CN101088946B - 一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途 - Google Patents
一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途 Download PDFInfo
- Publication number
- CN101088946B CN101088946B CN2006100914592A CN200610091459A CN101088946B CN 101088946 B CN101088946 B CN 101088946B CN 2006100914592 A CN2006100914592 A CN 2006100914592A CN 200610091459 A CN200610091459 A CN 200610091459A CN 101088946 B CN101088946 B CN 101088946B
- Authority
- CN
- China
- Prior art keywords
- glass ceramics
- glass
- ceramic
- preparation
- transparent glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Luminescent Compositions (AREA)
- Glass Compositions (AREA)
Abstract
一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途,涉及发光材料领域。该玻璃陶瓷组分为(摩尔比):40SiO2-25Al2O3-xNa2CO3-10YF3-yNaF-zErF3(x=15-20;y=25-x-z;z=0.05-2.0)。采用熔体急冷法制备。该玻璃陶瓷通过改变Er3+掺杂量,在红外光激发下,可调控红、绿光的发射强度比,在低浓度掺杂和高浓度掺杂中分别单色的绿光发射和近单色的红光发射。
Description
技术领域
本发明涉及发光材料领域,尤其是涉及一种掺Er3+含NaYF4纳米晶的透明氟氧化物玻璃陶瓷及其制备方法。
背景技术
近年来,一些学者制备了Er3+离子掺杂的NaYF4纳米晶粉体,发现这些粉体具有良好的上转换发光特性,表明NaYF4是一种高效的上转换基质材料(参考N.Menyuk,Appl.Phys.Lett.21(1972)159),在光显示等领域具有重要的应用前景。粉体材料的适用范围具有一定的局限性,为了拓展NaYF4的应用领域,研究开发NaYF4块材具有重要意义。但据文献报道[Ralph H.Page,J.Opt.Soc.Am.B15(1998)996],由于晶体生长时容易发生相变,拉制NaYF4单晶材料困难很大。玻璃陶瓷是玻璃相和微晶组成的块体材料,可通过玻璃相在热处理时发生部分晶化而制得。当晶化相均匀分布于玻璃基体中,且晶粒尺度远低于入射光波长而达纳米量级时,便可获得透明玻璃陶瓷。
发明内容
本发明目的在于制备出具有稳定结构、可用于实现高效可见光上转换发射的玻璃陶瓷。
本发明的透明玻璃陶瓷组分为(摩尔比):40SiO2-25Al2O3-xNa2CO3-10YF3-yNaF-zErF3(x=15-20;y=25-x-z;z=0.05-2.0)。
本发明采用熔体急冷法制备。采用SiO2、Al2O3、Na2CO3、YF3、NaF和ErF3粉体作为原料,混合均匀后加热到1300-1500℃并保温1-5小时,而后,将融熔液制得玻璃体。该玻璃体经退火消除内应力后,继续加热至600-700℃并保温1-10小时,使之发生部分晶化,便得到粉红色的透明玻璃陶瓷。
粉末X射线衍射和透射电镜观察表明,晶化相是NaYF4纳米晶,且Er3+离子进入纳米晶中形成固溶体。
FLS920荧光光谱仪测量表明,采用以上设计组分与制备工艺获得的玻璃陶瓷,在红外光(980nm)激发下,可以发射绿光(525,540nm)和红光(660nm)。而且,通过改变Er3+掺杂量可调控红、绿光的发射强度比,在低浓度掺杂和高浓度掺杂样品中分别实现了单色的绿光发射和近单色的红光发射。
本发明采用熔体急冷法及后续热处理技术,首次制备出了掺Er3+含NaYF4纳米晶的透明玻璃陶瓷;该新材料不仅具有较高的可见光上转换发光效率,而且通过改变Er3+掺杂浓度,还可以实现上转换红、绿光输出强度比(从单色绿光直至近似单色红光)的调控,作为固体激光材料具有潜在应用价值。本发明工艺简单,可以低成本地获得可见光上转换发光块体材料。
具体实施方式
实例1:将分析纯的SiO2、Al2O3、Na2CO3、YF3、NaF和纯度为99.99%的ErF3粉体,按0.05ErF3:40SiO2:25Al2O3:18Na2CO3:10YF3:7NaF(摩尔比)的配比精确称量并混合;在玛瑙研钵中研磨半小时使其成为均匀的粉体,而后置于铂金坩埚中,在程控高温箱式电阻炉中加热到1450℃后保温1小时,然后,将融熔液快速倒入300℃预热的铜模中成形;获得的玻璃再放入电阻炉中,于450℃退火2小时后随炉冷却以消除内应力;退火后的玻璃相继续加热至620℃并保温2小时后,即得到粉红色的、掺杂0.05%Er3+离子的透明玻璃陶瓷。PANalytical X'Pert Pro粉末X射线衍射仪测量和JEM-2010型透射电子显微镜观察的结果表明,该玻璃陶瓷中有大量尺寸为20-25nm的立方相Er:NaYF4晶粒均匀分布于玻璃基体中。样品经过表面抛光处理,用FLS920荧光光谱仪只测量到绿色上转换发光信号。
实例2:将分析纯的SiO2、Al2O3、Na2CO3、YF3、NaF和纯度为99.99%的ErF3粉体,按0.2ErF3:40SiO2:25Al2O3:18Na2CO3:10YF3:7NaF(摩尔比)的配比精确称量并混合;经过与实例1相同的制备和热处理过程后,得到掺杂0.2%Er3+离子、具有纳米复合结构的透明玻璃陶瓷。样品经过抛光处理,用FLS920荧光光谱仪测量到红、绿色上转换发光信号,红光与绿光的强度比约为1:6。
实例3:将分析纯的SiO2、Al2O3、Na2CO3、YF3、NaF和纯度为99.99%的ErF3粉体,按0.5ErF3:40SiO2:25Al2O3:18Na2CO3:10YF3:7NaF(摩尔比)的配比精确称量并混合;经过与实例1相同的制备和热处理过程后,得到掺杂0.5%Er3+离子、具有纳米复合结构的透明玻璃陶瓷。样品经过抛光处理,用FLS920荧光光谱仪测量到红、绿色上转换发光信号,红光与绿光的强度比约为1:1。
实例4:将分析纯的SiO2、Al2O3、Na2CO3、YF3、NaF和纯度为99.99%的ErF3粉体,按2.0ErF3:40SiO2:25Al2O3:18Na2CO3:10YF3:7NaF(摩尔比)的配比精确称量并混合;经过与实例1相同的制备和热处理过程后,得到掺杂2.0%Er3+离子、具有纳米复合结构的透明玻璃陶瓷。样品经过抛光处理,用FLS920荧光光谱仪测量到红、绿色上转换发光信号,红光与绿光的强度比约为17:1。
Claims (4)
1.一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷,其特征在于:该玻璃陶瓷摩尔比组分为:40SiO2-25Al2O3-xNa2CO3-10YF3-yNaF-zErF3,其中x=15-20;y=25-x-z;z=0.05-2.0。
2.一种权利要求1的玻璃陶瓷的制备方法,其特征在于:采用熔体急冷法制备。
3.如权利要求2所述的制备方法,其特征在于:采用SiO2、Al2O3、Na2CO3、YF3、NaF和ErF3粉体作为原料,混合均匀后加热到1300-1500℃并保温1-5小时,而后,将熔融液制得玻璃体;该玻璃体经退火消除内应力后,继续加热至600-700℃并保温1-10小时。
4.一种权利要求1的玻璃陶瓷的用途,其特征在于:该玻璃陶瓷通过改变Er3+掺杂量,在红外光激发下,可调控红、绿光的发射强度比,在低浓度掺杂和高浓度掺杂中分别实现单色的绿光发射和近单色的红光发射。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100914592A CN101088946B (zh) | 2006-06-13 | 2006-06-13 | 一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100914592A CN101088946B (zh) | 2006-06-13 | 2006-06-13 | 一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101088946A CN101088946A (zh) | 2007-12-19 |
CN101088946B true CN101088946B (zh) | 2011-10-26 |
Family
ID=38942470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006100914592A Expired - Fee Related CN101088946B (zh) | 2006-06-13 | 2006-06-13 | 一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101088946B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101265028B (zh) * | 2008-04-18 | 2011-05-18 | 中国计量学院 | 一种稀土掺杂LiYF4微晶玻璃及其制备方法 |
CN102164867A (zh) * | 2008-08-28 | 2011-08-24 | Sri国际公司 | 用于生产氟化物气体和掺氟玻璃或陶瓷的方法和系统 |
CN102770386A (zh) * | 2010-04-22 | 2012-11-07 | 海洋王照明科技股份有限公司 | 量子点-玻璃复合发光材料及其制备方法 |
CN101891391A (zh) * | 2010-07-21 | 2010-11-24 | 中国科学院上海光学精密机械研究所 | 含有金属或半导体纳米晶的玻璃及其制备方法 |
CN102515550B (zh) * | 2011-12-06 | 2016-01-13 | 中国科学院福建物质结构研究所 | 近红外量子剪裁下转换发光透明玻璃陶瓷及其制备方法 |
CN104961343B (zh) * | 2015-06-26 | 2017-06-06 | 中国计量学院 | 析出NaYF4纳米晶的稀土掺杂微晶玻璃及其制备方法 |
CN108409148B (zh) * | 2018-03-15 | 2020-11-06 | 杭州电子科技大学 | 红外非相干LED激发的上转换NaLuF4玻璃陶瓷及其制备方法 |
CN115010371B (zh) * | 2022-06-07 | 2023-07-14 | 宁波大学 | 一种高结晶度中红外发光纳米玻璃陶瓷材料及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1693248A (zh) * | 2005-05-11 | 2005-11-09 | 浙江大学 | 稀土掺杂的透明氟氧化物玻璃陶瓷及其制备方法 |
-
2006
- 2006-06-13 CN CN2006100914592A patent/CN101088946B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1693248A (zh) * | 2005-05-11 | 2005-11-09 | 浙江大学 | 稀土掺杂的透明氟氧化物玻璃陶瓷及其制备方法 |
Non-Patent Citations (1)
Title |
---|
JP特开平6-247741A 1994.09.06 |
Also Published As
Publication number | Publication date |
---|---|
CN101088946A (zh) | 2007-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101088946B (zh) | 一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途 | |
CN101456675B (zh) | 通过上转换发射明亮白光的玻璃陶瓷 | |
US9593039B2 (en) | Nanostructured glasses and vitroceramics that are transparent in visible and infra-red ranges | |
Wang et al. | Crystallization of Na2SrGe6O14: Cr3+, Yb3+ Glass Ceramics Enabling a Watt‐Level Output Power NIR‐I/NIR‐II Lighting Source | |
CN101209898A (zh) | 一种掺铒含氟化钇钡纳米晶的透明氟氧化物玻璃陶瓷及其制备方法 | |
CN104529166A (zh) | 一种Ce:YAG微晶玻璃及其在白光LED中的应用 | |
Massera et al. | New alternative route for the preparation of phosphate glasses with persistent luminescence properties | |
CN103803804A (zh) | 一种纳米玻璃陶瓷上转换发光材料及其制备方法 | |
CN110002762A (zh) | 一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃、其制备方法和应用 | |
Sun et al. | A highly robust Ce 3+-doped and Gd 3+-mixed KLaF 4 nano-glass composite scintillator | |
CN101723593A (zh) | 一种用于led白光照明的发光玻璃陶瓷及其制备方法 | |
Huang et al. | Effect of BaF2 and CaF2 on properties of Tb3+-doped yellow phosphorus slag luminescent glass-ceramics | |
Liu et al. | Crystallization behavior and enhanced fluorescence properties of Yb3+/Ho3+/Tb3+ co-doped transparent glass-ceramics containing oxyapatite-type Na3YSi2O7 crystals | |
Gao et al. | Transmission electron microscopic and optical spectroscopic studies of Ni2+/Yb3+/Er3+/Tm3+ doped dual‐phase glass‐ceramics | |
CN101376565B (zh) | 高效紫外和蓝色上转换发光透明玻璃陶瓷及其制备 | |
CN106927685B (zh) | 一种具有长余辉发光的微晶玻璃光纤及其制备方法 | |
CN102503139B (zh) | 一种上转换发光透明玻璃陶瓷及其制备方法 | |
Huang et al. | Highly efficient near‐infrared to visible upconversion luminescence in transparent glass ceramics containing Yb3+/Er3+: NaYF4 nanocrystals | |
Zhou et al. | Influence of CaF2 addition on structure and luminescence properties of the Na2O–CaO–SiO2–Al2O3–ZnO–P2O5 glass co-doped with Ce3+/Yb3+ | |
CN101376564B (zh) | 超宽带红外发光透明玻璃陶瓷及其制备 | |
CN110204209A (zh) | 一种选择性稀土掺杂钪基氟化纳米晶的上转换玻璃陶瓷复合材料 | |
CN106007386A (zh) | 铒镱共掺含钨酸钇钠晶相发光玻璃陶瓷及其制备方法 | |
CN1955129A (zh) | 一种透明氟氧化物玻璃陶瓷及其制备方法 | |
CN108751697A (zh) | 一种高浓度稀土掺杂碲钨镧玻璃及其制备方法 | |
Chen et al. | Transparent nanocrystal-in-glass composite (NGC) fibers for multifunctional temperature and pressure sensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111026 Termination date: 20140613 |
|
EXPY | Termination of patent right or utility model |