多,但是并没有影响到电池的气密性,开路电压没有降低。无辅助支撑厚膜电池的最大功率密度为159.5mWcm-2,辅助支撑型电池的最大功率密度为260.06mWcm-2,最大功率密度提高了63.4%。由图8可以看出,无辅助支撑厚膜电池的欧姆阻抗为0.90Ωcm2,辅助支撑型电池的欧姆阻抗为0.48Ωcm2,减小了约46.7%,即0.42Ωcm2;无辅助支撑厚膜电池的极化阻抗为1.56Ωcm2,辅助支撑型电池的总阻抗为1.54Ωcm2,减小了约0.02Ωcm2;无辅助支撑厚膜电池的总阻抗为2.46Ωcm2,辅助支撑型电池的总阻抗为2.02Ωcm2,减小了0.42Ωcm2,可以看出电池阻抗的降低几乎全部来源于欧姆阻抗的降低,表明通过采用辅助支撑有效地减小了电解质层厚度,是有效降低电池阻抗以提高电池性能的手段。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种自支撑型陶瓷隔膜的制备方法,其特征在于,该方法包括以下步骤:
(1)将40~45质量份陶瓷粉体、1~2质量份分散剂以及45~50质量份溶剂球磨20~24h得到浆料1,往浆料1中加入3~6质量份粘结剂及2~5质量份增塑剂球磨20~24h得到浆料2;将浆料2通过流延机器制得陶瓷膜生坯,将生坯通过激光切割后分别得到陶瓷隔膜层生坯和辅助支撑层生坯,再通过激光将辅助支撑层生坯本体雕刻为蜂窝或网格状的框架结构;
(2)将辅助支撑层生坯分别粘接在陶瓷隔膜层生坯两侧,平置且在重力作用下,辅助支撑层生坯、陶瓷隔膜层生坯充分溶合成为整体结构,将该整体结构在1000~1700℃高温下烧结1~24h,得到自支撑型陶瓷隔膜。
2.如权利要求1所述的自支撑型陶瓷隔膜的制备方法,其特征在于,在步骤(1)中,所述陶瓷粉体包括钇稳定氧化锆、锂镧锆氧;所述分散剂包括蓖麻油、鱼油;所述溶剂包括乙醇、二甲苯;所述粘结剂包括聚乙烯醇缩丁醛;所述增塑剂包括邻苯二甲酸丁二醇酯、聚亚烷基二醇。
3.如权利要求1所述的自支撑型陶瓷隔膜的制备方法,其特征在于,在步骤(1)中,所述球磨的速度为200rpm。
4.如权利要求1所述的自支撑型陶瓷隔膜的制备方法,其特征在于,在步骤(1)中,所述陶瓷隔膜层生坯和辅助支撑层生坯的厚度均分别为110~140μm。
5.如权利要求1所述的自支撑型陶瓷隔膜的制备方法,其特征在于,在步骤(2)中,所述平置时间为1~24h。
6.权利要求1~5任一项所述制备方法得到的自支撑型陶瓷隔膜。
7.权利要求6所述的自支撑型陶瓷隔膜在制备电池中的应用。
8.如权利要求7所述的应用,其特征在于,所述电池包括固体氧化物燃料电池、固体氧化物电解池、全固态锂离子动力电池。
CN202010926571.3A 2020-09-07 2020-09-07 一种自支撑型陶瓷隔膜及其制备方法与应用 Pending CN112010647A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010926571.3A CN112010647A (zh) 2020-09-07 2020-09-07 一种自支撑型陶瓷隔膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010926571.3A CN112010647A (zh) 2020-09-07 2020-09-07 一种自支撑型陶瓷隔膜及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN112010647A true CN112010647A (zh) 2020-12-01

Family

ID=73515941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010926571.3A Pending CN112010647A (zh) 2020-09-07 2020-09-07 一种自支撑型陶瓷隔膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112010647A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115051105A (zh) * 2022-06-22 2022-09-13 欣旺达电动汽车电池有限公司 自支撑隔膜、包含自支撑隔膜的二次电池和用电设备
CN115064709A (zh) * 2022-06-24 2022-09-16 中国科学院长春应用化学研究所 一种高温固体氧化物燃料电池/电解池有序电极构筑的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059987A1 (en) * 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
CN103579565A (zh) * 2013-11-21 2014-02-12 中国海诚工程科技股份有限公司 锂离子电池用无机纳米纤维陶瓷隔膜及其制备方法
CN104098323A (zh) * 2013-04-12 2014-10-15 成都慧成科技有限责任公司 一种多层复合β”-Al2O3平板型固体电解质及其制备方法
CN104362277A (zh) * 2014-11-03 2015-02-18 中国科学院金属研究所 一种具有多层结构的复合隔膜及其制备方法
CN108461812A (zh) * 2018-05-02 2018-08-28 哈尔滨工业大学 具有对称梯度孔结构的固体电解质陶瓷材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059987A1 (en) * 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
CN104098323A (zh) * 2013-04-12 2014-10-15 成都慧成科技有限责任公司 一种多层复合β”-Al2O3平板型固体电解质及其制备方法
CN103579565A (zh) * 2013-11-21 2014-02-12 中国海诚工程科技股份有限公司 锂离子电池用无机纳米纤维陶瓷隔膜及其制备方法
CN104362277A (zh) * 2014-11-03 2015-02-18 中国科学院金属研究所 一种具有多层结构的复合隔膜及其制备方法
CN108461812A (zh) * 2018-05-02 2018-08-28 哈尔滨工业大学 具有对称梯度孔结构的固体电解质陶瓷材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASASHI KOTOBUKI ET. AL: "Fabrication of all-solid-state rechargeable lithium-ion battery using mille-feuille structure of Li0.35La0.55TiO3", 《JOURNAL OF POWER SOURCES》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115051105A (zh) * 2022-06-22 2022-09-13 欣旺达电动汽车电池有限公司 自支撑隔膜、包含自支撑隔膜的二次电池和用电设备
CN115051105B (zh) * 2022-06-22 2023-07-14 欣旺达电动汽车电池有限公司 自支撑隔膜、包含自支撑隔膜的二次电池和用电设备
CN115064709A (zh) * 2022-06-24 2022-09-16 中国科学院长春应用化学研究所 一种高温固体氧化物燃料电池/电解池有序电极构筑的方法
CN115064709B (zh) * 2022-06-24 2024-02-13 中国科学院长春应用化学研究所 一种高温固体氧化物燃料电池/电解池有序电极构筑的方法

Similar Documents

Publication Publication Date Title
JP3976181B2 (ja) 固体酸化物燃料電池単セル及びこれを用いた固体酸化物燃料電池
CN112952108B (zh) 一种固体氧化物燃料电池及制备方法
Shen et al. Co-sintering anode and Y2O3 stabilized ZrO2 thin electrolyte film for solid oxide fuel cell fabricated by co-tape casting
KR20140085431A (ko) 개선된 기계적 건전성 및 향상된 효율성을 갖는 고체 산화물형 연료 전지를 위한 복합 애노드
CN107785598B (zh) 一种半电池对称的固体氧化物燃料电池
JP6140733B2 (ja) 中低温運転で出力性能が向上された固体酸化物燃料電池の設計及び製造技術
CN107195938A (zh) 一种简单的固体氧化物燃料电池制备方法
CN108539233B (zh) 一种固体氧化物燃料电池的制备方法
CN112010647A (zh) 一种自支撑型陶瓷隔膜及其制备方法与应用
CN103151548A (zh) Al2O3-YSZ电解质膜的固体氧化物燃料电池及其制备方法
JP2001196069A (ja) 燃料電池
CN114890787A (zh) 氧电极支撑型固体氧化物电解池及其制备方法
JP2002175814A (ja) 固体電解質型燃料電池用燃料極の製造方法並びに固体電解質型燃料電池及びその製造方法
CN1279643C (zh) 一种阳极支撑型氧化钇稳定氧化锆电解质膜的制备方法
Zhao et al. Fabrication and characterization of a cathode-supported tubular solid oxide fuel cell
CN109585914A (zh) 氧化物固态电解质薄片的制备方法及采用该方法制备的固态电池
CN112250437B (zh) 一种氧电极支撑的固体氧化物电解电池及其制备方法
CN1320677C (zh) 制备氧化钇稳定氧化锆电解质薄膜的方法
CN107611461A (zh) 一种固体氧化物燃料电池的制备方法
CN113285084B (zh) 一步制备固体氧化物燃料电池的方法
CN100355137C (zh) 固体氧化物电解质薄膜的滤涂制备方法
CN103811787A (zh) 一种制备平板式固体氧化物燃料电池阳极支撑电解质复合膜的方法
JP5198908B2 (ja) 高性能固体酸化物形燃料電池膜電極接合体(sofc−mea)に積層する完全緻密な電解質層の製造方法。
JP2006339034A (ja) 固体酸化物形燃料電池およびその製造方法
CN107305953A (zh) 一种固体氧化物燃料电池复合基板及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201201

RJ01 Rejection of invention patent application after publication