CN102515550B - 近红外量子剪裁下转换发光透明玻璃陶瓷及其制备方法 - Google Patents

近红外量子剪裁下转换发光透明玻璃陶瓷及其制备方法 Download PDF

Info

Publication number
CN102515550B
CN102515550B CN201110403128.9A CN201110403128A CN102515550B CN 102515550 B CN102515550 B CN 102515550B CN 201110403128 A CN201110403128 A CN 201110403128A CN 102515550 B CN102515550 B CN 102515550B
Authority
CN
China
Prior art keywords
glass
transparent glass
cutting down
ceramic
conversion luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110403128.9A
Other languages
English (en)
Other versions
CN102515550A (zh
Inventor
林航
陈大钦
余运龙
王元生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201110403128.9A priority Critical patent/CN102515550B/zh
Publication of CN102515550A publication Critical patent/CN102515550A/zh
Application granted granted Critical
Publication of CN102515550B publication Critical patent/CN102515550B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

本发明公开一种近红外量子剪裁下转换发光透明玻璃陶瓷。玻璃陶瓷的组分和摩尔百分含量为SiO2:30-50mol%;Al2O3:20-35mol%;CaCO3:5-20mol%;NaF:5-20mol%;CaF2:9.6-14.5mol%;EuF3:0.1-1.0mol%;YbF3:0-2mol%。样品采用熔体急冷法和后续热处理制备,方法简单、无污染且成本低。将该透明玻璃陶瓷与硅太阳电池相耦合,有望降低硅太阳电池的热化效应,提高电池的光电转换效率。

Description

近红外量子剪裁下转换发光透明玻璃陶瓷及其制备方法
技术领域
本发明涉及固体发光材料领域,尤其是涉及一种可宽带激发的近红外量子剪裁下转换发光的稀土掺杂透明玻璃陶瓷及其制备工艺。
技术背景
当今世界,传统的化石能源正逐渐枯竭,人类迫切需要开发和应用新能源。太阳能既是一次能源,又是可再生能源,利用硅太阳电池光伏发电已经成为各发达国家竞相发展的新能源技术。目前,市场上常见的单晶硅太阳电池的光电转换效率约为15-18%;根据计算,带隙为1.1eV的单P-N结硅太阳电池的理论效率也不超过30%。这是由于太阳光谱与半导体单晶硅光谱响应不匹配,从而产生红外能损和点阵热化能损而造成的。通过量子剪裁下转换方式调制太阳光谱是使硅太阳电池能量效率超越30%的一种可行方法,它涉及一个高能光子同时转换为多个低能光子的光学过程。如果一个入射的紫外-可见光子可以转换为两个近红外光子,那么太阳电池的点阵热化能量损失将显著降低。由于能级结构丰富,稀土离子可以吸收或发射从紫外到可见到红外区各种波长的电磁辐射,可望实现有效的量子剪裁下转换发光。近年来,一些稀土离子的组合(如:Tb3+/Yb3+,Tm3+/Yb3+,Pr3+/Yb3+)已经被广泛研究用于量子剪裁光频下转换。但是,由于镧系三价稀土的4f-4f跃迁是宇称禁戒的,其吸收强度较弱,这使其很难高效地利用太阳光。由于Ce3+和Eu2+的4f-5d跃迁是宇称允许的,在太阳光谱区域具有很强的吸收能力,因此,基于Ce3+/Yb3+或Eu2+/Yb3+稀土离子组合的量子剪裁下转换材料逐渐引起人们的关注。我们课题组在硼酸盐玻璃中报道了Ce3+/Yb3+的量子剪裁下转换发光[J.Appl.Phys.,104,116105(2008)],随后Zhou等同样在硼酸盐玻璃中报道了Eu2+/Yb3+的量子剪裁下转换发光[Appl.Phys.Lett.,95,141101(2009)]。一般认为,从Ce3+或Eu2+向Yb3+的能量传递过程是一个施主离子将能量同时传递给两个受主离子的共合作能量传递过程。
透明氟氧化物玻璃陶瓷是实现稀土离子量子剪裁下转换发光的合适基体。当稀土离子以置换固溶的方式进入晶化析出的氟化物纳米晶晶格位置后,它们之间的能量传递下转换几率将由于相互距离的缩短而增大;同时,氟化物纳米晶低声子能量环境的特点也有助于实现高效的量子剪裁下转换发光。
本发明利用熔体急冷法制备了含Eu2+/Yb3+:CaF2纳米晶的透明玻璃陶瓷。Eu2+能够在250纳米-375纳米波段范围内宽带吸收紫外光,并通过共合作能量传递的方式将一个紫外光子转换为两个近红外光子。由于透明无机玻璃陶瓷可以替代传统的封装玻璃与太阳电池结合,该材料在降低硅太阳电池热化效应、提高光电转换效率方面具有重要应用价值。
发明内容
本发明提出一种Eu2+/Yb3+共掺的透明玻璃陶瓷的组分及其制备工艺,目的在于制备出结构稳定、具有可宽带激发的近红外量子剪裁下转换发光特性的透明固体发光材料。
本发明的透明玻璃陶瓷的组分和摩尔百分含量如下:
SiO2:30-50mol%;Al2O3:20-35mol%;CaCO3:5-20mol%;NaF:5-20mol%;CaF2:9.6-14.5mol%;EuF3:0.1-1.0mol%;YbF3:0-2mol%(上述各组分含量之和为100mol%)。
本发明的技术方案如下:
将各种粉体原料按照一定组分配比称量,混合并研磨后置于坩埚中,放入电阻炉中加热到1300~1400℃后保温1~3小时使之熔融,而后,将熔液取出并快速倒入铜模中成形得到前驱玻璃;将前驱玻璃放入电阻炉中于430℃退火2小时以消除内应力。对上述玻璃在590℃进行6小时等温处理,使之发生部分晶化,便得到透明玻璃陶瓷。
制备过程中使用的坩埚可以是铂金坩埚或刚玉坩埚。
粉未X射线衍射分析表明,利用上述方法制备的透明玻璃陶瓷中晶化析出单一的立方相CaF2纳米晶;透射电子显微镜观察表明,平均尺度为10纳米的CaF2纳米晶均匀地镶嵌于无机玻璃基体中。荧光光谱仪测量表明,用紫外光激发Eu2+,可观察到Yb3+:2F5/22F7/2跃迁的量子剪裁近红外光发射带(中心波长为980纳米)。通过优化材料组分与稀土掺杂浓度,透明玻璃陶瓷量子剪裁下转换发光的理论内量子效率最高可达到151%。
本发明的透明玻璃陶瓷制备工艺简单、成本低廉、无毒无污染,具有良好的力学性能和热学稳定性,可望开发成为一种可宽带激发的近红外量子剪裁下转换发光材料,在太阳电池领域具有广阔的应用前景。
附图说明
图1是实例1中玻璃陶瓷样品的X射线衍射图;
图2是实例1中玻璃陶瓷样品的透射电子显微镜明场像;
图3是实例1中玻璃陶瓷样品的激发谱;
图4是实例1中玻璃陶瓷样品的发射谱;
图5是实例1中Eu2+:5d→4f跃迁的荧光衰减曲线;
图6是Eu2+/Yb3+共合作能量传递下转换机理示意图。
具体实施方式
实例1:将分析纯的SiO2、Al2O3、CaCO3、NaF、CaF2和纯度为99.99%的EuF3、YbF3粉体,按45SiO2-25Al2O3-5CaCO3-10NaF-12.5CaF2-0.5EuF3-2YbF3的配比精确称量后置于玛瑙研钵中,研磨半小时以上使之均匀混合,而后置于铂金坩埚中,于程控高温箱式电阻炉中加热到1350℃后保温2小时使之熔融,然后,将熔液取出并快速倒入铜模中冷却成形,得到前驱玻璃;将前驱玻璃放入电阻炉中,在430℃退火2小时后随炉冷却以消除内应力。将退火后的玻璃在590℃保温6小时使之发生部分晶化,得到透明玻璃陶瓷。
粉未X射线衍射图(图1)分析表明,无机玻璃基体中析出的晶相为单一的CaF2立方相;透射电子显微镜观察表明,平均尺度为10纳米的CaF2晶粒均匀分布于玻璃基体之中(如图2所示);样品经过表面抛光,用FLS920荧光光谱仪进行室温光谱测量,观察到典型的Eu2+:4f→5d跃迁的宽带(250纳米-375纳米)激发峰(如图3所示)、Eu2+:5d→4f跃迁的宽带发射峰与Yb3+:2F5/22F7/2跃迁的量子剪裁近红外光发射带(中心波长为980纳米)(如图4所示)。根据Eu2+:5d→4f跃迁的荧光衰减曲线(如图5所示),计算总发光量子效率最高可达到151%。图6为Eu2+/Yb3+共合作能量传递下转换机理示意图,当一个入射的紫外光子被Eu2+吸收后,Eu2+离子发生斯托克斯位移发出蓝光;另一方面,由于蓝光能量接近于Yb3+离子近红外光能量的2倍,因此Eu2+离子会同时将能量传递给两个近邻的Yb3+离子,从而实现Yb3+离子的近红外量子剪裁下转换发射。
实例2:将分析纯的SiO2、Al2O3、CaCO3、NaF、CaF2和纯度为99.99%的EuF3、YbF3粉体,按30SiO2-35Al2O3-10CaCO3-15NaF-8CaF2-1EuF3-1YbF3的配比精确称量后置于玛瑙研钵中,研磨半小时以上使之均匀混合,而后置于铂金坩埚中,于程控高温箱式电阻炉中加热到1300℃后保温1小时使之熔融,然后,将熔液取出并快速倒入铜模中冷却成形,得到前驱玻璃;将前驱玻璃放入电阻炉中,在430℃退火2小时后随炉冷却以消除内应力。将退火后的玻璃在590℃保温6小时使之发生部分晶化,得到透明玻璃陶瓷。样品经过表面抛光,用FLS920荧光光谱仪进行室温光谱测量,观察到典型的Eu2+:4f→5d跃迁的宽带(250纳米-375纳米)激发峰,和对应于Yb3+:2F5/22F7/2跃迁的量子剪裁近红外光发射带(中心波长为980纳米)。
实例3:将分析纯的SiO2、Al2O3、CaCO3、NaF、CaF2和纯度为99.99%的EuF3、YbF3粉体,按50SiO2-20Al2O3-10CaCO3-5NaF-14.4CaF2-0.1EuF3-0.5YbF3的配比精确称量后置于玛瑙研钵中,研磨半小时以上使之均匀混合,而后置于铂金坩埚中,于程控高温箱式电阻炉中加热到1400℃后保温3小时使之熔融,然后,将熔液取出并快速倒入铜模中冷却成形,得到前驱玻璃;将前驱玻璃放入电阻炉中,在430℃退火2小时后随炉冷却以消除内应力。将退火后的玻璃在590℃保温6小时使之发生部分晶化,得到透明玻璃陶瓷。样品经过表面抛光,用FLS920荧光光谱仪进行室温光谱测量,观察到典型的Eu2+:4f→5d跃迁的宽带(250纳米-375纳米)激发峰,和对应于Yb3+:2F5/22F7/2跃迁的量子剪裁近红外光发射带(中心波长为980纳米)。
实例4:将分析纯的SiO2、Al2O3、CaCO3、NaF、CaF2和纯度为99.99%的EuF3、YbF3粉体,按35SiO2-30Al2O3-15CaCO3-10NaF-9.6CaF2-0.2EuF3-0.2YbF3的配比精确称量后置于玛瑙研钵中,研磨半小时以上使之均匀混合,而后置于铂金坩埚中,于程控高温箱式电阻炉中加热到1350℃后保温2小时使之熔融,然后,将熔液取出并快速倒入铜模中冷却成形,得到前驱玻璃;将前驱玻璃放入电阻炉中,在430℃退火2小时后随炉冷却以消除内应力。将退火后的玻璃在590℃保温6小时使之发生部分晶化,得到透明玻璃陶瓷。样品经过表面抛光,用FLS920荧光光谱仪进行室温光谱测量,观察到典型的Eu2+:4f→5d跃迁的宽带(250纳米-375纳米)激发峰,和对应于Yb3+:2F5/22F7/2跃迁的量子剪裁近红外光发射带(中心波长为980纳米)。
实例5:将分析纯的SiO2、Al2O3、CaCO3、NaF、CaF2和纯度为99.99%的EuF3、YbF3粉体,按30SiO2-20Al2O3-20CaCO3-20NaF-9.6CaF2-0.5EuF3-0.1YbF3的配比精确称量后置于玛瑙研钵中,研磨半小时以上使之均匀混合,而后置于铂金坩埚中,于程控高温箱式电阻炉中加热到1350℃后保温2小时使之熔融,然后,将熔液取出并快速倒入铜模中冷却成形,得到前驱玻璃;将前驱玻璃放入电阻炉中,在430℃退火2小时后随炉冷却以消除内应力。将退火后的玻璃在590℃保温6小时使之发生部分晶化,得到透明玻璃陶瓷。样品经过表面抛光,用FLS920荧光光谱仪进行室温光谱测量,观察到典型的Eu2+:4f→5d跃迁的宽带(250纳米-375纳米)激发峰,和对应于Yb3+:2F5/22F7/2跃迁的量子剪裁近红外光发射带(中心波长为980纳米)。

Claims (3)

1.一种具有近红外量子剪裁下转换发光透明玻璃陶瓷,其原料组分和摩尔百分含量为SiO2:30-50mol%;Al2O3:20-35mol%;CaCO3:5-20mol%;NaF:5-20mol%;CaF2:9.6-14.5mol%;EuF3:0.1-1.0mol%;YbF3:0-2mol%。
2.根据权利要求1的透明玻璃陶瓷,其特征在于:该透明玻璃陶瓷的玻璃基体中均匀分布立方结构的氟化钙纳米晶,晶粒平均尺度为10纳米,掺杂的稀土离子聚集于氟化钙纳米晶中。
3.一种权利要求1的玻璃陶瓷的制备方法,其特征在于:将原料按照权利要求1所述的原料组分配比称量,混合并研磨后置于坩埚中,放入电阻炉中加热到1300~1400℃后保温1~3小时使之熔融,而后,将熔液取出并快速倒入铜模中成形得到前驱玻璃;将前驱玻璃放入电阻炉中于430℃退火2小时以消除内应力,最后,在590℃进行6小时等温热处理,使之发生部分晶化。
CN201110403128.9A 2011-12-06 2011-12-06 近红外量子剪裁下转换发光透明玻璃陶瓷及其制备方法 Expired - Fee Related CN102515550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110403128.9A CN102515550B (zh) 2011-12-06 2011-12-06 近红外量子剪裁下转换发光透明玻璃陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110403128.9A CN102515550B (zh) 2011-12-06 2011-12-06 近红外量子剪裁下转换发光透明玻璃陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN102515550A CN102515550A (zh) 2012-06-27
CN102515550B true CN102515550B (zh) 2016-01-13

Family

ID=46286694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110403128.9A Expired - Fee Related CN102515550B (zh) 2011-12-06 2011-12-06 近红外量子剪裁下转换发光透明玻璃陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN102515550B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394751B (zh) * 2022-02-25 2023-03-10 中国计量大学 一种无稀土掺杂的青色发光微晶玻璃及其制备方法
ES2952015B2 (es) * 2022-03-18 2024-03-06 Ancor Tecnologica Canaria S L Tratamiento biocida y fotoluminiscente de la fibra de viscosa inmediatamente despues del anadido de disulfuro de carbono en el proceso de conversion de la celulosa en viscosa (xantacion)
ES2952081B2 (es) * 2022-03-18 2024-03-06 Ancor Tecnologica Canaria S L Producto biocida con aditivo marcador luminiscente para superficies textiles o similares
CN115504672B (zh) * 2022-09-26 2023-10-31 江西理工大学 一种铬离子掺杂多相近红外玻璃陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955130A (zh) * 2005-10-24 2007-05-02 中国科学院福建物质结构研究所 一种玻璃陶瓷及其制备方法
CN101088946A (zh) * 2006-06-13 2007-12-19 中国科学院福建物质结构研究所 一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途
CN101209898A (zh) * 2006-12-27 2008-07-02 中国科学院福建物质结构研究所 一种掺铒含氟化钇钡纳米晶的透明氟氧化物玻璃陶瓷及其制备方法
CN101353229A (zh) * 2008-09-05 2009-01-28 浙江大学 一种稀土离子掺杂的下转换发光透明微晶玻璃

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027307B4 (de) * 2006-06-06 2014-08-07 Schott Ag Verfahren zur Herstellung einer Sinterglaskeramik und deren Verwendung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1955130A (zh) * 2005-10-24 2007-05-02 中国科学院福建物质结构研究所 一种玻璃陶瓷及其制备方法
CN101088946A (zh) * 2006-06-13 2007-12-19 中国科学院福建物质结构研究所 一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途
CN101209898A (zh) * 2006-12-27 2008-07-02 中国科学院福建物质结构研究所 一种掺铒含氟化钇钡纳米晶的透明氟氧化物玻璃陶瓷及其制备方法
CN101353229A (zh) * 2008-09-05 2009-01-28 浙江大学 一种稀土离子掺杂的下转换发光透明微晶玻璃

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于稀土离子间能量传递的宽带下转换光谱调制的研究进展;周佳佳等;《硅酸盐学报》;20110430;第39卷(第4期);第619-621页 *

Also Published As

Publication number Publication date
CN102515550A (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
Xin et al. Up-conversion luminescence of Er3+-doped glass ceramics containing β-NaGdF4 nanocrystals for silicon solar cells
Dieudonné et al. Up-and down-conversion in Yb3+–Pr3+ co-doped fluoride glasses and glass ceramics
Katayama et al. Near infrared downconversion in Pr3+–Yb3+ codoped oxyfluoride glass ceramics
CN102515550B (zh) 近红外量子剪裁下转换发光透明玻璃陶瓷及其制备方法
Song et al. Research phosphate glass in combination with Eu/Tb elements on turning sunlight into red/green light as photovoltaic precursors
CN101618945A (zh) 近红外量子剪裁下转换发光透明玻璃陶瓷及其制备方法和用途
CN102817076A (zh) 用于太阳光谱调制的Pr/Yb掺杂氟化钇锂单晶体及制备方法
CN105712635B (zh) 一种Eu3+/Yb3+共掺杂硅酸盐微晶玻璃及其制备方法和应用
Wang et al. Broadband Near‐Infrared Down‐Shifting by Yb–O Charge‐Transfer Band in Yb3+ Singly Doped Tellurite Glasses
Zhang et al. Enhanced broadband excitable near-infrared luminescence in Ce3+/Yb3+ codoped oxyapatite based glass ceramics
Han et al. Al2O3: Cr3+/tellurite glass composites: An efficient light converter for silicon solar cell
Yan et al. Photoluminescence properties of Mn2+/Yb3+ co-doped oxyfluoride glasses for solar cells application
CN102992630A (zh) 具有上/下转换发光特性的纳米结构玻璃陶瓷及其制备方法
CN104355545A (zh) 具有吸收和转换双频光能力的透明玻璃陶瓷及其制备方法
CN101752443B (zh) 光伏电池
CN102329082B (zh) 一种含有氟磷酸钙晶体的透明微晶玻璃及其制备方法
Wu et al. Preparation of PbF2: Ho3+, Er3+, Yb3+ phosphors and its multi-wavelength sensitive upconversion luminescence mechanism
CN102503139B (zh) 一种上转换发光透明玻璃陶瓷及其制备方法
Liu et al. Near-infrared quantum cutting and energy transfer mechanism in Lu 2 O 3: Tm 3+/Yb 3+ phosphor for high-efficiency photovoltaics
CN101376564A (zh) 超宽带红外发光透明玻璃陶瓷及其制备
CN103865540B (zh) 一种碲酸盐玻璃基质下转换材料及制备方法
CN108192613B (zh) 一种Bi-Nd-Yb共掺杂YAG高效宽谱量子剪裁发光材料
Dan et al. Effects of heat treatment and Yb 3+ concentration on the downconversion emission of Er 3+/Yb 3+ co-doped transparent silicate glass-ceramics
Jing-Xin et al. Cooperative quantum cutting of nano-crystalline BaF2: Tb3+, Yb3+ in oxyfluoride glass ceramics
CN105967512B (zh) 一种光转换光伏玻璃及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160113

Termination date: 20211206