CN112010564A - 一种基于稀土离子原位析晶的氟氧微晶玻璃及其制备方法与应用 - Google Patents

一种基于稀土离子原位析晶的氟氧微晶玻璃及其制备方法与应用 Download PDF

Info

Publication number
CN112010564A
CN112010564A CN202010861568.8A CN202010861568A CN112010564A CN 112010564 A CN112010564 A CN 112010564A CN 202010861568 A CN202010861568 A CN 202010861568A CN 112010564 A CN112010564 A CN 112010564A
Authority
CN
China
Prior art keywords
glass
rare earth
earth ion
oxygen
microcrystalline glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010861568.8A
Other languages
English (en)
Other versions
CN112010564B (zh
Inventor
方再金
李剑锋
关柏鸥
龙益
郑书培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202010861568.8A priority Critical patent/CN112010564B/zh
Publication of CN112010564A publication Critical patent/CN112010564A/zh
Application granted granted Critical
Publication of CN112010564B publication Critical patent/CN112010564B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass

Abstract

本发明属于光电材料技术领域,具体公开了一种基于稀土离子原位析晶的氟氧微晶玻璃及其制备方法与应用。所述方法具体为将基体玻璃组分和稀土离子氟化物在球磨罐中充分混合均匀,然后进行熔制并搅拌均匀,保温后降温至50‑100℃出料,成型为块状玻璃;加热至玻璃转变温度对块状玻璃进行热处理,玻璃中析出含有稀土离子的氟化物纳米晶体,制得透明的微晶玻璃样品。所得玻璃具有高效发光效率,又具有高透过率,在制备高效率光学增益材料方面极具应用前景。

Description

一种基于稀土离子原位析晶的氟氧微晶玻璃及其制备方法与 应用
技术领域
本发明属于光电材料技术领域,特别涉及一种基于稀土离子原位析晶的氟氧微晶玻璃及其制备方法与应用。
背景技术
当前可见光纤激光器的发展相对缓慢,主要是受限于光纤玻璃材料的发光效率和热力学稳定性之间的矛盾。在过去几十年里,关于可见光纤激光的研究大多是基于氟化物光纤材料。尽管氟化物玻璃具有较高的发光效率,但热力学稳定性较低,抗激光损伤阈值低,制约了激光器功率的进一步提高。而一些氧化物玻璃材料固然具有良好的稳定性,但声子能量较大,导致其可见发光效率低下。氟氧微晶玻璃的出现完美地解决了玻璃热力学稳定性和发光效率之间的矛盾。其中,氧化物玻璃网络提供稳固的框架结构,玻璃中析出的氟化物晶体为稀土离子提供高效的发光环境。在过去几十年,大量稀土离子掺杂的NaLn(Ln=Y,La,Lu)F4、LaF3、YF3、KSc2F7、SrF2等氟氧微晶玻璃相继被报道出来。为了获得可见波段的发光增强,稀土离子往往通过取代Y3+、La3+、Lu3+、Sc2+、Sr2+等离子而进入晶体中。由于不同离子间存在价态和半径失配,进入晶体中的稀土离子数量往往较少,大部分稀土离子仍留在玻璃相中,发光增强幅度不大。此外,在这些微晶玻璃中,大量玻璃组分参与析晶,晶化度较高,导致严重的光学散射。如此一来,氟化物晶体的析出所导致的发光增强不足以抵消晶体散射带来的损耗,微晶玻璃难以在可见光纤激光器等光学增益器件上得到实际的应用。因此,发明一种更高效率的氟氧微晶玻璃,作为激光增益介质,对推动可见光纤激光器的发展以及应用进程具有十分重要的意义。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种基于稀土离子原位析晶的氟氧微晶玻璃的制备方法。
本发明另一目的在于提供上述方法制备得到的基于稀土离子原位析晶的氟氧微晶玻璃。
本发明再一目的在于提供上述基于稀土离子原位析晶的氟氧微晶玻璃在光纤玻璃材料中的应用。
本发明的目的通过下述方案实现:
一种基于稀土离子原位析晶的氟氧微晶玻璃的制备方法,包括以下步骤:
(1)按配方称取原料:基体玻璃组分和稀土离子氟化物,其中,稀土离子氟化物以外掺形式掺入,摩尔百分比为基体玻璃组分的0.01~10.0%;
(2)将步骤(1)的原料在球磨罐中充分混合均匀,然后进行熔制并搅拌均匀,保温后降温至50-100℃出料,成型为块状玻璃;
(3)加热至玻璃转变温度对步骤(2)所得块状玻璃进行热处理,使得玻璃中析出包含稀土离子的纳米晶体,制得微晶玻璃样品。
步骤(1)所述基体玻璃组分中各组分的摩尔比为:
氧化物:60~90%
AF2:5~20%
BF:5~20%;
其中所述氧化物为GeO2、B2O3、TeO2和P2O5中至少一种;所述AF2为MgF2、ZnF2、MnF2、BaF2、CaF2、SrF2、NiF2中的至少一种;所述BF为LiF、NaF、KF、RbF、CsF中的至少一种。
步骤(2)所述熔制的温度为700~1650℃;所述保温时间为0.5~3h。
步骤(3)所述玻璃转变温度为250~650℃;所述热处理的时间为3~7h。
一种基于稀土离子原位析晶的氟氧微晶玻璃,通过上述方法制备得到。
所述基于稀土离子原位析晶的氟氧微晶玻璃在光纤玻璃材料中的应用。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明中稀土离子既作为发光中心,又作为析晶中心,参与到晶体的结构构建。玻璃组分中同时加入氟化物和氧化物玻璃形成体,在高温熔制后易形成均匀的分相网络结构。在分相玻璃网络中,稀土离子处于结构相对开放的氟化物网络中,局部网络粘度较小,适合晶体析出、生长。在热处理过程中,稀土离子半径较大,移动缓慢,且电势较大。而一些小半径离子扩散、重排速度较快,容易被吸引到稀土离子周围,原位地析出氟化物晶体。这样一来,大量的稀土离子全部自发地被包裹在氟化物晶体结构中。这种基于稀土离子的原位析晶方法避免了传统微晶玻璃中的离子取代过程,克服了稀土离子进入晶体阻力较大、数量较少的难题。此外,本发明方法在玻璃熔制过程中进行充分搅拌,避免玻璃出现不均匀的宏观分相,使得氟氧化物玻璃具有均匀的网络结构。并且进行降温出料,可有效避免玻璃成型过程中析出其他杂相晶体,从而制备出均匀的、单一晶向的微晶玻璃。这种方法工艺简单、析晶可控,适应性适用性强,适用于所有稀土离子及类似大半径发光离子晶体的析出,在制备高效率光学增益材料方面极具应用前景。
(2)采用本发明方法制备的微晶玻璃中大量稀土离子自发地被包裹在氟化物晶体结构中,发光效率得到大幅度的增强。同时,微晶玻璃的析晶率和光学透过率取决于掺杂的稀土离子浓度,可制备出既具有高效发光效率,又具有高透过率的光学增益玻璃。本发明方法制备的稀土掺杂微晶玻璃有望用于高功率光纤激光器、高效率照明与显示器件、光信息存储等光学器件上。
附图说明
图1为实施例1制备的不同稀土离子浓度掺杂微晶玻璃的晶相分析图。
图2为实施例1制备的微晶玻璃(a)和NYF微晶玻璃(b)透射电镜图
图3为实施例1制备的微晶玻璃(KYF)和传统微晶玻璃(NYF)的发光光谱对比图
图4为实施例1制备的微晶玻璃(KYF)和传统微晶玻璃(NYF)发光量子产率对比图,插图为二者在980nm激发下的照片。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中所用试剂如无特殊说明均可从市场常规购得。
实施例1
(1)微晶玻璃采用如下配方:包括基体玻璃组分和YbF3,其中,YbF3以外掺的形式掺入,摩尔百分比为基体玻璃组分的1.0%;
基体玻璃组分的各组分摩尔百分比为:
GeO2:70%
MnF2:15%
NaF:15%
(2)按组分配方称取高纯粉末状原料50g,在球磨罐中充分混合均匀。
(3)将混合均匀的物料倒入100ml石英坩埚中,加上盖子,放入高温电炉中,缓慢升温至1350℃保温30min,然后放入搅拌杆,慢速搅拌(10转每分钟)30min,再保温1h,降温到1250℃出料,成型为块状玻璃样品。
(4)将玻璃放入马弗炉中,升温至520℃进行精密热处理5小时,制得微晶玻璃样品。
(5)进行微晶玻璃的微观结构和发光性能表征。
如附图1所示,制备的微晶玻璃中随着YbF3的掺入,逐渐析出KYb3F10晶体,而且晶体的析出量随着YbF3的增多而增多。如附图2所示,Yb3+稀土离子完全被限制在晶体结构中。随着KYb3F10晶体的析出,微晶玻璃中的上转换发光效率显著增强,并且比传统NaYF4微晶玻璃强30倍以上,如附图3所示。
实施例2
(1)微晶玻璃采用如下配方:包括基体玻璃组分、YbF3和TbF3,其中,YbF3和TbF3以外掺的形式掺入,摩尔百分比分别为基体玻璃组分的1.0%、0.5%;
基体玻璃组分的各组分摩尔百分比为:
B2O3:70%
MgF2:15%
CsF:15%
(2)按组分配方称取高纯粉末状原料50g,在球磨罐中充分混合均匀。
(3)将混合均匀的物料倒入100ml石英坩埚中,加上盖子,放入高温电炉中,缓慢升温至950℃保温30min,然后放入搅拌杆,慢速搅拌(10转每分钟)30min,再保温1h,降温到900℃出料,成型为四方长条状玻璃样品。
(4)将玻璃放入马弗炉中,升温至510℃进行精密热处理5小时,使得玻璃中析出KYb3F10和KTb3F10纳米晶体,制得微晶玻璃样品。
(5)对微晶玻璃进行微结构和发光性能表征。
实施例2所得微晶玻璃的微结构和发光性能数据与实施例1相似。
实施例3
(1)微晶玻璃采用如下配方:包括基体玻璃组分和TmF3,其中,TmF3以外掺的形式掺入,摩尔百分比为基体玻璃组分的1.0%;
基体玻璃组分的各组分摩尔百分比为:
TeO2:60%
ZnF2:20%
NaF:20%
(2)按组分配方称取高纯粉末状原料50g,在球磨罐中充分混合均匀。
(3)将混合均匀的物料倒入100ml刚玉坩埚中,加上盖子,放入高温电炉中,缓慢升温至750℃保温30min,然后放入搅拌杆,慢速搅拌(10转每分钟)30min,再保温1h,降温至700℃出料,成型为四方长条状玻璃样品。
(4)将玻璃放入马弗炉中,升温至360℃进行精密热处理5小时,使得玻璃中析出KTm3F10纳米晶体,制得微晶玻璃样品。
(5)对微晶玻璃进行微结构和发光性能表征。
实施例3所得微晶玻璃的微结构和发光性能数据与实施例1相似。
实施例4
(1)微晶玻璃采用如下配方:包括基体玻璃组分、YbF3和HoF3,其中,YbF3和HoF3以外掺的形式掺入,摩尔百分比分别为基体玻璃组分的1.0%、0.5%;
基体玻璃组分的各组分摩尔百分比为:
P2O5:40%
SiO2:30%
CaF2:15%
LiF:15%
(2)按组分配方称取高纯粉末状原料50g,在球磨罐中充分混合均匀。
(3)将混合均匀的物料倒入100ml刚玉坩埚中,加上盖子,放入高温电炉中,缓慢升温至1300℃保温30min,然后放入搅拌杆,慢速搅拌(10转每分钟)30min,再保温1h,降温至1250℃出料,成型为四方长条状玻璃样品。
(4)将玻璃放入马弗炉中,升温至360℃进行精密热处理5小时,使得玻璃中析出KYb3F10和KHo3F10纳米晶体,制得微晶玻璃样品。
(5)对微晶玻璃进行微结构和发光性能表征。
实施例4所得微晶玻璃的微结构和发光性能数据与实施例1相似。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种基于稀土离子原位析晶的氟氧微晶玻璃的制备方法,其特征在于包括以下步骤:
(1)按配方称取原料:基体玻璃组分和稀土离子氟化物;其中,稀土离子氟化物以外掺形式掺入,摩尔百分比为基体玻璃组分的0.01~10.0%;
(2)将步骤(1)的原料在球磨罐中充分混合均匀,然后进行熔制并搅拌均匀,保温后降温至50-100℃出料,成型为块状玻璃;
(3)加热至玻璃转变温度对步骤(2)所得块状玻璃进行热处理,使得玻璃中析出包含稀土离子的纳米晶体,制得微晶玻璃样品。
2.根据权利要求1所述的一种基于稀土离子原位析晶的氟氧微晶玻璃的制备方法,其特征在于:
步骤(1)所述基体玻璃组分中各组分的摩尔比为:
氧化物:60~90%
AF2:5~20%
BF:5~20%;
其中所述AF2为MgF2、ZnF2、MnF2、BaF2、CaF2、SrF2和NiF2中的至少一种;所述BF为LiF、NaF、KF、RbF和CsF中的至少一种。
3.根据权利要求2所述的一种基于稀土离子原位析晶的氟氧微晶玻璃的制备方法,其特征在于:
所述氧化物为GeO2、B2O3、TeO2和P2O5中至少一种。
4.根据权利要求1所述的一种基于稀土离子原位析晶的氟氧微晶玻璃的制备方法,其特征在于:
步骤(2)所述熔制的温度为700~1650℃;所述保温时间为0.5~3h。
5.根据权利要求1所述的一种基于稀土离子原位析晶的氟氧微晶玻璃的制备方法,其特征在于:
步骤(3)所述玻璃转变温度为250~650℃;所述热处理的时间为3~7h。
6.一种基于稀土离子原位析晶的氟氧微晶玻璃,通过上述权利要求1~5任一项所述方法制备得到。
7.根据权利要求6所述基于稀土离子原位析晶的氟氧微晶玻璃在光纤玻璃材料中的应用。
CN202010861568.8A 2020-08-25 2020-08-25 一种基于稀土离子原位析晶的氟氧微晶玻璃及其制备方法与应用 Active CN112010564B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010861568.8A CN112010564B (zh) 2020-08-25 2020-08-25 一种基于稀土离子原位析晶的氟氧微晶玻璃及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010861568.8A CN112010564B (zh) 2020-08-25 2020-08-25 一种基于稀土离子原位析晶的氟氧微晶玻璃及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN112010564A true CN112010564A (zh) 2020-12-01
CN112010564B CN112010564B (zh) 2022-04-22

Family

ID=73505822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010861568.8A Active CN112010564B (zh) 2020-08-25 2020-08-25 一种基于稀土离子原位析晶的氟氧微晶玻璃及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112010564B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010371A (zh) * 2022-06-07 2022-09-06 宁波大学 一种高结晶度中红外发光纳米玻璃陶瓷材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537505A (en) * 1994-11-25 1996-07-16 Corning Incorporated Transparent glass-ceramics
CN1133268A (zh) * 1994-11-25 1996-10-16 康宁股份有限公司 透明玻璃陶瓷
CN102838279A (zh) * 2012-10-26 2012-12-26 沈阳化工大学 Eu3+离子掺杂的氟氧硼硅酸盐微晶玻璃的制备方法
CN103951255A (zh) * 2014-05-08 2014-07-30 宁波大学 稀土离子掺杂的LiGdI4微晶玻璃及其制备方法
CN104743885A (zh) * 2015-03-20 2015-07-01 昆明理工大学 一种稀土掺杂氟氧锗酸盐微晶玻璃及其制备方法
CN109354417A (zh) * 2018-12-20 2019-02-19 中国计量大学 一种析出NaTbF4纳米晶的锗硅酸盐微晶玻璃及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537505A (en) * 1994-11-25 1996-07-16 Corning Incorporated Transparent glass-ceramics
CN1133268A (zh) * 1994-11-25 1996-10-16 康宁股份有限公司 透明玻璃陶瓷
CN102838279A (zh) * 2012-10-26 2012-12-26 沈阳化工大学 Eu3+离子掺杂的氟氧硼硅酸盐微晶玻璃的制备方法
CN103951255A (zh) * 2014-05-08 2014-07-30 宁波大学 稀土离子掺杂的LiGdI4微晶玻璃及其制备方法
CN104743885A (zh) * 2015-03-20 2015-07-01 昆明理工大学 一种稀土掺杂氟氧锗酸盐微晶玻璃及其制备方法
CN109354417A (zh) * 2018-12-20 2019-02-19 中国计量大学 一种析出NaTbF4纳米晶的锗硅酸盐微晶玻璃及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010371A (zh) * 2022-06-07 2022-09-06 宁波大学 一种高结晶度中红外发光纳米玻璃陶瓷材料及其制备方法
CN115010371B (zh) * 2022-06-07 2023-07-14 宁波大学 一种高结晶度中红外发光纳米玻璃陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN112010564B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
JP3411067B2 (ja) 波長上方変換透明化ガラスセラミックスおよびその製造方法
AU731393B2 (en) Transparent oxyfluoride glass-ceramic composition and process for making
CN101456675B (zh) 通过上转换发射明亮白光的玻璃陶瓷
CN103666475A (zh) 一种稀土掺杂玻璃频率转换发光材料及制备方法
CN102603194B (zh) 析出β-NaGdF4纳米晶的稀土掺杂微晶玻璃及其制备方法
CN104961343A (zh) 析出NaYF4纳米晶的稀土掺杂微晶玻璃及其制备方法
CN111377609B (zh) 一种室温下具有中红外3.9 μm发光特性的透明玻璃的制备方法
Gao et al. Effect of heat treatment mechanism on upconversion luminescence in Er3+/Yb3+ co-doped NaYF4 oxyfluoride glass-ceramics
CN110040967B (zh) 具有单色上转换发光特性的透明微晶玻璃及制备方法
CN103011593A (zh) 中红外2.7μm发光的铒钕离子共掺杂碲氟化物玻璃
CN101088946B (zh) 一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途
CN112010564B (zh) 一种基于稀土离子原位析晶的氟氧微晶玻璃及其制备方法与应用
CN103030275A (zh) 铒离子掺杂中红外发光氟碲酸盐玻璃
JP2014091650A (ja) 透明結晶化ガラス
CN102849953B (zh) 多稀土离子掺杂上、下转紫外发光玻璃陶瓷及其制备方法
CN101376565B (zh) 高效紫外和蓝色上转换发光透明玻璃陶瓷及其制备
CN102534776A (zh) 一种钕离子掺杂氟化物激光晶体
CN110204209B (zh) 一种选择性稀土掺杂钪基氟化纳米晶的上转换玻璃陶瓷复合材料
Zhang et al. Efficient Quantum Cutting in Tb 3+/Yb 3+ Codoped $\alpha $-NaYF 4 Single Crystals Grown by Bridgman Method Using KF Flux for Solar Photovoltaic
CN109369024B (zh) 一种析出BaEuF5纳米晶的锗硅酸盐微晶玻璃及其制备方法
CN109354417A (zh) 一种析出NaTbF4纳米晶的锗硅酸盐微晶玻璃及其制备方法
CN109369023B (zh) 一种析出Ba2LaF7纳米晶的锗硅酸盐微晶玻璃及其制备方法
CN1955130A (zh) 一种玻璃陶瓷及其制备方法
CN103058516A (zh) 高浓度铒离子掺杂中红外2.7μm发光碲钨酸盐玻璃
CN111170633A (zh) 一种铥镱共掺磷酸盐上转换发光玻璃及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant